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Abstract

An effective method for writer identification and veri-
fication is based on assuming that each writer acts as a
stochastic generator of ink-trace fragments, or graphemes.
The probability distribution of these simple shapes in a
given handwriting sample is characteristic for the writer
and is computed using a common codebook of graphemes
obtained by clustering. In previous studies we used con-
tours to encode the graphemes, in the current paper we ex-
plore a complementary shape representation using normal-
ized bitmaps. The most important aim of the current work
is to compare three different clustering methods for gener-
ating the grapheme codebook: k-means, Kohonen SOM 1D
and 2D. Large scale computational experiments show that
the proposed method is robust to the underlying shape rep-
resentation used (whether contours or normalized bitmaps),
to the size of codebook used (stable performance for sizes
from 102 to 2.5× 103) and to the clustering method used to
generate the codebook (essentially the same performance
was obtained for all three clustering methods).

1. Introduction

Research in writer identification and verification has re-
ceived significant interest in recent years due to its foren-
sic applicability [8, 7, 13, 1, 10]. A writer identification
system performs a one-to-many search in a large database
with handwriting samples of known authorship and returns
a likely list of candidates. This list is further scrutinized by
the forensic expert who takes the final decision regarding
the identity of the author of the questioned sample. Writer
verification involves a one-to-one comparison with a deci-
sion whether or not the two samples are written by the same
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person. The decidability of this problem gives insight into
the nature of handwriting individuality [13].

While texture-level approaches that use directional fea-
tures (capturing slant, curvature, regularity) prove to be very
efficient [3], they must be complemented by allograph-
level, i.e., character-shape based approaches in order to ob-
tain adequate and robust results [14]. New results also show
that writer-specialized handwriting recognizers can be used
for writer identification and verification [9].

Recently, we have proposed an effective writer identifi-
cation method in which the writer is assumed to act as a
stochastic generator of ink-blob shapes, or graphemes. The
probability distribution (PDF) of grapheme usage is char-
acteristic of each writer and is computed using a common
codebook obtained by clustering. This approach was first
applied to isolated uppercase handwriting [10] and later it
was extended to lowercase cursive handwriting by using a
segmentation method [11].

In these previous studies, we have used contours for
shape representation and a 2D Kohonen self-organizing
map (KSOM) for generating the grapheme codebook.
While contours posses definite advantages for shape match-
ing, they are nevertheless susceptible to problems regarding
the starting point, open/closed loops or the presence of mul-
tiple inner contours. On the other hand, pixel-based repre-
sentations can be more robustly extracted from the hand-
writing images, but the matching process becomes more
vulnerable in this case, e.g., due to quantization in rescal-
ing. The first purpose of this paper is to explore the use of
normalized bitmaps as the underlying shape representa-
tion. In this respect, our paper comes closest to the work
reported in [1, 2] where an information-retrieval frame-
work is used for writer identification. In contrast, our ap-
proach uses explicit probability distributions constructed on
the basis of the shape codebooks to characterize writer in-
dividuality.

The second and most important purpose of the cur-
rent work is to compare three different clustering methods
for generating the grapheme codebook: k-means, Kohonen
SOM 1D and 2D. We have run large scale computational
experiments for comparing these three clustering methods
over a large range of codebook sizes. Both writer identifica-
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Figure 1. Examples of codebooks with 400 graphemes. For kmeans (a) and ksom1D (b) the graphemes have
been placed 25 in a row, while for ksom2D (c) the 20x20 original SOM organization has been maintained.

tion and verification will be considered in our evaluation.

2. Datasets

We conducted our writer identification and verification
study using two datasets: Firemaker and ImUnipen.

The Firemaker set [12] contains handwriting col-
lected from 250 Dutch subjects, predominantly stu-
dents, who were required to write 4 different A4 pages.
On page 1 they were asked to copy a text of 5 para-
graphs using normal handwriting style (i.e. predomi-
nantly lowercase with some capital letters at the begin-
ning of sentences and names). On page 2 they were asked
to copy another text of 2 paragraphs using only upper-
case letters. The category of page 3 (”forged”) samples
was not used here. On page 4 they were asked to de-
scribe the content of a given cartoon in their own words.
These samples consist of mostly lowercase handwrit-
ing of varying text content and the amount of written ink
varies significantly, from 2 lines up to a full page. The re-
sponse sheets were scanned at 300 dpi, 8 bits / pixel,
gray-scale. In the writer identification and verification ex-
periments reported here, we performed searches/matches
of page 1 vs. 4 (Firemaker lowercase) and paragraph 1 vs.
2 from page 2 (Firemaker uppercase).

The ImUnipen set contains handwriting from 215 sub-
jects, 2 samples per writer. The images were derived from
the Unipen database [5] of on-line handwriting. The time
sequences of coordinates were transformed to simulated
300 dpi images using a Bresenham line generator and an ap-
propriate brushing function. The samples contain lowercase
handwriting with varying text content and amount of ink.
The dataset was divided in two parts: 65 writers (130 sam-
ples) were used for training the grapheme codebook and the
rest of 150 writers (300 samples) were used for testing.

3. Segmentation Method

In free-style cursive handwriting, connected-
components may encompass several characters or syl-
lables. A segmentation method that isolates individual
characters remains an elusive goal for handwriting re-
search. Nevertheless, several heuristics can be applied,
yielding graphemes (sub- or supra-allographic frag-
ments) that may or may not overlap a complete character.
While this represents a fundamental problem for handwrit-
ing recognition, the fraglets generated by the segmentation
procedure can still be effectively used for writer identi-
fication. The essential idea is that the ensemble of these
simple graphemes still manages to capture the shape de-
tails of the allographs emitted by the writer.

Figure 2. Segmentation at the minima in the lower
contour that are proximal to the upper contour.

We segment handwriting at the minima in the lower con-
tour with the added condition that the distance to the upper
contour is in the order of the ink-trace width (see fig. 2).
For contour extraction we use Moore’s algorithm. After
segmentation, graphemes are extracted as connected com-
ponents, followed by a size normalization to 30x30 pixel
bitmaps, preserving the aspect ratio of the original pattern.
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Figure 3. Performance on the Firemaker lower-
case dataset as a function of codebook size.

4. Grapheme Codebook Generation

A number of 130 samples corresponding to 65 writers
have been taken from the ImUnipen dataset. The graphemes
have been extracted from these samples using the described
procedure yielding a training set containing a total of 41k
patterns (normalized bitmaps).

Three clustering methods will be used to generate the
grapheme codebook: k-means, Kohonen SOM 1D and 2D.
We use standard implementations of these methods. Com-
plete and clear descriptions of the algorithms can be found
in references [4, 6].

The size of the codebook (the number of clusters used)
yielding optimal performance is an important parameter in
our method. In the experiments, we will explore a large
range of codebook sizes. This will allow a thorough com-
parison of the considered clustering algorithms.

Fig.1 shows examples of codebooks that have been ob-
tained by training using each of the three clustering meth-
ods. The two codebooks obtained using Kohonen training
show spatial order, while the one obtained using k-means is
”disorderly”. The ksom1D codebook must be understood as
a long linear string of shapes and gradual transitions can be
observed if the map is ”read” in left-to-right top-to-bottom
order. The ksom2D codebook shows a clear bidimensional
organization.

5. Computing Writer-Specific Grapheme
Emission PDFs

The writer is considered to be characterized by a stochas-
tic pattern generator, producing a family of basic shapes.
The individual shape emission probability is computed by
building a histogram in which one bin is allocated to ev-
ery grapheme in the codebook.
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Figure 4. Performance on Firemaker uppercase
dataset as a function of codebook size.

For every sample i of handwriting, the graphemes are
extracted using the segmentation/connected-component-
detection/size-normalization procedure described before.
For every grapheme g in the sample, the nearest code-
book prototype w (the winner) is found using the Euclidean
distance and this occurrence is counted into the correspond-
ing histogram bin:

w = argminn[dist(g, Cn)], hiw ← hiw + 1 (1)

where n is an index than runs over the shapes in the code-
book C. In the end, the histogram hi is normalized to a
probability distribution function pi that sums up to 1. This
PDF is the writer descriptor used for identification and ver-
ification.

6. Results

We performed large scale computational experiments to
compare the three clustering methods over a large range
of codebook sizes. The number of clusters used was var-
ied from 9 (3x3) to 2500 (50x50). A number of 200 epochs
have been used for training the Kohonen SOMs. Computa-
tions have been performed on a Beowulf high-performance
Linux cluster with 1.7GHz/0.5GB nodes. Training times
for codebooks of size 400: k-means - 1 hrs, ksom1D - 10
hrs, ksom2D - 17 hrs. Computation times for the grapheme
emission PDF on codebooks of size 400: k-means - 0.5 s
/ sample, ksom1D - 1.5 s / sample, ksom2D - 3.1 s / sam-
ple. These computation times were obtained using the ’gcc’
compiler with optimization for single-precision floating-
point calculations. The total computation time used in the
experiments amounts to approx. 800 CPU hrs.
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Figure 5. Performance on the ImUnipen dataset
as a function of codebook size.

Writer Identification
Writer identification performance is computed us-

ing nearest-neighbor classification in a leave-one-out strat-
egy. For a query sample q, the distances to all the other
samples i 6= q are computed. Then all the samples i are or-
dered in a sorted hitlist with increasing distance to the
query q. Ideally the first ranked sample (Top 1) should be
the pair sample produced by the same writer (in all our ex-
periments there are 2 samples per writer).

An appropriate dissimilarity measure between the
grapheme PDFs is the χ2 distance:

χ2

qi =
k∑

n=1

(pqn − pin)2

pqn + pin

(2)

where p are entries in the PDF, n is the bin index and k

is the number of bins in the PDF (equal to the size of the
grapheme codebook). In our experiments, χ2 outperformed
other distance measures: Hamming, Euclid, Minkowski or-
der 3, Bhattacharya.

We point out that we do not make a separation between a
training set and a test set, all the data is in one suite. This is
actually a more difficult and realistic testing condition, with
more distractors: not 1, but 2 per false writer and only one
correct hit.

Figures 3, 4, 5 show our results obtained on the exper-
imental datasets. Writer identification performance (Top-1
and Top-10) reaches a plateau for codebook sizes larger
than about 100 (10x10) shapes. More remarkable is the fact
that the same performance is achieved by all three cluster-
ing methods. Table 1 gives numerical results for codebooks
of size 400 which was chosen as an anchor point.

The lower performance obtained on the Firemaker up-
percase dataset can be explained by two factors: the amount
of handwriting in these samples is very reduced (only one

Dataset / Method kmeans ksom1D ksom2D

Firemaker Top 1 75.3 75.3 78.1
lowercase Top 10 91.8 92.2 92.6

(250 writers) EER 5.7 5.4 5.3
Firemaker Top 1 64.7 63.6 64.9
uppercase Top 10 91.6 90.6 93.2

(250 writers) EER 8.0 8.2 9.2
ImUnipen Top 1 77.7 79.0 76.3

(150 writers) Top 10 92.7 89.3 91.3
ERR 14.7 15.0 14.7

Table 1. Identification and verification accuracies
(percentages) for codebooks of size 400 (20x20).

paragraph of 100-150 characters) and the codebooks have
been generated based on samples that contain almost ex-
clusively lowercase (cursive) handwriting. Nevertheless, the
overall performance levels achieved on lowercase and up-
percase are quite comparable. In a previous study using
edge-based directional features under the condition that
roughly the same amount of ink is present in all samples,
the performance level achieved on lowercase and uppercase
was the same [3]. These empirical results contradict the idea
(which one might intuitively expect) that it is always eas-
ier to identify the author of lowercase rather than uppercase
handwriting. The slightly higher performance obtained on
ImUnipen is due to the smaller number of writers in the
dataset.

The writer identification results presented in this paper
are in the same ballpark as the ones we reported in a previ-
ous study using contours for shape representation and Ko-
honen 2D for codebook training [11]. This constitutes ad-
ditional evidence regarding the robustness of the proposed
method of using grapheme emission PDFs for writer iden-
tification.

Writer Verification
In the writer verification task, the distance x between two

given handwriting samples is computed using the grapheme
PDFs. Distances up to a predefined decision threshold T are
deemed sufficiently low for considering that the two sam-
ples have been written by the same person. Beyond T , the
samples are considered to have been written by different
persons. Two types of error are possible: falsely accepting
(FA) that two samples are written by the same person when
in fact this is not true or falsely rejecting (FR) that two sam-
ples are written by the same person when in fact this is
the case. The associated error rates are FAR and FRR. In
a scenario in which a suspect must be found in a stream of
documents, FAR becomes false alarm rate, while FRR be-
comes miss rate. These error rates can be empirically com-
puted by integrating up-to/from the decision threshold T the



probability distribution of distances between samples writ-
ten by the same person PS(x) and the probability distribu-
tion of distances between samples written by different per-
sons PD(x):

FAR =

∫ T

0

PD(x) dx, FRR =

∫
∞

T

PS(x) dx. (3)

By varying the threshold T a Receiver Operating Char-
acteristic (ROC) curve is obtained that illustrates the in-
evitable trade-off between the two error rates. The Equal Er-
ror Rate (EER) corresponds to the point on the ROC curve
where FAR = FRR and it quantifies in a single number the
writer verification performance.

For the Firemaker dataset, PS(x) has been constructed
using the 250 same-writer distances, while PD(x) has been
constructed using all the C2

500
− 250 = 124500 different-

writer distances arising in the dataset. Similarly for ImU-
nipen. In figures 3, 4, 5, the lower family of curves show the
ERR as a function of codebook size. Here again the same
performance is achieved by all three clustering methods.

For Firemaker uppercase, the EER hovers around 8%.
For Firemaker lowercase, the EER reaches a minimum of
about 3% for a codebook size of 100 and increases to about
7% for larger codebooks. A similar increase in the ERR
for larger codebooks can be seen also for the ImUnipen
set, from 8% (codebook with 9 shapes) to 14% (codebooks
with 103 shapes). This effect can be explained considering
that, as the codebook size increases, the grapheme emis-
sion PDFs reside in increasingly higher dimensional spaces
that progressively become less and less populated. The dis-
tances between the individual handwriting samples increase
in relative terms. As a result it becomes gradually more dif-
ficult to find a unique threshold distance that separates the
sample pairs written by the same person from those written
by different persons. Clearly an individualized threshold is
needed that depends on the variability in feature space of
the handwriting belonging to that particular person. How-
ever estimating this within-writer variability using a lim-
ited amount of handwritten material is a difficult problem
that requires further research. The described dimensionality
problem does not significantly affect the distance rankings
with respect to a chosen sample and consequently writer
identification performance remains essentially stable over
a large range of codebook sizes. A slight decrease in the
writer identification performance with increasing codebook
size can however be notice in fig. 3.

We must point out that the essence of the proposed
method does not consist in an exhaustive enumera-
tion of all possible allographic part shapes. Rather, the
grapheme codebook spans up a shape space by provid-
ing a set of nearest-neighbor attractors for the ink fraglets
extracted from a given handwritten sample. The three clus-

tering methods considered in this paper seem to perform
this task equally well.

7. Conclusion

The use of grapheme emission PDFs in writer identifi-
cation and verification yields valuable results. Ultimately,
writing style is determined by allographic shape variations
and small style elements which are present within a char-
acter are the result of the writer’s physiological make up
as well as education and personal preference. The proposed
method proves to be robust to the underlying shape repre-
sentation used (whether contours or normalized bitmaps),
to the size of codebook used (stable performance for sizes
from 102 to 2.5 × 103) and to the clustering method used
to generate the codebook (essentially the same performance
was obtained for k-means, ksom1D and ksom2D). More re-
search is needed to improve writer verification performance
especially for larger codebooks and experiments must be
extended to bigger datasets containing more writers.
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