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a b s t r a c t

As suggested by modern paleography, the width of ink traces is a powerful source of information for

off-line writer identification, particularly if combined with its direction. Such measurements can be

computed using simple, fast and accurate methods based on pixel contours, the combination of which

forms a powerful feature for writer identification: the Quill feature. It is a probability distribution of the

relation between the ink direction and the ink width. It was tested in writer identification experiments

on two datasets of challenging medieval handwriting and two datasets of modern handwriting. The

feature achieved a nearest-neighbor accuracy in the range of 63–95%, which even approaches the

performance of two state-of-the-art features in contemporary-writer identification (Hinge and Fraglets).

The feature is intuitive and explainable and its principle is supported by a model of trace production by

a quill. It illustrates that ink width patterns are valuable. A slightly more complex variant of Quill,

QuillHinge, scored 70–97% writer identification accuracy. The features are already being used by domain

experts using a graphical interface.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Historical handwriting written with a quill has a salient
calligraphic appearance. The variability of the trace width,
as illustrated in Fig. 1, is caused by physical properties of the
writing instrument and the individual writing style of the writer.
In quantitative paleography [1], a recent methodology in the
manual study of such historical documents, writing hands are
discerned based on measurable characteristics. Two of the char-
acteristics form the motivation for this paper: contrast, which is
the difference of width between the thinnest and thickest traces,
and the angle of writing, which describes the habitual orientation
of the pen tip, determined by the angle between the thinnest ink
traces and the base line. These characteristics suggest that trace
width is an important feature for writer identification and that it
is relevant to relate trace width to the trace direction. Trace width
and direction can both be determined automatically using simple
contour-based image processing operations, and in this paper we
will show that the combination of the two yields a powerful
feature for automatic writer identification. It is not limited to

historical handwriting since modern handwriting contains trace
subtle width variations as well.

The value of directionality measurements for writer identifica-
tion is known [2–5], but the added value of width measurements is
new. Only one remotely related feature for writer identification has
been evaluated that is based on run lengths of black pixels [6,7].
Apart from this approach, to the best of our knowledge, ink trace-
width measurements have not been used for writer identification.
However, such measurements have been evaluated for a few other
applications. One study used width measurements for stroke
detection and structural analysis [8]. A second experiment
included a distribution of coarse trace-width measurements in a
signature verification experiment [9]. In another study on signa-
ture verification, the trace width was used to express the mismatch
between two signatures at corresponding locations [10].

Our approach is different in that width measurements are
combined with direction measurements, and used for writer
identification. The resulting statistic will be used as a text-
independent writer identification feature, called Quill. It consists
of a combination of simple methods, including trace-width
computation using a method based on Bresenham’s well-known
line-drawing algorithm [11]. Quill depends on pen properties and
individual movement style. In this paper, the power of such
computational measurements of ink trace widths relative to the
writing direction as a feature for writer identification is explored
on various handwriting datasets. We will show that its power to
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discern writers is comparable to that of Hinge [12] and Fraglets

[13], which are among the world’s best features.

2. Datasets

The Quill feature will be evaluated on two datasets of medieval
handwriting, the Dutch charter dataset and the English diverse

dataset, and on two datasets of contemporary handwriting, Fire-

maker and IAM. A description of these datasets follows.

2.1. Dutch charter dataset

The Dutch charter dataset is a new dataset of 118 early 14th-
century Dutch charters (1299–1328): administrative documents
which served as evidence, written with quill (goose feather) on
parchment. See Fig. 2 for a sample photo. The charters are part of a
collection that is studied at the University of Amsterdam in a
research project called ‘‘Charters and Chancery of the Counts of
Holland/Hainault, (1280) 1299–1345’’. The project is funded by
NWO (the Netherlands Organisation for Scientific Research) and
part of the VNC (the Flemish-Dutch Committee for Dutch Language
and Culture) programme. As studies of medieval administrations
rely heavily on writer identification, the different writing hands in
this dataset were distinguished and code-named by the paleogra-
phers Jinna Smit and Jan Burgers. This was done independently and
consistently, with the use of Burgers method [14], combining
elements out of traditional and quantitative paleography.

The material in this dataset is graphically challenging in two
ways. First, the originals contain difficulties such as pictorial letters,
wrinkles, wax seals, and irregularly shaped parchment. Sometimes,
parts of the ink are so faint that they are hard to distinguish. Many
charters are in bad shape due to aging, tears or even fire damage.
Second, the photos were taken using a 6 megapixel digital camera

from different freehand positions and in different illumination
conditions. Because of the free camera position, the images suffer
from perspective distortions, non-uniform scaling, non-uniform
illumination and occasionally blur. The photos also show document
border shadows and sometimes document placement holders.

Most charters have been photographed several times; the dataset
contains 248 photos in total. From this dataset, a variant was created,
the Dutchn charters dataset, which does not include the ‘‘duplicate’’
photos. The duplicate photos of each original were removed by
randomly selecting one photo to keep and removing the others. This
procedure was repeated 25 times, averaging the results.

2.2. English diverse dataset

The English diverse dataset [15,16] is a collection of 70 grays-
cale images of various late medieval texts (1375–1525), written
by 10 scribes. The dataset was collected from library and archival
resources by Professor Linne Mooney, expert codicologist-paleo-
grapher at University of York, UK. She also ascertained the
authorship of each manuscript. This dataset was kindly provided
by Dr John Daugman, University of Cambridge, UK.

The documents are graphically complex: most of them contain
decorative frames, other decorations or pictural letters. The layout
also varies significantly. Frequently, the background is not uni-
form across the whole manuscript due to aging, stains and noise.
They have been photographed from above, but probably from a
variable distance thus the resolution of the digitization is not
known and may not be constant. See Fig. 3 for sample photos.

2.3. Contemporary handwriting datasets

The feature was also tested on two datasets of contemporary
handwriting: Firemaker [17] and IAM [18]. Firemaker contains 1004
pages written by 251 students; four pages each. Only pages 1 and
4 were used for this experiment, bringing the total to 502 pages. An
example document was shown in Fig. 10(c). The IAM dataset
contains handwritten English text written by 657 subjects, using
different pens. The number of pages written by the subjects varies.

On each of the four datasets described above, the Quill feature
will show to be effective for writer identification. The next section
will discuss the theoretical background of this new feature.

3. Analysis of trace-width production

Since the Quill feature was inspired by paleographic metho-
dology, it is instructive to understand how trace-width variations

Fig. 1. The word ‘‘hollanden’’ in Dutch medieval handwriting. The width of the ink

traces varies: vertical, southeast and northwest-bound strokes are thick, while

southwest and northeast-bound strokes are thin.

Fig. 2. Document in the Dutch charter dataset: medieval handwriting in a charter,

a legal administrative document (1309). Other charters written by the same

writing hand can be found using writer identification.

Fig. 3. Example documents from the English diverse dataset: the left image shows

part of a manuscript produced by the Trinity Anthologies Scribe, Cambridge –

Trinity College R.3.21, folio 249 Middle English verse and prose.
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were produced in historical handwriting. Trace width is influ-
enced by at least three factors: the writing instrument, the
habitual tip angle and individual movement style. These factors
are described in the next subsections. Following, the basic
principle of production of historical handwriting is modeled,
and support for trace-width variation in modern handwriting is
presented.

3.1. Writing instrument

Quills are capillary-action writing instruments that were used
until the 19th century [19]. A quill was made from the feather of a
bird, usually a goose’s, by hardening it [20, p. 163] and cutting
a nib (writing end). The feather’s pen was first cut twice to create
a sharp point and then topped, creating an oblong tip (contact
surface). Finally, the nib was incised from this tip, splitting it in
two flexible parts, the tines [21, p. 5–7]. Fig. 4 shows such a quill
nib. A few properties of this nib influence the trace width in a
document [22, p. 72]:

� Length of the tip: This length depends on the radius of the pen
and the position of the truncation on the nib. Scribes used to
re-truncate the tip every so often during the process of writing,
influencing the maxima in the ink trace width.
� Flexibility of the tines: The more flexible the tines are, the wider

the ink traces could become. The flexibility is influenced by the
length of the slit (incision) and degree of hardening. The
flexibility also depends on properties of the used feather itself,
as feathers vary naturally in pen stiffness, thickness and radius.
� Angle of truncation: The truncation was usually not exactly

orthogonal, which had implications on the preferred pen grip.

3.2. Habitual tip angle

Scribes kept the orientation of the quill tip almost constant
[23]. Since the tip of a quill is oblong, the effect on the produced
ink trace is that it is thin where the tip was moved sideways and
thick where it was dragged perpendicularly. Thus width varia-
tions were produced just by varying the writing direction. This
principle is illustrated in Fig. 5. The tip angle can be measured in
the handwriting: it is generally parallel to the thinnest traces and
perpendicular to the widest. This tip orientation is an individual
influence on the handwriting [23].

3.3. Individual movement style

Individual movement style emerges partly deliberate and
partly unconsciously. The following individual methods to influ-
ence the trace width are known [24, p. 81–84]:

� Force variation: The incision in the quill tip allowed the scribe
to vary the trace width by varying force on the pen. An
example of unconscious force variation is the individual way

of creating tapered trace endings. This is visible in Fig. 6 where
the ‘‘z’’, ‘‘e’’ and ‘‘d’’ have tapered trace endings, created by
gradually decreasing the force on the nib. The force was also
manipulated deliberately, for example when writing north or
west-bound, which requires a ‘‘pushing’’ pen movement. In
this case, to avoid damaging the parchment, only a very light
force could be applied. The effect is possibly visible in Fig. 6: in
this example, the loops of the ‘‘l’’ and ‘‘d’’ are thinner than
expected; these could have been drawn northwest-bound. It is
also an established fact that the force variation is very writer-
specific in contemporary handwriting [25].
� Elevation (or pitch) variation: A lower pen elevation lowers the

force needed to bend the nib’s tines and create a wider trace.
� Pen orientation (azimuth) variation: Even scribes with a very

regular handwriting varied the orientation of the pen 2–31 in
different documents [23]; it is conceivable that they also
subconsciously varied the orientation within a document.
� Rotation (or roll): The quill could be rotated around its axis

such that only one side of its surface touches the writing
support; this enables creating curved thin lines. A slight pen
rotation can be another explanation for the thin loops of the
‘‘l’’ and ‘‘d’’ in Fig. 6. In some cases scribes reversed the pen
(a rotation of 1801) to create thin traces.

The first three subsections of this section motivates that many
pen-specific and individual behavioral properties have effects on
the width of the ink traces. In the next subsection, these
influences will be temporarily abandoned to study the basic
principle of width production.

3.4. Trace-width production models

To aid the interpretation of the upcoming measurements, it is
instructive to disregard individual movement style for the
moment and make a model for the basic calligraphic effect:
ink traces are thin where the tip is moved sideways and wide
where it is dragged perpendicularly, as illustrated in Fig. 5.

Fig. 4. A quill nib. The slit (incision) partly splits the nib into two tines; this

enables width variation by changing pressure.

Fig. 5. A near-fixed quill tip angle a caused by a near-fixed pen orientation

determines the pattern of width variation.

Fig. 6. Width variation in the medieval Dutch word ‘‘zeland’’. The superimposed

contour (dashed) indicates the trace width to be expected when using a rigid oval

pen tip. It illustrates individual influence on the trace width.
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This calligraphic effect is caused by the oblong tip shape of
historical pens. The exact effective shape of the contact surface
during writing is not known, therefore the effect of two basic
oblong shapes will be modeled here: a box and an oval. Both
shapes will be modeled to be rigid and fixed at a rotation angle a,
similar to the usage of a brush in a graphics program. The oval
shape may be more accurate than the box shape since cohesion
and adhesion effects must make the ink at the quill tip round. The
top row of Fig. 7 shows these shapes plus the parameters that will
be used for the models.

In these simplified conditions, the trace width w only depends
on the relative orientation c¼f�a, where f denotes the local
trace direction and a denotes the tip orientation. In the bottom
row of Fig. 7, this relation is visualized in a graph for the two
simple pen tip shapes, for any relative orientation. The graph for
the box model was computed using Eq. (1), which computes the
predicted trace width w for any relative orientation c, assuming a
box shape of dimensions ðl1,l2Þ. The formula is easily derived from
Fig. 7a. The graph for the oval model was computed using Eq. (2),
which determines the height of a parametrized oval after rotation,
where tn ¼ arctan l2 cos c=l1 sin c represents the parameter value
at the top. Although the formulas for computing the graphs are
not used for the Quill feature, these are mentioned for complete-
ness and future reference.

wðc,l1,l2Þ ¼ jl1 sin cjþjl2 cos cj ð1Þ

wðc,l1,l2Þ ¼ jl1 cos tn sin cþ l2sintncoscj ð2Þ

The graphs demonstrate what the result of the Quill feature
should look like if a rigid oblong tip shape can be assumed. Any
deviation from these graphs will show the presence of individual
influence on the trace width. Fig. 6 shows a piece of real data and
illustrates that the oval model does not explain all width variation:
the ink does not follow the expected contour exactly, proving the
existence of influence on the trace width by the personal writing
habits of the scribes. This individual influence makes the trace
width a valuable source of writer-specific features.

3.5. Trace-width production in modern handwriting

Modern handwriting contains trace-width variations as well,
although not as pronounced as in historical handwriting. At least
two types of individual writing style play a role. First, the trace
width is directly influenced by the force applied to the pen tip

[8,10,26], and different writers apply this force differently [25]. In
particular, downstrokes are usually wider than upstrokes [8,10].
Second, the width is altered by local retracings [8].

4. Quill feature

The Quill feature pðf,wÞ captures the relation between the
local width w and direction f of ink traces in a probability
distribution. It expresses properties of the used pen and the
writer’s unique way of producing variations in the width of the
ink trace. The feature consists of a few simple parts that together
form a powerful method for writer identification: contour tracing,
angle measurements, width measurements, and calculation of a
probability distribution. These parts are further explained in the
next paragraphs. Fig. 9 illustrates the angle and width measure-
ments, which form the heart of the Quill feature. The algorithm is
summarized in pseudocode in Algorithm 1.

4.1. Contour tracing

After thresholding, the measurements are performed while
traversing contours. An alternative approach would be to traverse
the center line of the ink, but traversing contours is simpler and
more robust [8]. Contours are here considered to be 8-connected
circular trajectories of black pixels that are adjacent to white
pixels. A fast method was designed that constructs these by
following the crack-edge contours: contours consisting of the
imaginary edges between foreground (black) and background
(white) pixels. See Fig. 8. The crack-edge contours are followed
counterclockwise, keeping the ink on the left-hand side, yielding
an 8-connected pixel trajectory consisting of the foreground
pixels that touch the crack edges. This method is fast and robust.
It also ensures consistent measurements on both sides of a stroke,
even on strokes that are only one pixel wide.

4.2. Angle measurements

Given the ink contours, f is computed at all pixels on those
contours. f denotes the local ink direction, measured in a
systematical way. Due to ambiguity in off-line handwriting, the
actual writing direction can be in two opposite directions. It is
possible to reconstruct the actual direction [8], although not
reliably. Instead, f is defined to be the angle of a local tangent
line with respect to the horizontal, where the ink is to the left-
hand side (in image space) of the tangent line. This is illustrated in
Fig. 9. This systematic approach ensures robust measurements,
rendering the actual writing direction unimportant: since the
contours are circular, every measurement will generally be
accompanied by an opposite measurement on the other side of
the trace; both measurements counterbalance each other.

0 0.5π π 1.5π 2π
0

2

4

0 0.5π π 1.5π 2π
0

2

4

Fig. 7. Trace-width production in simplified conditions: the local ink trace width

w depends on the tip shape and the relative orientation c¼f�a, where the tip is

a rigid box or oval. Horizontal axis: c (radians); vertical axis: w (mm). w was

plotted according Eqs. (1) (left) and 2 (right). Tip dimensions ðl1 ,l2Þ ¼ ð4mm,1mmÞ

are assumed. (a) Box model. (b) Oval model.

Fig. 8. Contour tracing by following crack-edge contours, shown as arrows.

Foreground pixels are shown as blocks; the pixels in the resulting trajectory are

shaded dark.
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At contour pixel Ci, the ith pixel of contour C, f can be estimated
using two nearby contour pixels Ci�r and Ciþ r which are the
endpoints of imaginary ‘‘legs’’ originating from Ci at a distance of
r contour pixels. A straightforward approach to estimate the local
orientation f would be to simply calculate the angle between Ci�r

and Ciþ r . This approach has the disadvantage that it is not accurate
at positions of greatly varying curvature, such as stroke endings.
Therefore, a slightly more elaborate method was used.

The leg from Ci�r to Ci defines an inbound angle f1; the leg from
Ci to Ciþ r defines an outbound angle f2. Since the pixel Ci is in the
middle of these legs, f can be estimated as the angle between f1

and f2. Because of the periodicity of angles, special care has to be
taken to ensure that the resulting direction keeps the ink on the
left side (in image space). When the difference between f1 and f2

is smaller than p radians, by definition the ink must be in the
region between these angles. But when this difference exceeds p,
by definition the ink must be on the other side, thus the resulting
angle flips. Summarizing, f is computed as follows:

f¼
ðf1þf2Þ=2 if jf1�f2jop
ðf1þf2Þ=2þp otherwise

(
ð3Þ

4.3. Width measurements

After computing the local angle f at contour pixel Ci, the local
width of the ink trace w is computed. Any robust method could be
used as part of the Quill feature. A few methods to compute trace
width have been proposed before, designed for application on
signatures [8,10]. These methods are based on traversing a line from
Ci through the ink, perpendicular to f, until the background is hit.

In this study, a variant of this principle was used because of its
simplicity: a method based on Bresenham’s algorithm [11], which
constructs an approximated (quantized) linear path of pixels
between two given pixel positions in an image. In this case, the
starting pixel of this path is Ci ¼ ðx,yÞ. The end pixel ðxe,yeÞ is a
pixel that is on the line perpendicular to f. This is illustrated in
Fig. 9. The precise position of ðxe,yeÞ is determined by a parameter,
m, which signifies the maximum measurable width, as follows:

xe ¼ xþmncosðfþ11
2pÞ ð4Þ

ye ¼ yþmnsinðfþ11
2pÞ ð5Þ

The pixels on the Bresenham path are traversed from Ci to
ðxe,yeÞ and checked for color: the algorithm stops if a background
(white) pixel is hit. The trace width w is then computed as the
distance from Ci to this background pixel ðxb,ybÞ using a simple
Euclidean measure:

w¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�xbÞ

2
þðy�ybÞ

2
q

ð6Þ

In the following, this method to compute the trace width will be
called Bresenham width. In the next section, this method will be
used together with angle measurements to form the Quill feature.

4.4. Probability distribution

The locally measured direction f and width w are agglomer-
ated in a probability distribution pðf,wÞ. It will be referred to as
the Quill probability distribution (QPD). It is created as follows.
Every measurement ðf,wÞ is agglomerated in an interpolated
p� q histogram, where p is the number of bins into which the
measured width is quantized; q is the number of angle bins. In the
following, p is equal to m (maximum width) for simplicity, so
each width bin corresponds to one pixel of width in the ink. The
histogram was built using bilinear interpolation, updating four
bins at once for every measurement, to avoid distortions caused
by measurements close to bin boundaries. This is relevant
because f is discrete and because of delicate rounding errors
due to angle periodicity. The resulting histogram was converted
into a probability distribution by normalization, which makes it
independent of the amount of text and usable as a writer-specific
feature vector.

Algorithm 1. Quill feature. INPUT: binary image I, leg length r,
number of width bins p, number of angle bins q. OUTPUT: 2D
probability distribution P.

H’empty_histogramðq,pÞ
Cs’contourtraceðIÞ {Cs is a list of contours}

for all C in Cs do
n’lenðCÞ {n is the current contour’s length}
for i in [0 to n�1] do
f1’angleðC½ði�rÞmod n�,C½i�Þ

f2’angleðC½i�,C½ðiþrÞmod n�Þ

f’
ðf1þf2Þ=2 if jf1�f2jop
ðf1þf2Þ=2þp otherwise

(

ðx,yÞ’C½i� {(x,y) is the current contour pixel}

xe’xþpncosðfþ1:5pÞ
ye’yþpnsinðfþ1:5pÞ
w’bresenham_widthðx,y,xe,yeÞ {Compute width}

H:updateðf,wÞ {Update histogram, interpolated}
end for

end for
P’normalizeðHÞ {Make probability distribution}

4.5. Interpretation

By visually inspecting the QPD a variety of properties of the
handwriting can be derived. See Fig. 10 for binarized example
images and their QPD. Modern handwriting written with a ball-
point pen results in a near-horizontal structure, as the trace width
is nearly the same for all ink directions. Dark (high-frequency)
regions indicate frequently used angles, which are closely related
to the handwriting’s slant. For historical handwriting, the QPD
reveals other properties of the handwriting as well:

� The most salient property of a QPD of historical handwriting is
that it shows a wave shape, as predicted by the models in
Section 3.4. The shape repeats itself after a period of p radians
(1801) because generally every measurement on one side of a
trace has a counterpart on the other side, in the opposite
direction. The presence of peaks and valleys indicates that a
writing instrument with an oblong tip was used, held at a
near-fixed orientation: the ink width depends on the direction.
� The valleys correspond to the thinnest traces. The w value of

the valleys corresponds to the width of the thinnest strokes;
the f value of the valleys reveals the near-fixed pen-tip angle:
a�f7p. By fitting a model described in Section 3.4 to the
raw measurements, a could be estimated automatically.

Fig. 9. f and w are determined at each contour pixel ðx,yÞ. f (trace direction) is

measured by averaging the angles with two neighboring contour pixels at distance

r. w (trace width) is computed using the so-called Bresenham width: the distance

to the first background pixel that is hit when following a Bresenham path,

perpendicular to f, towards ðxe ,yeÞ.
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Author's personal copy

� Similarly, the peaks correspond to the widest traces. The w

value of the peaks corresponds to the width of the thickest
strokes and the f value of the peaks reveals the near-fixed
pen-tip angle: a�fþp=27p.

� The deviation from the models in Section 3.4 indicates the
influence of physical pen properties and individual movement
style, as described in Section 3.
� The f value of the cell with the highest intensity (dark region

in the figure) reveals the dominant stroke direction, which is
closely related to the dominant slant angle. The corresponding
w value reveals the dominant stroke width.

4.6. Variant: Quill–Hinge feature

Inspired by the success of the Hinge feature a modification of
the Quill feature was developed: the Quill–Hinge feature
pðf1,f2,wÞ. It records w in conjunction with f1 and f2 instead
of f, making the feature three-dimensional.

5. Performance experiment

The performance of the Quill feature was tested in a writer
identification experiment on the four datasets that were introduced
in Section 2. Its performance was also compared with the perfor-
mance of other features. This section discusses the experiment.

5.1. Preprocessing

The images in the datasets of modern handwriting were
preprocessed using text region cropping based on known fixed
coordinates followed by Otsu thresholding. The described med-
ieval documents are graphically more challenging and required
additional steps:

� Manual text region selection: A region of interest (ROI) was
manually selected in a graphical interface (GIWIS) by placing a
four-sided polygon, which enables the careful selection of a
text area that is rectangular in reality but subjected to
perspective transformation. This was essential for the Dutch

charter dataset, where the camera position was free.
� Perspective correction: The perspective distortion in the Dutch

and Dutchn charter datasets was corrected by a reverse
perspective projection. The parameters were derived from
the positions of the four vertices of the ROI. The result was a
rectangular image containing a version of the ROI, stretched
using bilinear interpolation.
� Automatic scaling: The scale was estimated from the height of the

text lines in the images, assuming that the true height of the text
lines is equal in all documents. The text line height was deter-
mined by measuring the median width of the peaks in the
smoothed horizontal projection profile of dark pixels. The images
were then scaled to match a standard text line height of 50 pixels.
� Highpass filtering: Gradual intensity variations were canceled

by applying a highpass filter, after grayscale conversion. This
was implemented by a straightforward approach: blurring the
image and subtracting that from the original image.
� Otsu thresholding: The last preprocessing step was to binarize

the image using Otsu thresholding [27], which is widely
recognized as a good general-purpose binarization method.

5.2. Writer identification experiment

The preprocessed datasets were used to test the power of the
feature in a writer identification experiment. Writer identification
is the recognition of the writer of a query document by yielding a
hit list: a list of database documents that are similar to the query
document in feature space. Typical hit list sizes are 1 or 10,

Fig. 10. Binary images (left) and their Quill probability distribution (QPD, right): a

distribution of ðf,wÞ combinations. Dark regions indicate frequent combinations.

The horizontal axis represents the trace direction f (0: :2p radians), quantized in

q¼40 bins; the vertical axis represents the trace width w (1: :20 pixels) in p¼20

bins. Used parameters: q¼ 40,p¼ 20,r¼ 10. (a) Artificial lines. The upper dark

spots correspond to the vertical stroke; the lower spots correspond to the diagonal

line. (b) Artificial circle. It has a constant trace width in all directions; it could have

been produced using a stylus with a round tip and homogeneous ink deposition,

possibly a fineliner. (c) Contemporary handwriting in the Firemaker dataset. Text

produced with a ballpoint; width variation is limited. (d) Medieval Dutch text

(1322) in the Dutch dataset. The QPD shows a wave shape, as predicted by the

models in Fig. 7, thus this is quite regular medieval writing. (e) Medieval Dutch

text (1300) in the Dutch dataset. The writer produced near-horizontal and near-

vertical traces in a variety of widths, which show as vertical bands in the QPD.
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therefore the feature’s performance will be expressed as its top-1

and top-10 writer identification performance, which means that a
hit list will be counted as correct if at least one document of the
query writer appears in it. Top-1 performance is also called
nearest-neighbor accuracy.

In this experiment, nearest-neighbor (instance-based) classifi-
cation is used. Any classifier could be used, but there are a few
reasons for choosing nearest-neighbor classification. It is simple,
effective and it does not require training or human intervention.
Previously, several other popular classifiers such as MLPs and
SVMs have been tried on similar classification tasks in unpub-
lished studies at ALICE, but the nearest-neighbor classifier was
never surpassed. Whereas trained classifiers allow for general-
ization of observations into a broad class, biometrics is concerned
with the identification of individual samples. Nearest-neighbor
search fits that goal very well and does not require evolved
training. It is only necessary to find a proper distance function.
Furthermore, all common parametric classifiers require large
amounts of training examples, a requirement that cannot be
easily fulfilled in practical settings.

The top-x performance is simply computed by treating each
dataset document as a query, sorting the other documents by
similarity, and counting how often another document from the
same writer appears among the x most similar documents.
Similarity is based on two documents’ feature vectors and a
distance measure. The following features were evaluated:

� The Ink width (p(w)) feature is a probability distribution (p.d.)
of trace-width occurrence. It is a modified version of the Quill

feature, where the number of angle bins is set to one (q¼1).
The effect is that this feature only measures the distribution of
ink widths, without regarding the corresponding direction.
This feature was included to roughly evaluate the importance
of the ink width in the Quill feature.
� The Directions feature [2] (pðfÞ) is a p.d. of ink directions at the

contours. This encodes slant and direction usage.
� The Brush feature [7] is a p.d. of ink intensities at stroke

endings. It encodes pen landing and lifting habits.
� The White runs feature [6,7] (p(rl), also named ‘‘HrunW’’) is a

p.d. of horizontal white run-lengths. This encodes within- and
between-letter spacing.
� The Hinge feature [12] (pðf1,f2Þ) is a p.d. of angle combina-

tions that are measured on the boundaries of the ink. This
encodes slant and curvature. Hinge is among the world’s best
features. It is partly similar to Quill, although it does not
compute w, while it stores two angles at every measurement
and not one.
� The Fraglets feature [13] (p(g), also named ‘‘fCO3’’) is a p.d. of

usage of graphemes (fragments of handwriting) from a code-
book. This encodes allograph usage. In our experiment, the
codebook was pre-computed using modern handwriting: all
four pages of the first 100 subjects of the Firemaker dataset.
The performance of Fraglets is comparable to Hinge’s.

The distance measure to determine the dissimilarity of two
documents’ corresponding feature values was the w2 distance
[28], which is defined as:

dw2 ðv,wÞ ¼
Xjvj
i ¼ 1

ðvi�wiÞ
2

viþwi
ð7Þ

where i is an index to the elements of the feature vectors v and w.
This distance measure emphasizes differences in small feature
values and has been shown to be effective on feature vectors of
Hinge and Fraglets [29].

Four combinations of features were also tried: Hinge & Fraglets,
Quill & Hinge, Quill & Fraglets, Quill–Hinge & Fraglets. These
combinations were made by simply averaging the distance values.

For the Dutchn charter dataset the experiment was repeated 25
times; in each experiment one photo of each original was selected
randomly. The results were averaged over the 25 runs.

5.3. Training

Instance-based classification does not require any training
other than storing feature values, but the Quill feature contains
three parameters (p, q and r) that need to be optimized. This was
done using simple methods as will be described below. It will also
be shown that the feature is not very sensitive to the actual
parameter settings.

Optimizing the parameter values for p, q and r was done by
evaluating 896 parameter combinations from a regularly spaced
three-dimensional lattice on the Dutchn charter dataset using a
4�4-core PC with 128 GB of memory. It was not the maximum
performance score in this evaluation that determined the final
choice of the parameters. Instead, good parameter values were
determined by visual inspection of the data plotted in figures such
as Figs. 11 and 12. This procedure minimizes the effect of over-
training that may exist since no separate training set was used.

Figs. 11 and 12 show the sensitivity of Quill for its parameters.
The three-dimensional evaluation cannot be fully visualized,
therefore two ‘‘slices’’ of the results are shown. Fig. 11 shows
how the performance relates to p and q, given a fixed r¼20.
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Fig. 11. Sensitivity of Quill’s top-1 performance for the parameters q (number of

angle bins) and p (number of width bins) in the Dutchn charter dataset for r¼20.

The graph shows that the choice of the parameters is almost arbitrary, as long as

q430,p430.
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It shows that the performance is insensitive to the values of p and
q, as long as they are at least about 30. Increasing the values much
further does not increase the performance, but has a negative
effect on memory usage and speed. The values p¼40 and q¼40
were chosen as safe values. The effect of the parameter r (leg
length) on the performance is shown in Fig. 12. It shows that this
performance is hardly affected by this parameter, as long as the
value is between about 10 and 100. This is the same order of
magnitude of the corpus height of the text (50 pixels). r¼20 was
chosen because higher values are less suitable for small char-
acters and less intuitive. Summarizing, the found parameters are
p¼40, q¼40 and r¼20.

6. Results

Table 1 shows the results of all performance experiments.
Top-1 performances of the well-known Directions feature are in
the range of 48–74%. The Ink width feature, on the other hand,
performs 22–73%. It coarsely describes the informational value of
ink trace width: it is low in Firemaker, where ballpoints were
used, intermediary on the medieval datasets and high in IAM,
where different types of pens were used. The contribution of ink
width in the Firemaker dataset seems small, but the Ink width

feature does not take structural dependency on the trace direction
into account while Quill does.

Ink width awareness partly explains Quill’s performance on the
datasets, most notably IAM, in which different types of pens were
used. The Quill feature performs much better than Directions or
Ink width alone: top-1 performances are in the range of 63–95%.
This proves that the combination of directionality measurements
with trace-width measurements is fruitful. It also supports the
foundation of characteristics in quantitative paleography that are
based on trace angle and width. The value of trace directions for
writer identification was known, but the added value of width
measurements for writer identification is new.

Even when compared to the other features, Quill proves to
perform very well: it amply outperforms Brush and White runs,
and on average, it performs as well as Fraglets and Hinge, which
are among the world’s best features. The modified version of the
feature, Quill–Hinge, seems to perform even better than Quill.
Slightly better performances are achieved by combining features.

Top-1 performances of Quill & Fraglets and Quill–Hinge & Fraglets

are in the range of 77–97%. The results were obtained by
averaging the distance scores for both features in the combina-
tion. Table 2 lists the performance of Quill–Hinge in the context of
leading results obtained by others. Only results on modern
handwriting are shown since little similar work has been done
on historical handwriting.

Note that the reported performances may be several percen-
tage points off (except in the column ‘Dutchn’) due to the
relatively low number of queries and the influence of random-
ness. For example, the 95% confidence interval for a recognition
score of 92 with 245 queries (Quill in column Dutch) is the range
of 88–96 (based on the Binomial distribution).

Still, these performance figures suggest that Quill and Quill–Hinge

can be used in a production environment. Researchers in application
fields are currently evaluating the features [34–36] in our GIWIS

software program, a user-friendly graphical user interface. A recogni-
tion score of 100% is not necessary: based on a top-10 hitlist, the
domain specialist can make the final decision. However, some
improvements are still possible, as we will describe in the following.

7. Future work

A simple optimization approach is to try other distance
measures. An excellent overview of available distance measures

Table 1
Writer identification performance of several features (top, middle) and feature combinations (bottom) on datasets of medieval and contemporary handwriting. The

numbers represent recognition percentages.

Feature Medieval handwriting Contemporary handwriting

Dutchn Dutch English Firemaker IAM
18 writers 18 writers 10 writers 251 writers 657 writers

118 images 248 images 70 images 502 images 1539 images

25�112 queries 245 queries 70 queries 502 queries 1183 queries

Top1 Top10 Top1 Top10 Top1 Top10 Top1 Top10 Top1 Top10

Directions 57 86 69 93 56 93 48 79 74 90

Ink width 47 79 66 89 40 87 22 52 73 88

Quill 75 90 92 98 63 96 71 89 95 97
Quill–Hinge 75 89 92 98 70 96 86 97 97 98

Comparison features

Brush 38 79 53 85 40 86 37 77 78 89

White runs 43 86 67 94 37 83 22 57 43 76

Hinge 71 92 86 97 76 93 83 92 94 96

Fraglets 73 94 92 98 89 100 72 90 97 98

Combinations

Hinge & Fraglets 75 93 94 98 90 99 76 93 97 98

Quill & Hinge 73 91 93 98 74 96 83 95 96 97

Quill & Fraglets 77 94 94 98 86 99 78 95 97 98

Quill–Hinge & Fraglets 77 94 94 98 86 99 81 96 97 98

Table 2
Performance of Quill–Hinge on modern handwriting compared to leading results

obtained by others. Note that the numbers cannot be well compared because of

differences in dataset material, required level of human interference, and number

of writers.

Publication writers top1 (%) top10 (%)

Bensefia et al. [30] 150 87 99

Bulacu [31] 900 87 96

Garain et al. [32] 422 62 96

Schlapbach et al. [33] 100 97 98

Schomaker et al. [13] 150 97 100

Siddiqi et al. [4] 650 86 97

Srihari et al. [5] 900 88

Quill–Hinge 251 86 97
Quill–Hinge 657 97 98
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for probability distributions exists [28] which can serve as a
starting point. However, the currently used w2 distance measure
has proven to be effective in previous experiments [29].

The method of combining features could be improved as well.
Simply averaging could be replaced by feature weighting, how-
ever little gain is expected since it is known that Fraglets and
Hinge are best weighted by plain averaging [12]. This was
confirmed by a small pilot experiment with Quill and Fraglets.
The features could also be combined in different ways, for
example, using Borda ranking.

Preprocessing could be improved. Although the preprocessing
used in the performance experiment generally works quite well, it
breaks the thinnest faint ink traces. The result is that measure-
ments on those traces are underrepresented in the QPD, resulting
in suboptimal performance. Preserving this weak signal is still a
hard image processing challenge.

Quill and Quill–Hinge are pen-dependent features. This can be
advantageous but it may not be so if a significant number of
writers each use multiple pens. To partly cancel the pen depen-
dence as described in Section 3.1, one of the models presented in
Section 3.4 could be fitted to the measurement data, followed by a
rescaling of the data based on the width range. This could also
compensate for scaling differences due to varying camera dis-
tance or resolution; these are now dealt with in an explicit
preprocessing step. However, this model fitting is not trivial since
the data contains structural noise.

For performance analysis, better medieval datasets could be
collected or constructed. The results on the used datasets are not
fully reliable since some writer labels may be wrong: the labels were
manually determined based on skill and experience, not facts.
Furthermore, the currently used datasets are relatively small. Larger
datasets with known writer labels will make the results more reliable.

The presented methods can be used for other applications as
well, including pen and script type estimation, by analyzing the
QPD, and estimation of the modal pen-tip orientation a by fitting
the models from Section 3.4 to the measurement data.

8. Conclusion

As suggested by modern paleographic methodology, the width
of the ink trace is a powerful source of information for writer
identification, particularly in combination with the trace direc-
tion. This is not only true for off-line writer identification on
historical handwriting, which shows salient width differences
because of usage of quill pens, but for modern handwriting
as well. This was found in a series of writer identification
experiments using a newly introduced feature: Quill. It is a 2D
joint probability distribution of ink trace width and direction.
The feature consists of simple, fast and accurate methods based
on pixel contours. The feature was tested on two datasets of
modern handwriting and two datasets of medieval handwriting:
writer identification scores (nearest-neighbor classification accu-
racy) scores are in the range of 63–95%. This is much higher than
the individual performances of features based on either the ink
width or direction. It even approaches the performances of Hinge

(71–94%) and Fraglets (72–97%), which are among the world’s
best features. A slightly more complex version of the feature
involving curve measurements, Quill–Hinge, seems to perform
even better. The performance of Quill and Quill–Hinge strengthens
the foundation of related measurements in quantitative paleo-
graphy. The features can be used as general-purpose writer
identification features. Slightly higher performance can be
achieved by combining the features with other features (77–97%
with Fraglets). In GIWIS, a user-friendly user interface, the features
are already helping historians fruitfully.
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