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    This thesis is about memory. More specifically, it is about memory for facts such as 
Amsterdam is the capital of the Netherlands, or The object I am looking at is called a computer 
screen. This type of memory will be referred to as declarative memory. Declarative memory is an 
interesting object of study because remembering facts is something humans continuously do; 
retrieving facts from declarative memory is at the core of cognitive functioning. For example, 
while typing this page I am continuously trying to remember words that are appropriate 
given the message I want to convey. At the same time I might remember that I have an 
appointment later on, and remember the name of the person I have the appointment with. 
Because declarative memory plays such a central role in human cognition, we can learn a 
great deal about human behavior if we understand the process by which declarative memory 
retrievals are driven. Therefore this thesis focuses at understanding the functional process of 
retrieving facts from declarative memory.
    This thesis is also about information selection. Because of the over-abundance of 
information in modern society - caused by an increase in digital storage capacity coupled 
to an increased accessibility of digital sources - access to information has become cluttered 
(Brusilovsky & Tasso, 2004). Even though the likelihood that certain information is available is 
increased (because the amount of information is increased), finding the relevant information 
has become harder. Therefore, automated assistance to select relevant information out of 
the abundance of information sources seems a necessity. In a response to this demand, the 
research field of Information Retrieval has expanded rapidly in recent years (as witnessed for 
instance by the number of submissions to the annual international ACM SIGIR Conference on 
Research and Development in Information Retrieval, which is the most important conference 
in the Information Retrieval field. The number of submissions has expanded in the last decade 
from 135 in 1999 to 490 in 2007).
    The approach we will take in this thesis is to study the similarities between declarative 
memory retrieval and information retrieval. Very superficially, declarative memory can be 
perceived as a storage capacity for information that has been encountered during a person’s 
lifetime. Consequently, remembering this information (these declarative facts) for current 
usage may be analogous to selecting currently relevant information. If we assume that the 
human cognitive system, through evolution and learning, has developed an optimal solution 
for this information-selection problem we can develop new information selection algorithms 
and assist people in handling the information glut (Schenk, 1997) by mimicking the retrieval 
process of facts from declarative memory.
    Multiple researchers have stressed the similarities between information selection and human 
declarative-memory retrieval. For instance, Anderson (e.g., Anderson, 1989; Anderson & Milson, 
1989) demonstrated the parallels between human declarative memory and artificial information-
retrieval systems as introduced by Salton and McGill (1983). Salton and McGill characterize 
information-retrieval systems as systems that (1) consist of sets of files that contain the to-be-
retrieved information, (2) have some sort of index of terms that can be used to retrieve the files, 
and (3) have the possibility to query the system using a subset of these terms. Anderson and 
colleagues noted that the human declarative memory system shares these characteristics with 
artificial information-retrieval systems. That is, human memory (1) contains facts (or cognitive 
chunks, in his terminology), (2) contains relations between these chunks, for instance semantic 
relations, and (3) has the possibility to retrieve chunks, based on these relations between chunks.

Introduction

- Introduction -
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    More recently, Griffiths and colleagues (Griffiths, Steyvers, & Firl, 2007) showed that 
also search-engine technology parallels human memory behavior. They argue that, given the 
similar structure of the web and the mind (Figure 1.1), algorithms that are optimized for finding 
relevant web pages can best predict associations in human declarative memory. Indeed, they 
show that Google’s PageRank algorithm (Page, Brin, Motwani, & Winograd, 1998) outperforms 
some other algorithms when predicting human responses on a fluency task. In this task, 
participants are presented with a letter and have to name the first word beginning with that 
letter that comes to mind. PageRank’s predictions map better onto human data than simpler 
algorithms, specifically word frequency norms and word co-occurrence frequency norms. The 
ultimate suggestion of this result might be that the way PageRank calculates the relevance of 
words, given a certain letter, is functionally equivalent to the way human declarative memory 
“calculates” the relevance of facts in a certain context. This example thus shows that it is 
useful to study information retrieval algorithms if you are interested in human memory. In 
this thesis, we will argue that also the opposite direction, that is, applying knowledge of the 
functional process of human declarative memory to information access, will be beneficial for 
information retrieval (Part II).
    The work reported in this thesis may be separated into two distinct topics. In Part I 

(Theory) we will study the functional process of declarative memory retrieval, and in Part 
II (Applications) we will study how functional models of declarative memory retrieval may 
be applied in information retrieval systems. However, despite this apparent dichotomy both 
topics involve the concept of declarative memory retrieval, which is the unifying concept for 
this thesis. Also, both in Part I and in Part II we will argue that declarative memory retrievals 
are mediated by changes in the environment. That is to say, which declarative fact is retrieved 
from memory is determined by the personal environment of the cognitive agent. Aspects of 
the personal environment of the agent that we will study will be the history the agent has 
with a certain declarative fact and the current context in which the agent attempts to retrieve 
a certain facts. These two aspects will play an important role in the cognitive models reported 
in Part I as well as in the application-based studies reported in Part II.

Approach

    The models of declarative memory we have developed in the context of this thesis are 
computational cognitive models within the cognitive architecture ACT-R (Anderson, 2007a; 
Anderson, Bothell, Byrne, Douglass, Lebiere, & Qin, 2004). 
    The concept of a cognitive architecture was introduced by Allen Newell as a way of dealing 
with the plurality of cognitive dichotomies (Newell, 1973). He reasoned that psychological 
phenomena should not be explained only in terms of unrelated hypotheses that were either 

1. Although one might 
argue that the Retrieval by 
Accumulating Evidence in 
an Architecture (RACE/A) 
model proposed in Part I 

actually questions one of 
the central assumptions 
of ACT-R (specifically the 
memory retrieval theory).

Figure 1.1. An illustration 
of the similar structure of 
the World Wide Web and 
declarative memory. The web 
consists of web pages that are 
connected via hyperlinks. In 
declarative memory facts are 
stored, that are connected via 
associations. Figure adapted 
from (Griffiths, Steyvers, & 
Firl, 2007).
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confirmed or rejected but rather that psychological phenomena should be explained in each 
other’s context. For instance, for an explanation of visual search tasks, in which participants 
are asked to search an array of stimuli for a previously presented target stimulus, it is also 
important to have a theory of decision processes, and of declarative memory. During the task, 
the participant has to decide whether he or she has found the target stimulus based on his or 
her memory of the previous presentation of the stimulus.
    Therefore, it makes sense to study different cognitive phenomena within one framework, 
so that one theory (for instance on visual search) stays consistent with others (for instance 
on decision making or declarative memory). More recently, Anderson defined the concept of a 
cognitive architecture as 

“a specification of the structure of the brain at a level of abstraction that explains how it 
achieves the function of the mind” (Anderson, 2007a p. 7).

This definition also takes into account that ultimately the brain is what generates behavior. 
However, in the context of this thesis this aspect will only play a minor role.
    There are three major advantages of cognitive modeling within the constraints posed 
by a cognitive architecture. The first is that the modeler is constrained in the freedom he or 
she has in developing cognitive models. Because the architecture consists of a set of central 
assumptions on cognitive functioning, all models should adhere to these in order to be part of 
the architecture’s body of work (R. P. Cooper, 2007). Cognitive models within an architecture 
support each other by applying the same central assumptions, thus providing more evidence 
that a cognitive model might be the correct functional specification of a certain behavior.
    The second advantage is that a cognitive architecture gives the modeler the possibility 
to develop integrated cognitive models. Integrated cognitive models are meant to span 
multiple aspects of cognition (Gray, 2007b). Ideally, this would comprise models that capture 
human behavior in a certain task from stimulus perception to response action. For example, 
an integrated model of the visual search task mentioned before should account for the 
perception of the target stimulus, temporary storage of the target stimulus, perception of the 
stimulus array, matching of the stimuli in the array to the stored representation of the target, 
and issuing a motor command to respond (for instance by a button press). An integrated 
model can provide quantitative predictions of human behavior. If the model is successful it 
will accurately predict the behavior of participants engaging in the same task the model was 
designed for, for instance in terms of response times or accuracy scores.
    The third advantage relates to the second. If it is possible to develop integrated models 
of human behavior in a certain task, then these models can also be deployed as predictors of 
human behavior in certain applied settings. Examples of these include cognitive models as 
intelligent agents in computer games (e.g., Shah, Rajyaguru, St. Amant, & Ritter, 2003) or 
serious games (e.g., C. P. Janssen, Van Rijn, Van Liempd, & Van der Pompe, 2007), cognitive 
models as simulated users of interfaces (Ritter & Young, 2001), and cognitive models as control 
models to track a user’s attentive state (e.g., Grootjen, Neerincx, & Veltman, 2006).
All three major advantages of a cognitive architecture are utilized in this thesis. The models 
that appear in Part I take advantage of the central assumptions of the cognitive architecture 
we use (ACT-R)1, and are able to provide quantitative predictions of human behavior. The 
models that appear in Part II can be thought of as integrated models that serve as intelligent 
agents in information selection tasks.

1. Although one might 
argue that the Retrieval by 
Accumulating Evidence in 
an Architecture (RACE/A) 
model proposed in Part I 

actually questions one of 
the central assumptions 
of ACT-R (specifically the 
memory retrieval theory).

- Introduction -
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    Since the cognitive architecture ACT-R (Anderson, 2007a; Anderson et al., 2004) is at the 
core of the work presented in this thesis, we will now turn to a brief exposition of the central 
assumptions of ACT-R.

ACT-R

    ACT-R is a hybrid cognitive architecture that consists of a set of modules that each process 
one kind of information. For instance, visual perception is handled by the visual module and 
motor commands are executed by the motor module. The declarative module is used for 
storing and retrieving information from declarative memory, the speech module handles the 
speech output, the aural module handles auditory perception, and the goal and imaginal are 
used modules for keeping track of sub goals and intentions (Figure 1.2). 

    Behavior in an ACT-R model emerges from the selection and subsequent execution of 
production rules. The production rule system communicates with the different modules 
through a set of buffers that can all contain one chunk of information. If the information that 
is present in the buffers matches the conditions of a production rule, that rule may be selected 
to execute its actions. If multiple production rules match, than the rule with the highest 
utility will be selected (this is referred to as conflict resolution). Production rule actions can 
be thought of as operations on the buffer contents, such as a request for a new chunk of 
information from declarative memory, or a request for pressing a button on a keyboard.
    Chunks in ACT-R represent simple facts about the world, such as Amsterdam is the capital 
of the Netherlands, or The object I am looking at is called a computer screen. Both these example 
chunks are declarative facts, but the first example can typically be found in the retrieval buffer, 
and thus represents a fact retrieved from declarative memory, whereas the second example 
represents a visually observable fact of the world and might be present in the visual buffer. 
Because information does not occur in isolation chunks also have relations to other chunks. To 
this end, each chunk may have slots which indicate which other chunks are related.

    So far, we have only discussed the symbolic level of ACT-R. Being a hybrid cognitive 
architecture ACT-R also has a subsymbolic level. The subsymbolic equations of ACT-R govern 
the activation dynamics of the chunks and utility dynamics of the production rules. We will first 
briefly discuss the concept of utility in ACT-R before turning to the - in the context of this thesis 
much more important - concept of activation.
    If multiple production rules match the buffer contents this means that ACT-R’s central 
cognition has multiple options that might be executed in order to achieve the current goal. 
In that case, the best choice is the production rule that has proven to be the most successful 

Figure 1.2. Example of modules (blocks) and information 
streams (arrows) in ACT-R.

2. Note that this equation is 
similar to the retrieval ratio 
equation that determines 
chunk selection in RACE/A, 
which will be discussed in 
Chapter 2.
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one in the past. In other words, the production rule with the highest utility will be selected, 
following Equation 1.1 (Anderson, 2007a).

	               (equation 1.1)		   

    Equation 1.1 denotes the probability that a certain production rule (rule i) will be selected.2 
The probability that a production rule is selected if multiple rules are applicable is determined 
by the utility of all applicable rules (Uj). The parameter s plays an important role in this 
mechanism, because it determines the trade-off between trying new strategies (exploration) 
and using strategies that have already been applied successfully (exploitation). A low value 
of s means a high probability of re-applying production rules that have been successful in the 
past; A high value if s means a high probability of selecting other production rules, and thus a 
higher chance of exploring new strategies.
    For the chunks in ACT-R a similar system has been developed. All chunks have an 
activation level that represents the likelihood that a chunk will be needed in the near future. 
The likelihood is partly determined by a component describing the history of usage of a chunk 
called the base-level activation (Bi in Equation 1.2).

		     (equation 1.2)	  

    In this equation, tj represents the time since the jth presentation of a memory chunk and d 
is the parameter that controls decay, which in most ACT-R models is fixed at 0.5 (Anderson et al., 
2004). The idea is that the activation of a chunk decays over time unless attention is shifted to 
that chunk and its memory trace is strengthened (Figure 1.3). This way, the base-level activation 
can be used to model both forgetting and learning effects (Anderson & Schooler, 1991).

    The total activation is the sum of the base-level activation, noise (ε in Equation 1.3), and 
another component describing the influence of the current context (spreading activation, Equation 
1.3). The spreading activation component is composed of the associative values of other chunks, 
which are referred to in the slots of a chunk (chunks j in Equation 1.3) to chunk i, weighed by Wkj, 
representing the importance of various buffers (k) and the importance of associated chunks (j). 

Ai = Bi + WkjS ji
j
∑

k
∑ +ε

 (equation 1.3)

    Since in ACT-R it is assumed that the probabilities that chunks will be retrieved from 
memory are independent the activation values - which have an infinite range - can be scaled 

Figure 1.3. The base-level activation of a chunk. The 
activation decays over time, unless the chunk is 
being used (indicated by the grey vertical lines), in 
which case the activation is increased.

2. Note that this equation is 
similar to the retrieval ratio 
equation that determines 
chunk selection in RACE/A, 
which will be discussed in 
Chapter 2.

Pi =
eUi / s

eU j / s

j
∑

Bi = ln t j
−d

j=1

n

∑
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

- Introduction -



12

- CONTEXT EFFECTS ON MEMORY RETRIEVAL: THEORY AND APPLICATIONS -

to a probability of retrieval according to Equation 1.4 (Anderson, 2007a).

Pi =
1

1+ e−(Ai −τ ) / s (equation 1.4)

    That is to say that if the activation of a chunk i (Ai) goes to infinity the probability of it 
being retrieved goes to 1. Likewise, the probability of a chunk with activation going to minus 
infinity will go to 0. Two parameters play a role in determining whether a chunk will be retrieved 
or not. The retrieval threshold τ sets the lower bound for memory retrievals. Chunks with an 
activation smaller than the retrieval threshold will not be retrieved. Similar to the production 
selection equation (Equation 1.1), there is a parameter s associated with this equation that 
controls the trade-off between exploration and exploitation in declarative memory retrievals.
    Besides the probability that a chunk will be retrieved from declarative memory ACT-R also 
predicts the time it will take to retrieve it. If a chunk has a low activation value, indicating that 
it is not likely that this particular chunk will be needed right now, it is harder to remember, 
which will be reflected by a long retrieval time. This observation is captured by Equation 1.5, 
which determines the latency of retrieval, given a certain activation value, with F a scaling 
parameter:
	             (equation 1.5)

    In the context of this thesis it is important to note that Equation 1.4 and 5 constitute a 
ballistic model of declarative memory retrieval. If the actions of the production rule that is 
selected require a chunk being retrieved from memory, the probability of that chunk being 
retrieved and the time it takes to retrieve it are deterministic (Brown & Heathcote, 2005). This 
assumptions will be challenged by the data presented in Part I.
    A detailed description of the ACT-R cognitive architecture is provided in (Anderson, 
2007a; Anderson et al., 2004).

Overview

    In Part I of this thesis a new mechanism for chunk retrieval will be proposed. The new 
chunk retrieval mechanism, Retrieval by ACcumulating Evidence in an Architecture or RACE/A, 
can be thought of as a more fine-grained process-model than the current, deterministic, chunk 
retrieval model in ACT-R (Equations 1.4 and 1.5 above). RACE/A provides a prediction of the 
activation dynamics during the retrieval process, instead of a ballistic prediction of the retrieval 
latency and the probability of retrieval. From certain experimental paradigms (for instance, 
tasks with varying stimulus onsets, e.g., M. O. Glaser & Glaser, 1982; or subliminal perception, 
e.g., Merikle, Smilek, & Eastwood, 2001), it becomes clear that the default activation equation 
in ACT-R is not capable of explaining the mechanism by which chunks are retrieved from 
declarative memory. Chapter 2 will present a general account of the model of memory retrieval 
processes put forth in this thesis. In addition, it will present experimental evidence that some 
tasks cannot be modeled within the constraints of the cognitive architecture ACT-R without 
using RACE/A. The focus of this chapter will be on the interplay between repetition priming 
(one of the effects successfully modeled by ACT-R) and semantic priming (one of the effects 
successfully modeled by RACE/A) (Van Maanen, Van Rijn, & Taatgen, submitted).
    In Chapter 3, we will validate RACE/A by showing how it accounts for a range of benchmark 
phenomena. First, Section 3.1 demonstrates how RACE/A accounts for a set of common finding 
in the lexical decision literature (e.g., Wagenmakers et al., 2008; Wagenmakers, Steyvers, 
Raaijmakers, Shiffrin, Van Rijn, & Zeelenberg, 2004a). Second, we will present a model of a 
picture-word interference (pwi) task in which two stimuli dimensions are presented at various 

RT = Fe−Ai
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onset asynchronies (Section 3.2). The model is able to account for the pwi typical latencies 
(see also Van Maanen & Van Rijn, 2007b). Third, Section 3.3 shows that RACE/A can also 
account for effects caused by partially available information, such as in the subliminal priming 
paradigm (Merikle, Smilek, & Eastwood, 2001; see also Van Maanen & Van Rijn, 2007a).
    In Chapter 4 we will present a cognitive model that explains both response times in the 
Stroop task and response times in a pwi task. By adjusting one parameter, the model can 
account for the recent finding that the pwi effect is located early in the mental processing 
stream, while the Stroop effect is late (Dell’Acqua et al., 2007). The chapter demonstrates 
that RACE/A is not just a theoretical novelty, but can also lead to new insights. The RACE/A 
enhancement to the ACT-R model described in this chapter was necessary to explain the 
difference between Stroop and picture-word interference (Van Maanen & Van Rijn, 2008; Van 
Maanen, Van Rijn, & Borst, submitted).

    Part II of this thesis explores the possibility of developing recommender systems based 
on cognitive models of declarative memory. Recommender systems are applications that assist 
users in finding relevant or useful information. Often, recommender systems incorporate 
some form of personalization. This means that by tracking the cognitive state of a user (user 
modeling), a recommender system can offer recommendations that are relevant or useful for 
the individual user. By creating user models that predict the declarative memory behavior of 
individual users, we will be able to predict which facts will be personally relevant or useful.
Chapter 5 will show how the ACT-R declarative memory model can be applied for personalized 
information retrieval in the cultural heritage domain. It will focus on how the roles of the 
visitor and the museum can both be appreciated in an online museum. By providing cognitive 
models that take the role of a museum guide, we will study which aspects of the museum 
guide’s behavior are important for successful artwork recommendations, and we will provide 
a framework for an online artwork recommender (the Virtual Museum Guide or VMG). This 
chapter is an extended version of Van Maanen (2007). 
    In Chapter 6, we will discuss how eye gaze can be used as an input device for such an 
online artwork recommender. Because the eyes are an important input modality for humans, 
the point of gaze of museum visitors might express the museum visitor’s current interest. In 
this chapter, we will study how this insight can be used to develop recommender systems 
that provide personalized information on a specific artwork. We will present results that 
indicate that gaze and user interest are closely related in the cultural heritage domain. We will 
conclude by presenting a framework for a complete automated museum guide that may be 
capable of recommending relevant art and highlighting relevant aspects of the artwork, based 
on the visitor’s point of gaze.
    In Chapter 7, we will describe how the declarative memory model of ACT-R can be used 
for personalized information retrieval of (scientific) abstracts from an indexed database of 
publications (Van Maanen, Van Rijn, Van Grootel, Kemna, Klomp, & Scholtens, in press), 
and in Chapter, 8, we will provide the results of a competition between the activation-based 
recommender developed in the previous chapter and other models developed for the same 
task (Van Maanen & Marewski, 2009).

- Introduction -
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This paper has been submitted for publication as Van Maanen, L., Van Rijn, H., & Taatgen, N. A. (submitted). 

Accumulators in context: An integrated theory of context effects on memory retrieval.

Introduction

  Cognitive architectures (e.g., Anderson, 2007a; EPIC, Meyer & Kieras, 1997a; Soar, Newell, 
1990; CLARION, Sun, 2006), have had considerable success explaining cognition in an integrative 
way. This means that theories developed within a cognitive architecture are supported by 
theories of other aspects of cognition. For instance, for an explanation of visual search tasks, 
in which participants are asked to search an array of stimuli for a previously presented target 
stimulus, it is important to include a theory of decision processes to account for a stopping 
rule of the visual search, and of declarative memory to explain how participants retrieve the 
target from memory. During the task, participants have to decide whether they have found the 
target stimulus, based on a memory of the previous presentation of the stimulus. Therefore, 
it makes sense to study different cognitive phenomena within one framework, so that one 
theory (for instance about visual search) remains consistent with others (for instance about 
decision making or declarative memory).

    One of the successes of cognitive architectures (particularly from the architecture 
ACT-R) is the account of declarative learning. By incorporating a model that estimates the 
environmental demands on memory (Anderson & Milson, 1989; Anderson & Schooler, 1991), 
ACT-R models have been able to account for many effects of learning and memory (e.g., 
Anderson, Bothell, Lebiere, & Matessa, 1998; Anderson, Fincham, & Douglass, 1999; Pavlik 
& Anderson, 2005). In addition, this declarative memory account has been used to study 
the interactions between memory and other cognitive processes, such as prospective time 
estimation (e.g., Taatgen, Van Rijn, & Anderson, 2007; Van Rijn & Taatgen, 2008) and cognitive 
control (e.g., Altmann & Gray, 2008) or the role of memory in interactive behavior (e.g., Lebiere 
& West, 1999; West, Lebiere, & Bothell, 2006).
    However, one of the drawbacks of the theory of declarative memory retrieval that has 
been adopted in the cognitive architecture ACT-R is that it does not provide a theory of the 
actual retrieval process. Rather, it provides a prediction of the retrieval time of declarative 
information, as well as the probability of successful retrieval, under normal conditions. 
However, circumstances exist where such a ballistic model (Brown & Heathcote, 2005; 
Van Maanen & Van Rijn, 2007b) of declarative memory retrieval does not provide accurate 
predictions. This is illustrated in Figure 2.1, which shows the retrieval process as captured by 
a ballistic theory of declarative memory retrieval. At the onset of the retrieval process the 
time it takes to retrieve a declarative fact from memory (referred to as chunk A in Figure 2.1) 
as well as the identity of that fact are already known. However, cognition and perception do 
not stop while retrieving information from declarative memory, and it might very well be that 
new, relevant information becomes available during the interval between retrieval onset and 
the actual retrieval that may influence the retrieval process.

Accumulators in context: 
an integrated theory of context 
effects on memory retrieval
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    Consider for example the following experiment. A participant is requested to name a 
picture that appears on a computer screen. The picture is accompanied by a word from the 
same semantic category (e.g., a picture of a cat with the word “dog”), which may appear at 
various time intervals just before or after the onset of the picture. When inspecting the latency 
data from this experiment (W. R. Glaser & Düngelhoff, 1984, see also Figure 2.8a below), it 
turns out that the presence of the word interferes with processing of the picture. Moreover, the 
time interval between the presentation of a word and the presentation of a picture mediates 
the response latency for the picture. The closer the word precedes the picture the slower the 
response. Surprisingly however, the maximum interference effect of the word on the picture is 
when the word trails the picture by 100ms. 
    What this example shows is that when studying interference effects such as these, many 
task aspects may play an important role. In this case, the asynchronous presentation of 
stimuli mediates the interference effect, and also the different qualities of words and pictures 
influence the latency, reflected by the fact that the maximum interference is not at an stimulus 
onset asynchrony (SOA) of 0ms (when word and picture are presented simultaneously), but 
at an SOA of 100ms. Complex interference patterns such as this cannot be fully explained by 
traditional architectural models that focus on a broad range of tasks. In the “Asynchronously 
presented stimuli” section we will further discuss how these two aspects (asynchronous 
presentation and stimulus quality) determine response latencies in this task.
    Many specialized models exist that specifically address the interference issues in 
declarative memory, however. For example, a large body of work is devoted to understanding the 
decision dynamics in two-choice reaction time tasks (Ratcliff & Smith, 2004). In these models, 
the decision process is thought of as a process in which evidence for two response options is 
sampled, until a decision for one or the other has been reached. The decision time is determined 
by the length of this “deliberation process” (Busemeyer & Townsend, 1993, p. 432), and will be 
influenced by the accrual rate of the evidence for the response options. Thus, if all evidence 
points in one direction, the deliberation will be fast, and the decision time will be short.
    In this chapter, we propose to integrate such a sampling process in a cognitive 
architecture, which we will refer to as Retrieval by Accumulating Evidence in an Architecture 
(RACE/A). This way, a number of new memory related phenomena can be explained by the 
architectural approach. Because in RACE/A it is possible to dynamically adapt the sampling 
process to new information, it becomes possible to model tasks in which asynchronies between 
stimulus presentations exist, something that is currently not possible in architectural models. 
For instance, in a dual-task in which the interval between the tasks governs the response 

Figure 2.1. Illustration of the ACT-R retrieval process. 
Activation decays, until the central production system 
requests information from the declarative system 
(indicated by the onset of the retrieval). Then, after the 
time computed by the latency equation (Equation 2.3) 
has passed, the declarative system reports a retrieval. 
However, ACT-R has no account of the activation 
dynamics between these two time stamps.
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latency (as for example in Psychological Refractory Period experiments), RACE/A explains 
how the decision process depends on the interval change (Van Maanen, Van Rijn, & Borst, 
submitted, as well as Experiments 1 and 2 of the current chapter). For these situations, RACE/A 
can provide quantitative model fits.

Related Theories of Memory Retrieval Dynamics

    Previous models of memory retrieval have focused on the functional process underlying 
simple decision making (e.g., Ratcliff & McKoon, 2008) or perceptual identification (e.g., 
Usher & McClelland, 2001). These models are often referred to as sequential sampling models 
(Ratcliff & Smith, 2004). In sequential sampling models, the discrimination between mental 
representations is thought of as a mechanism that accumulates the likelihood that a certain 
mental representation is the intended one. Typically, there is a boundary, either fixed or 
relative to another accumulator, above which the representation is discriminated and may 
be used in another cognitive process. Accumulation depends on the quality or the quantity 
of a stimulus, either absolute or relative to other stimuli. Because the latency in these kinds 
of paradigms depends for a large extent on when the boundary for a specific accumulator is 
reached and accuracy depends on which accumulator reaches the boundary first, sequential 
sampling models provide an elegant explanation for speed-accuracy trade-offs often observed 
in cognitive tasks (Ratcliff & Smith, 2004). 
    Retrieval from declarative memory also involves discriminating between different mental 
representations. Thus, memory retrieval could also be described as a process in which the 
likelihood is accumulated that a certain mental representation is the intended one. Sequential 
sampling models therefore provide an explanation of many memory related phenomena (e.g., 
Ratcliff, 1978).
    The three most important parameters that determine behavior in sequential sampling 
models are (Figure 2.2, Wagenmakers, van der Maas, & Grasman, 2007):
  - A starting point of accumulation (z)
  - Match boundaries (a and b)
  - Mean drift rate (v)

    The match boundaries a and b in these kinds of models represent the two response 
options for a participant in the tasks that are modeled with the sequential sampling models. 
For instance, in lexical decision the match boundary represents the amount of accumulated 
evidence to give a “word” response and the non-match boundary represents the amount of 
evidence needed to give a “non-word” response. 
    The position of the starting point (z) relative to the match boundaries determines the 

Figure 2.2. Illustration of a diffusion model. 
The response time is the time needed to 
reach one of the decision boundaries.
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prior likelihood of a match and a non-match. For example, if the starting point is closer to 
match boundary a than to match boundary b, the accumulation needed to cross a is less than 
the accumulation necessary to cross b. In this case, in the absence of a any drift towards a or b, 
the likelihood of reaching a is higher than reaching b. Manipulation of this parameter has been 
used to model participants’ prior expectations on the probability of stimuli, for instance the 
probability of non-words in a lexical decision task (Wagenmakers et al., 2008). In the model 
of Wagenmakers et al. a high non-word probability was modeled by setting z to a lower value. 
This meant that crossing the non-word boundary was faster than the word-boundary because 
the accumulation process was shorter, which is visible in the data as well.
    The third important parameter, mean drift rate, indicates the average speed of 
accumulation. A high value indicates a faster accumulation (a high drift). This parameter has for 
instance been manipulated to account for stimulus discriminability effects (Usher & McClelland, 
2001). Thus, highly discriminable stimuli may be modeled by a high drift in either direction, and 
stimuli that are more difficult to discriminate may be modeled with a lower drift rate.
    One of the drawbacks of the classical diffusion model is that it only accounts for two response 
options (a match and a non-match). Other memory retrieval models have been proposed that 
overcome this. For example, Usher and McClelland (2001) proposed a sequential sampling model 
for perceptual choice tasks in which each response option is represented by an accumulator, but 
in which the drift rates are dependent. Apart from accumulation caused by stimuli (the mean 
drift rate), the drift is also determined by lateral inhibition from other accumulators and decay. 
In this model, the time course of a perceptual choice is determined by the likelihood that a 
stimulus leads to one response, as well as the likelihoods of other responses. 
    Another well-known memory retrieval model is the REM model (Shiffrin & Steyvers, 1997). 
In this model, the retrieval process is thought of as a continuous Bayesian decision process, 
in which the odds that a particular decision will be made depend on the ratio of likelihoods 
between the response options. For instance, for lexical decision, the likelihoods for the 
“word” and “non-word” responses are considered to be a function of features of the stimulus. 
If the stimulus resembles a word, the likelihood of the “word” response is higher than if the 
stimulus consists of a completely randomized letter string. Certain instances of the REM model 
also include an aspect of sequential sampling (e.g., Norris & Kinoshita, 2008; Wagenmakers 
et al., 2004a). In these models, the likelihoods of the response options continuously drift 
and a decision is based on the current likelihood ratio in the system. In this way, the REM 
model accounts for pseudo-homophone effects in lexical decision under deadline or signal-to-
respond conditions (Wagenmakers et al., 2004a). 
  These accounts have provided much insight in how retrieval from declarative memory 
works. However, computational models that are derived from these theoretical accounts often 
only model a single retrieval event. These models fail to appreciate that retrieving declarative 
knowledge from memory does not stand alone, but is always part of the execution of a 
particular task. Cognitive architectures on the other hand provide a theory of task execution 
(Newell, 1990). However, the explanation provided by these models is not always at the level 
of detail of sequential sampling models. RACE/A reconciles both approaches.

Cognitive architectures

    From the many variants of a cognitive architecture that exist (Anderson, 2007a; e.g., 
ACT-R, Anderson et al., 2004; Soar, Laird, Newell, & Rosenbloom, 1987; EPIC, Meyer & Kieras, 
1997a; Meyer & Kieras, 1997b; Newell, 1990; Rosenbloom, Laird, & Newell, 1993; CLARION, Sun, 
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2006; Sun, 2007), ACT-R is the theory with the most emphasis on declarative memory retrieval 
(e.g., Anderson et al., 1998; Anderson, Fincham, & Douglass, 1999; Anderson & Reder, 1999). 
However, we claim that ACT-R’s theory of declarative memory is too static to account for the 
competition and interference effects in declarative memory retrieval that we address. In what 
follows, we will first introduce the cognitive architecture ACT-R and then clarify why in certain 
cases the current declarative memory theory in ACT-R is insufficient. Then we will introduce 
our new proposal for declarative memory retrieval, RACE/A.

ACT-R

    ACT-R is a hybrid cognitive architecture in which behavior in a task can be described by 
a sequence of production rule executions. The rules specify which actions to execute given 
certain conditions. To execute a production rule, the conditions are matched against the 
current information state, which is represented by a set of buffers, each containing one piece of 
information. Which information is present at a certain point in time is determined by each of the 
specialized modules, that each process one kind of information. For instance, visual perception 
is handled by the visual module, and motor commands are executed by the motor module. 
The declarative module is used for storing and retrieving declarative memory information, the 
speech module handles the speech output, the aural module handles auditory perception, 
and the goal and imaginal are modules for keeping track of (sub) goals and intentions (Figure 
2.3). The modules can be regarded as theories on that particular aspect of cognition, and the 
production rule system connects these theories to account for overall behavior.

    Thus, the presence of information determines which production rule is selected and 
executed. Both the presence and absence of stimuli can modify the buffer content and 
determine the selection of production rules, and the actions that are executed as part of a 
previous production rule. For instance, a production rule’s actions may contain a request to 
retrieve certain information from memory, which will be stored in the retrieval buffer after it 
has been retrieved.
    Declarative information in the ACT-R cognitive architecture is represented by chunks. 
These are simple facts about the world, such as Amsterdam is the capital of the Netherlands, 
or The object I am looking at is a computer screen. Both these example chunks are declarative 
facts, but the first example can typically be found in the retrieval buffer and thus represents 
a fact retrieved from declarative memory, whereas the second example represents a visually 
observable fact of the world and might be present in the visual buffer.
    All chunks in declarative memory have an activation level that represents the likelihood 
that a chunk will be needed in the near future. The likelihood is partly determined by a 

Figure 2.3. Modular layout of ACT-R. Boxes denote 
information-processing modules, arrows present 
transfer of information.
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component describing the history of usage of a chunk called the base-level activation (Bi in 
Equation 2.1). 
								      
		    (equation 2.1)

    The base-level activation represents the theory that declarative memory is optimally 
adapted to the environment (Anderson & Schooler, 1991). That is, chunks that are most 
active are the ones that are most likely needed, given the demands of the environment. By 
incorporating both the frequency with which particular information is used and the recency of 
these occurrences, the base-level activation predicts learning effects as well as forgetting (e.g., 
the power laws of learning and forgetting, Anderson, Fincham, & Douglass, 1999). In Equation 
2.1, tj represents the time since the jth presentation of a memory chunk and d is the parameter 
that controls decay, which in most ACT-R models is fixed at 0.5 (Anderson et al., 2004).
    In the standard conception of ACT-R, the total activation is the sum of the base-level 
activation, noise (e in Equation 2.2), and another component describing the influence of the 
current context (spreading activation, Equation 2.2). The RACE/A theory will extend ACT-R by 
substituting the spreading activation component of the activation by a component describing 
spreading activation as part of the retrieval process. The spreading activation component is 
composed of the associative values of other chunks, which are referred to in the slots of a 
chunk (chunks j in Equation 2.2) to chunk i, weighed by Wj, representing the importance of 
associated chunks (j).
 Ai = Bi + W jS ji

j
∑ +ε

(equation 2.2)

    The assumption in ACT-R is that chunks that are temporarily available to central cognition 
(that is, chunks that are present in the buffers) increase the probability that related chunks 
will be needed. The associations that exist between two chunks (Sji) reflect the pattern of co-
occurrences of the two events that these chunks represent (Anderson & Milson, 1989). For 
instance, in the presence of a green stimulus in the visual buffer, the probability of retrieval of 
chunks that are related to green - such as a chunk representing grass or a chunk representing 
the concept of Ireland - increases. This is because grass and green as well as Ireland and green 
often co-occur.
    An important reason to compute the need probability of a chunk (captured by the 
activation value) in ACT-R is to predict the time it will take to retrieve chunks. If a chunk has 
a low activation value, indicating that it is not likely that this particular chunk will be needed 
right now, it is harder to remember, which will be reflected by a long retrieval time. This 
observation is captured by Equation 2.3, which determines the latency of retrieval, given a 
certain activation value, with F a scaling parameter:
		  (equation 2.3)

    However, this approximation of the declarative retrieval process suggests that 
information that becomes available after the declarative retrieval is initiated, but before the 
predicted retrieval time, cannot influence the time course anymore (Figure 2.1). We will refer to 
this type of retrieval model as ballistic (Van Maanen & Van Rijn, 2007b), to indicate that once 
initiated, the memory retrieval process can no longer be influenced.

Retrieval by Accumulating Evidence	

    In this section, we will develop the dynamics of the Retrieval by ACcumulating Evidence 
in an Architecture (RACE/A) memory retrieval theory. We will first present the equations that 

Bi = ln t j
−d

j=1

n

∑
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

RT = Fe−Ai
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govern the activation dynamics and show how they relate to ACT-R concepts. As RACE/A is 
integrated in a cognitive architecture, we will show next how RACE/A in the architecture can 
account for simple reaction time experiments. Third, we will present data and a model of a 
task that can only be explained with the integrated account.
    The accumulation process can be characterized by two equations that determine the 
long-term dynamics and the short-term dynamics of the activation. The long-term dynamics 
of the activation are expressed by the default base-level activation equation from ACT-R 
(Equation 2.1). The short-term dynamics are mediated by spreading activation from other 
chunks and the presence or absence of perceptual stimuli. During a retrieval process (e.g., 
the interval between Onset and Retrieval in Figure 2.4), the activation of chunks that match 
a set of retrieval conditions (chunks A and B) gradually accumulates until a certain decision 
criterion (explained below) has been reached. The chunk that has been decided upon (chunk A) 
will be retrieved from declarative memory, and the accumulation of activation stops. Because 
no new activation is being accumulated, the short-term component of the activation of all 
chunks decays. However, given that the usage history of the retrieved chunk has been altered 
(because it is currently being used), the chunk’s long-term component is being increased in 
such a way that it greatly exceeds the current level of short-term activation. For this reason, 
the net activation of each chunk in the system can be described as 				  
		        (equation 2.4)

indicating that the activation of a chunk is the maximum of the need probability of a chunk 
(reflected by Bi) and the accumulating evidence for that chunk (reflected by Ci). Similar to 
most sequential sampling models, the short-term activation dynamics can be represented by 
a starting point, a drift, and a decision boundary, which will be discussed below.

Starting point

    The starting point of the accumulation reflects the prior probability that a chunk is needed. 
This is reflected by ACT-R’s base-level activation equation (Equation 2.1), which incorporates 
the usage history of a chunk. Chunks with a high base-level activation start the accumulation 
of activation at a higher starting point, and are thus more likely to be retrieved from memory.

Drift

    Drift in RACE/A is the reflection of the current demands of the environment. Thus, drift is a 
function of stimuli, as well as the currently active declarative facts. All facts and stimuli, which 
will collectively referred to as sources of activation, continuously spread excitatory activation 

Figure 2.4. The RACE/A dynamics during a typical 
memory retrieval process. The two chunks 
compete for retrieval, and chunk A wins and 
is retrieved. Chunk A’s base-level activation 
is updated (and decays), while chunk B’s 
accumulated activation decays again.

Ai =max(Bi,Ci)

3. In the simulations 
reported throughout this 
paper, we used the discrete 
version of Equation 2.5:
Ci(t + Δt) = (1−α)Ci(t) + β S jiA j (t) + ε

j
∑
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towards associated chunks. This means that a chunk that has more sources of activation 
(more evidence) or sources with more activation (“stronger” evidence) will accumulate faster 
than a chunk with less sources of activation or sources with less activation. In the absence 
of evidence for a particular chunk, the short-term activation will decay (indicated decaying 
chunk B in Figure 2.4). The drift in RACE/A is also determined by a logistically distributed noise 
sample, that adds stochasticity to the system.
    These considerations are reflected by Equation 2.5, which may be referred to as the drift 
equation.3 The drift equation captures the dynamics of short-term activation (C) of one chunk 
(chunk i) over time.

				    (equation 2.5)

    In this equation, the decay of short-term activation is expressed by a, which should 
be a value in the range [0,1] to create decay. The spreading activation component is a sum 
of the activation of other chunks (Aj), weighted by the associations that exist with chunk i 
(Sji). The spreading activation component is scaled by a factor β that determines the overall 
accumulation speed. The noise is expressed by ε. To summarize, the decay parameter α 
together with scaling factor β determine the average drift of the chunks in the system. 
However, the chunk that receives the most spreading activation from sources of activation 
will (in the absence of noise) be the first to reach the decision boundary. 

Decision Boundary	

    The decision boundary in RACE/A is relative to the activation of competitors in the 
system. This choice reflects the insight that if multiple memory representations are relevant, 
responding becomes more difficult (Hick, 1952; Luce, 1986). This is reflected by Equation 2.6, 
which expresses the conditions under which a decision will be made. If the activation of a 
certain chunk (chunk i in Equation 2.6) exceeds the activation of all competitors (j, including i), 
in the system by a certain ratio θ (referred to as the decision ratio), then that chunk is retrieved 
from memory. The duration of the retrieval process constitutes the interval between the onset 
of the retrieval process (when the request for a retrieval is made) and the moment at which 
the decision is made.

	      (equation 2.6)

    The relative likelihood of one chunk is the Luce ratio for that chunk (Luce, 1963).
    One important special case for RACE/A is when there is no competition. Often, there is 
only a single chunk that matches a retrieval request. Consider for example an adult who wants 
to retrieve the answer to the problem 3 + 4 = ?. The activation of competing answers is very 
low, because adults are very experienced in this task and rarely make errors. Therefore, this 
results in a retrieval process in which there is practically no competition.  
    This special case is addressed in (Anderson, 2007a, Appendix 3.1), in which ACT-R’s 
latency predictions are compared with an instance of the diffusion model. Assuming no noise 
(and no competitors), the retrieval time in RACE/A can be described as a ballistic model, in 
which the retrieval time is a function of the distance between the decision boundary and the 
Luce ratio for the chunk. Figure 2.5 presents the predicted retrieval time for various activation 
values. Especially for low activation values, RACE/A closely follows the ACT-R predictions of 
retrieval times. This ensures that a RACE/A model can fit experimental data set in which no 
competition effects are to be expected, similar to default ACT-R models.

dCi = [−αCi + β S jiA j + ε
j
∑ ]dt

3. In the simulations 
reported throughout this 
paper, we used the discrete 
version of Equation 2.5:

eAi

eA j

j
∑

≥θ

Ci(t + Δt) = (1−α)Ci(t) + β S jiA j (t) + ε
j
∑
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Simple simulations

    Before discussing memory retrievals using RACE/A in the broader scope of complex task 
execution, it is important to understand the activation dynamics of the model. In this section, 
we present the results of a set of simple simulations of how RACE/A behaves under varying 
circumstances. In these simulations, two unrelated chunks are competing for retrieval from 
declarative memory. In addition, no noise is added to the system. Figure 2.6a (left) presents 
how activation develops over time for the default case, in which both chunks have the 
same starting point and one stimulus is present that activates only one chunk. That chunk 
accumulates activation, whereas the other remains at its minimum value, which is the starting 
point (the base-level activation). Figure 2.6a (right) presents the relative Luce ratios for both 
chunks, with the dotted horizontal line indicating the decision ratio θ. Because there are two 
equally probable chunks in this competition, the Luce ratio at the start of the process is 0.5 
for both chunks, but quickly changes in favor of the accumulating chunk, until it crosses the 
decision ratio.
    Figures 2.6b presents the activation and Luce ratios for two chunks, of which one receives 
activation from a stimulus, but the other has a higher starting point. This is for instance the case 
if one chunk has a higher base-level activation because it is more familiar, or because the chunk 
has been recently retrieved. Under these conditions, retrieval takes longer because the Luce 
ratio of the activated chunk is smaller due to the higher initial activation from the other chunk.
    In Figure 2.6c, a situation is depicted in which one chunk is activated later than the other. 
This will be an important case in the picture-word interference model described in the next 
section. Even though the retrieval process of the first chunk has already initiated, activation 
of the second chunk at a later moment in time influences the Luce ratio and thus increases 
the retrieval time of the first chunk. It should be noted that in order for the first chunk to be 
retrieved before the second, spreading activation from the stimulus to this chunk should be 
at least as high as spreading activation to the other chunk. Otherwise, the secondly activated 
chunk will be retrieved. This is what happens if a target stimulus trails a to be ignored stimulus 
in time, as in the picture-word interference experiment described below.
    The last simulation addresses a condition in which one of the chunks is only activated for 
a short duration (Figure 2.6d). This is what happens in masked priming, in which one stimulus 
is only available for a short duration and thus only has a short interval in which to activate 
related concepts, while another stimulus remains present. Initially, both chunks accumulate, 
because both receive activation from a stimulus. After one of the stimuli disappears, the 
activation of one of the chunks decays, but the other chunks accumulates further. Again, the 
retrieval time is increased as compared to the default situation in Figure 2.6a, because the 
activation of the decaying chunk still influences the Luce ratios. The simulations depicted by 

Figure 2.5. RACE/A and default ACT-R latency predictions for 
various activation levels. For RACE/A, these predictions only 
hold if there are no competitors.
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Figure 2.6c and Figure 2.6d are particularly difficult to explain with a ballistic theory of memory 
retrieval, because they simulate conditions in which information becomes available during the 
retrieval process.
    To summarize these simple simulations, the Luce ratio of a particular chunk is negatively 
accelerated by the activation of other chunks that compete with that chunk for retrieval from 
declarative memory. This competitive process results in an increase in retrieval time. If the 
chunks are associated, then the behavior is similar, but the retrieval times are increased 
even more (Figure 2.7, note that the x-axis differs from Figure 2.6). Under these conditions, 
both chunks accumulate due to spreading activation from the other chunk (compare Figure 
2.6a with Figure 2.7a). This results in slower accrual of the Luce ratios and therefore a longer 
retrieval. This explains the semantic gradient effect found in picture-word interference studies 
(e.g., W. R. Glaser & Düngelhoff, 1984; Klein, 1964; Rayner & Springer, 1986; Smith & Magee, 
1980). If two concepts are associated, for instance because they belong to the same semantic 

Figure 2.6. RACE/A dynamics for four typical retrieval processes. Left: Activation of two chunks. Right: Luce ratios of two chunks. The 
vertical dotted lines indicate the retrieval times. See text for explanation of the differences between Panels A-D.
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category, the will excitate each other, increasing decision boundary and thus the retrieval time 
and the response latency. A full RACE/A model of picture-word interference will be presented 
in the next section.

Asynchronously presented stimuli

    In this section, we will discuss a picture-word interference experiment performed by 
Glaser and Düngelhoff (1984, Experiment 1). As this is a prime example of an experiment 
that is difficult to explain with a ballistic model of memory retrieval. After introducing the 
experiment, we will provide RACE/A model fits to this data set. 
    Glaser and Düngelhoff’s (1984) Experiment 1 consists of two tasks: One is naming a 
picture, while a word is presented (picture naming task); the other consists of reading a word 
while a picture is presented as distractor (word reading task). In both tasks, the distractors 

Figure 2.7. RACE/A dynamics for four typical retrieval processes, with spreading activation between the chunks. Left: Activation of 
two chunks. Right: Luce ratios of two chunks. The vertical dotted lines indicate that a chunk has been retrieved. Note that the axes 
differ from Figure 2.6.



25

are presented on different SOAs relative to the target stimulus (either the picture or the word, 
depending on the task). Thus, if a distractor is presented at negative SOA, it is presented before 
the target stimulus. At positive SOAs, the distractor is presented after the target stimulus. 
The first condition is one in which both distractor and target stimulus refer to the same 
concept (e.g., a picture of a house versus the word house). This is referred to as the congruent 
condition. In two other conditions, distractor and target stimulus refer to different concepts. 
In the related condition the concepts belong to the same semantic category (e.g., a picture of 
a church versus the word house), in the unrelated condition the concepts do not belong to the 
same semantic category (e.g., a picture of a cat versus the word house). As control condition 
target stimuli were presented together with meaningless letter strings (picture naming task) 
or rectangles (word reading task).
    Glaser and Düngelhoff (1984) show that interference decreases as the semantic 
relation of the word to the picture decreases, which is known as the semantic gradient effect 
(Klein, 1964; Lupker, 1979; Rayner & Springer, 1986; Smith & Magee, 1980). They also show 
facilitation in the congruent condition, meaning that latency is decreased when both target 
and distractor stimuli refer to the same concept (Bajo, 1988; Ehri, 1976). The most interesting 
finding for the current discussion is that the size of the interference effect is mediated by the 
temporal distance between target and distractor. If the onset asynchrony of the two stimuli 
is small, the interference is high. However, the interference does not maximize at an SOA of 0 
ms, indicating simultaneous presentation of the two stimuli, but rather at an SOA of 100ms, 
indicating that interference is highest if the distractor is presented slightly after the target. A 
final effect observed in pwi studies is a clear asymmetry between the picture-naming task and 
the word-reading task: The semantic gradient and facilitatory effect virtually disappear in the 
word-reading task, while they were visible in the picture-naming task. The data of Glaser and 
Düngelhoff ‘s Experiment 1 are provided in Figure 2.8a.

Picture-Word Interference Model	

    We will now turn to a RACE/A model that explains the effects found in the picture-word 
interference paradigm. As RACE/A is tightly integrated with the ACT-R cognitive architecture, we 
will present the model in ACT-R terminology. Our model of picture-word interference comprises 
two chunk types: lemma chunks and concept chunks. The concept chunks can be regarded as 
representations of semantic properties of a certain concept. Chunks of the lemma type can be 
regarded as sets of orthographic and syntactic properties of a word (cf., Levelt, 1989).
    Two types of stimuli can be presented to the model, pictures and text. If a stimulus is 
presented, it spreads activation to related chunks in declarative memory (Equation 2.5). 
Because of the familiarity of the depicted concepts, we assume that all pictures have been 
attended equally often. Thus, spreading activation from the pictures is kept at a constant value, 
which is a parameter of the model. However, to represent more prior practice with processing 
words than with processing pictures (e.g., Cohen, Dunbar, & McClelland, 1990; MacLeod & 
Dunbar, 1988), spreading activation from the textual stimuli is higher than from pictures. 
    Figure 2.9 summarizes the connections that exist between chunks in this model. Text 
engages directly on the lemma chunks, while for pictures, conceptual information needs to be 
retrieved before the lemma of the picture can be retrieved. This reflects the finding that words 
can be processed without a conceptual level (W. R. Glaser & Glaser, 1989; La Heij, Happel, & 
Mulder, 1990), that is, the meaning of a word is not necessary for pronouncing the word. By 
contrast, an interpretation of the depicted concept is necessary for naming a picture.

- Accumulators in context: an integrated theory of context effects on memory retrieval -



26

- CONTEXT EFFECTS ON MEMORY RETRIEVAL: THEORY AND APPLICATIONS -

    When a stimulus is presented, the model accumulates activation for concept and 
lemma chunks. After lemma retrieval, the model can commence word-form encoding and 
pronunciation of the response. For explanatory purposes, we assume for this data set that 
these stages do not influence the latency differences. Note however that in subsequent 
models these stages are included, as they will play an important explanatory role.
    For both the picture-naming task and the word-reading task, we presented the model 
with the same conditions as the participants; a neutral, congruent, related, and unrelated 
condition, with SOAs of -400, -300, -200, -100, 0, +100, +200, +300, and +400ms, similar to 
the original Glaser and Düngelhoff (1984) experiment. In the neutral condition, no distractor 
stimulus was presented. That is, no text chunk was in the visual buffer at any moment. 
Glaser and Düngelhoff presented the subjects with a non-word distractor and a non-picture 
distractor respectively in the picture-naming and word-reading control condition. These were 
chosen in such a way as to minimize the amount of picture or word processing. Assuming a 
successful operationalization by Glaser and Düngelhoff, we simulated this condition by not 
presenting a distractor in the neutral condition. In the congruent condition, the distractor and 
the target stimulus both refer to the same concept. In the unrelated condition, distractor and 
target stimulus refer to different concepts.
    When the picture is presented in the neutral condition, it spreads activation to its 
associated concept. At the same time, all concept chunks spread their activation to the 
lemma chunks. Because there is no distractor present, the most likely lemma to be retrieved 
from memory is the one related to the depicted item. Because there is no competition from 

Figure 2.8. (a) pwi data from 
(W. R. Glaser & Düngelhoff, 
1984, Experiment 1) and (b) 
model fit of the pwi model.
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other sources apart from the standard activation of the lemma representations, retrieval is 
relatively quick.
    For the congruent condition, the distractor word is the name of the picture. If the 
distractor and target stimulus are both presented at the same time, then not only the effect 
from the picture contributes to the activation of the desired lemma, as in the neutral condition, 
but also activation spreading from the word. Therefore, retrieval will be faster than in the 
neutral condition. If the SOA is negative, that is, if the word is presented before the picture, the 
desired lemma is already active, because of spreading activation from the word to the lemma. 
The size of this effect correlates with the distance between the stimuli. For (positive) SOAs 
larger than +100 ms, the desired lemma is already retrieved before the word can contribute 
spreading activation. Therefore, no difference between the neutral and congruent conditions 
is predicted for these SOA levels.
    In the unrelated condition, the word and the picture do not refer to the same concept. If both 
stimuli are presented simultaneously, a competing lemma is activated by the distractor word 
before the target lemma is activated. This will result in increased competition. At large negative 
SOAs, the word will be processed completely and rejected as a response option. Because of 
subsequent decay, there will be less interference at negative SOAs. The degree of interference 
is negatively correlated with the SOA, because shorter intervals will result in more active word-
related lemmas when the picture is presented and thus more competition (cf., Figure 2.7b). At 
positive SOAs, the target lemma will become active before the distractor stimulus is presented. 
Thus, less time is available for the distractor to interfere (cf., Figure 2.7c). An interesting 
consequence of the asynchrony in the model between pictures and words in lemma activation 
is that interference is highest at a SOA of +100ms. Because pictures first activate conceptual 
representations, a slightly later presentation of a word will result in maximum competition 
between the lemmas. This patterns is supported by the data (Figure 2.8a).
    If the target and distractor stimuli are semantically related, the distractor lemma is 
not only activated by the word, but also by the conceptual representation of the picture, 
mediated by a related conceptual representation. Thus, higher associations result in stronger 
competition and more interference.
    The experimental setup for the word-reading task was equal to that of the picture-naming 
task. The only difference was that participants were instructed to read the words, hile ignoring 
the pictures. In general, pronouncing a written word is faster than naming an item in a picture 
(W. R. Glaser & Düngelhoff, 1984). As said, our model explains this by a shorter processing 
route for word-like stimuli and faster encoding of word-like stimuli. The faster encoding is 
reflected by higher activation of the text chunks than the picture chunks in the visual buffer.
 

Figure 2.9. Connectivity between 
memory representations in the 
pwi model. In this example, a 
line drawing of a castle activates 
the conceptual representation of 
a castle, while the word “house” 
directly activates the house-
lemma.
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Model results & Discussion

    Figure 2.8 presents the results of our picture-word interference model. Because the 
model does not capture the vocalization aspects of the task, Figure 2.8 presents the latency 
differences between the neutral condition and the other conditions to account for differences 
in competition during memory retrieval. The Root Mean Square Error (Rmse) of the model fit is 
28 ms (Here and throughout this article, we will only report Rmse and not the R2 of the model 
fit, because for current purposes it is a more insightful measure of goodness-of-fit than R2).
    Because of the shorter processing route for words and faster encoding, there is less time 
for picture-induced competion to influence the word-reading process. This results in the 
typical Stroop asymmetry described by Glaser and Düngelhoff (1984) (Figure 2.8, Rmse=18ms). 
However, at negative SOAs, our model does predict a small interference effect, which is not in 
the data. Because of the longer processing route, it takes about 400ms for the picture-related 
distractor lemma to become fully activated. Therefore, at a negative SOA of 300-400 ms, the 
competition posed by the distractor lemma is maximal at the onset of the word. 
Interestingly, in the Stroop variant of this experiment (M. O. Glaser & Glaser, 1982), a small 
but significant interference effect is observed at negative SOAs over 300ms, similar to our 
model prediction for pwi. This indicates that the Stroop effect could be explained by a longer 
processing account only. However, since generally pwi and Stroop are considered instances 
of the same process (e.g., Cohen, Dunbar, & McClelland, 1990; MacLeod, 1991; Roelofs, 2003; 
Van Maanen & Van Rijn, 2007b; Van Maanen, Van Rijn, & Borst, submitted), the issue of 
interference in word reading remains unsolved. We did not examine this issue further, because 
the model presented here is aimed at providing a general account of interference effects in 
memory retrieval.
    A ballistic model of picture-word interference would not have been able to account for 
the SOA effects in pwi. Consider the latency equation of ACT-R (Equation 2.3): Given the 
ballistic nature of declarative memory retrieval, a standard ACT-R model cannot explain the 
interference and facilitation effects that are observed at small positive SOAs, since the latency 
is already determined at the onset of the target stimulus. At negative SOAs, the retrieval 
initiated by the distractor might not yet be finished once the retrieval initiated from the target 
stimulus is requested. Therefore, in a model that does not consider the retrieval process, no 
influence from the distractor stimulus would be predicted, resulting in identical predictions 
for all conditions.

Masked stimuli

    The previous section showed that RACE/A can account for the effects of asynchronous 
presentation of stimuli at very short intervals. The pwi model is an example of how RACE/A 
processes information that becomes available after a memory retrieval process has already 
initiated. In this section, we will discuss a model that demonstrates how RACE/A accounts for 
conditions in which information is not available for the full duration of a trial. More specific, we 
will discuss a model of a classical masked priming experiment (Marcel, 1983, Experiment 3).
    The experiment consisted of a Stroop task in which participants were asked to name 
the color of a slide, while a color word was flashed in front of the slide for a brief duration. 
Four prime type conditions were tested: Color congruent, color unrelated, neutral, and no-
word. In the congruent condition, the prime was the name of the target color, whereas in the 
unrelated condition the prime was the name of another color. In the neutral condition, the 
prime was a non-color word. The no-word condition presented the mask only. Thus, no prime 
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was presented. Two awareness conditions were tested. One in which the prime was masked 
(unaware condition) and one in which the prime was presented for 400 ms (aware condition). 
The presentation duration of the masked prime was chosen in such a way that participants 
could not discriminate between the presence or absence of a prime. Prime and cue were 
presented simultaneously (Marcel, 1983).
    Participants had to respond to the color patches by pressing a button associated to one of 
the colors. The aware condition replicated the typical patterns of interference and facilitation 
as commonly found in the Stroop paradigm. In the unaware condition, a smaller interference 
effect was found as compared to the aware condition (Figure 2.10a).

Masked priming model

    The masked priming model is very similar to the pwi model. Concept chunks and lemma 
chunks contain the conceptual information on color and the syntactic information on color 
words, respectively. However, because the original experiment involved a response using a 
button press, we included extra chunks that represented information on which button was 
associated with which concept. These chunks will be referred to as motor-mapping chunks, 
because they map a conceptual representation onto a motor response (Figure 2.11). 

    The rest of the model was similar to the picture-word interference model. Thus, textual 
features of a stimulus (such as the word “red”) activate lemma chunks. Color patches activate 
concept chunks that represent color information. Concepts and lemmas spread activation to 

Figure 2.10. (a) Masked priming data from (Marcel, 1983, Experiment 3) and (b) model fit of the masked priming model.
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Figure 2.11. Connectivity between 
memory representations in the 
masked priming model. The 
connectivity is similar to the 
pwi model, but for the response 
a chunk representing the 
concept-to-button information 
is activated.
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each other, as well as concepts that are from the same semantic category, such as two colors.
    We estimated the presentation duration of the prime in the unaware condition at 70 ms, 
which is in the range of durations used in the original experiment (30-80 ms, Marcel, 1983).
With this duration, the prime’s Luce ratio did not exceed the decision boundary, indicating 
that the model remained unaware of the presence or absence of the prime. 

Model results & Discussion

    Figure 2.10 presents latency differences (Rmse = 2ms). The model predicts similar effects 
of awareness as are present in the data, as well as the normal Stroop effects. Because the prime 
(the color word) is only present for a short duration in the unaware condition, it spreads less 
activation towards the associated lemma. Therefore, the competition between color concepts 
is less (because the lemma is also less activated than in the aware condition), resulting in a 
smaller interference effect in the unaware condition than in the aware condition.
    In the congruent condition, the model predicts no effect of awareness. This results from 
a floor effect in the retrieval time. Because the color patch already activates the concept 
enough for retrieval, the added value of the congruent word is diminished and therefore the 
presentation duration has no effect on the latency. 
    As in picture-word interference, an extra stimulus in masked priming influences the 
retrieval of a target stimulus. From a symbolic perspective, stimuli have to be active in order 
to engage in cognitive processing. In ACT-R, this means that a stimulus has to be present in 
a buffer in order to influence other cognitive processes. Stimuli that are presented for such 
short times as are common in masked priming paradigms will not become available in the 
visual buffer, because ACT-R assumes an attention shift to the stimulus which takes a certain 
amount of time, exceeding the presentation duration of the prime (Anderson, Matessa, & 
Lebiere, 1998). In addition, if a prime were present in the visual buffer it would be available 
to conscious processing. In that case, the model would no longer be an accurate description 
of the task. Thus, the ballistic nature of the declarative retrieval theory in the cognitive 
architecture prohibits accurate modeling of masked priming experiments.

Experiment 1: Repetition Priming

    The previous models addressed competition effects in relatively straightforward 
conditions. In each trial, one chunk was retrieved, and the latency was a function of the 
competitive effects. The experiment and model presented in this section have a more complex 
structure. In this experiment, a picture-word interference (pwi) task is performed as the 
second, main task of a psychological refractory period (PRP) design. In addition to the normal 
PRP setup, which will be discussed shortly, we introduced a systematic repetition of the 
presented items. This way, this experiment requires the interaction of RACE/A - to account for 
the pwi interference effects – with ACT-R’s long-term declarative memory theory to account 
for the repetition effects, and ACT-R’s production rule and buffer system to account for the 
general task setup.
    In a PRP design, participants are asked to perform two tasks sequentially. The first task 
is often relatively simple, whereas the second task is the task of interest (the main task). The 
interval between the stimulus onsets of the two tasks is manipulated (SOA). A typical finding, 
known as the PRP effect (Telford, 1931) is a negative correlation between SOA and response 
latency on the main task, Responses to the first task are typically unaffected by varying the 
SOA. The PRP effect has been explained (McCann, 1992, but see Meyer & Kieras, 1997b; e.g., 

4. To distinguish the SOA 
manipulations in pwi and 
PRP context, we will refer to 
the SOA in the PRP context 
as PRP-SOAs. The SOA 
between word and picture, 
which was part of the pwi 
design discussed before, 
was always zero in these 
and following experiments.
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Pashler, 1994; Welford, 1967, 1980) by the assumption that both tasks share a cognitive resource 
that can only be used by one task at a time. Thus, the second task is delayed because the first 
task still requires a critical resource (Figure 2.12). As the interval between the tasks increases, 
the delay becomes smaller, resulting in a faster main task response.
    Applying the PRP design to pwi, (Dell’Acqua et al., 2007) have shown that the effect size 
of picture-word interference diminishes with decreasing PRP-SOA4. Dell’Acqua et al. argued 
that these results indicate that the locus of interference in pwi is located before the singular 
resource that both tasks share. The reasoning behind this is that a small interval between the 
first and the second task generates a large delay (referred to as “cognitive slack”), in which the 
interference can be resolved. If the interval increases, the delay of the second task decreases, 
and therefore the interference becomes apparent in the reaction times (for a different 
interpretation of this data, see Van Maanen, Van Rijn, & Borst, submitted).

    The different SOAs of the pwi task show different effects because of short-term changes 
in priming-related activation. Another possible cause for differences in retrieval latency is 
the number of repetitions of a particular target: the more repetitions, the shorter the latency 
(repetition priming). It has been shown that repetition of items results in priming effects 
that span intervening trials (e.g., Becker, Moscovitch, Behrmann, & Joordens, 1997; Joordens 
& Besner, 1992; Scarborough, Cortese, & Scarborough, 1977), suggesting that this form of 
priming affects long-term memory, rather than short-lived residual activation from a previous 
trial. We predict that the stronger long-term representation of the stimuli decreases the 
interference from related and unrelated distractor words, because the starting points of the 
accumulation process are higher on each repetition, resulting in faster retrieval process and 
thus less interference.

Methods

  Participants
    23 students of the University of Groningen (mean age 22.7, 14 male, 9 female) took part in 
this experiment for course credit. All were native speakers of Dutch and had normal hearing 
and normal or corrected-to-normal vision.

  Stimuli
    49 images were taken from the PD/DPSS image set (Dell’Acqua, Lotto, & Job, 2000). The 
images that were selected for inclusion in this study had a naming agreement of 95%. Of each 
image, two pwi stimuli were created that consisted of the image, with a word written in the 
center of the image. The words were selected as follows: For the related condition, category 
members of the image descriptors were selected. The words for the unrelated condition were 
then selected from the CELEX lexical database (Baayen, Piepenbrock, & Van Rijn, 1993) and 

Figure 2.12. Gant diagram of the 
PRP effect. The top bar indicates 
processing of the first task. The 
bottom bar indicates processing 
in the second task. S1: stimulus 
of task 1; S2: stimulus of task 
2; R1: response on task 1; R2: 
response on task 2.
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matched to the related distractors with respect to word length (plus or minus 1 letter) and 
word frequency (plus or minus 10%). 
    The tones for the primary task consisted of a 300Hz, 600Hz, and 1200Hz tone, similar to 
the experiment conducted by Dell’Acqua et al. (2007).

  Design
    For each participant, an experimental list was created in which each image was combined 
with each relatedness condition (related and unrelated) and every PRP-SOA (100ms, 350ms, 
and 800ms). This resulted in 294 trials per participant, in which each picture was repeated 
six times. The lists were pseudo-randomized in such a way that: (1) The same condition 
(relatedness or PRP-SOA) did not occur more than twice in a row, and (2) the same tone did not 
occur more than twice in a row.

  Procedure
    Each trial started with the presentation of a fixation cross for 1500ms followed by the 
tone-classification tone for 150ms. After the PRP-SOA, the pwi stimulus was presented. The 
word and the picture that formed the pwi stimulus were presented simultaneously (that is, 
all trials were presented with a pwi-SOA of 0ms). The participants were instructed to always 
respond to the tone first and then to the pwi-stimulus. The tone had to be classified as either 
low, medium, or high pitch by pressing the b, n, or m keys respectively with the index, middle 
and ring fingers of the right hand. For the pwi task, the participants were instructed to name 
the picture. If participants failed to answer in the correct sequence, a screen informing them 
of the correct procedure was presented.
    The participants were tested individually. First, each participant practiced the tone 
classification task in isolation. Second, a set of pwi stimuli was presented in single task 
setting and the participant was instructed to name the picture and ignore the word. Before 
each of these practice blocks, the speed of responding was stressed as the important factor. 
Third, the participant was presented with a practice block of the dual-task. After this practice 
block, the actual experiment started. The experimental block was preceded by two filler trials 
that were the same for all participants and that were not analyzed.

Results

    One participant was excluded from the analyses because of an excessive error pattern 
(52% erroneous trials). Trials on which the remaining participants responded to the picture-
word stimulus before responding to the tone were excluded from further analysis (2.4% of the 
trials). In addition, trials in which the participant’s response on either the pwi stimulus or the 
tone was more than three standard deviations from the participant’s mean (per relatedness/
PRP-SOA combination) were excluded (2.0% and 2.0%, respectively). Because these exclusion 
criteria partly overlap, this resulted in exclusion of 5.2% of the trials. Following Dell’Acqua et 
al. (2007), no other trials were excluded.
    The overall pattern in the data is presented in Figure 2.13. A linear mixed-effects model 
(Bates, 2005) was fit to the data to find the relative contribution of the factors to the response 
latency in the pwi task. Relatedness, PRP-SOA level, and number of repetitions were included 
as fixed effects, together with the interactions between these factors. Participant and Picture 
were included as random effects, to account for inter-subject and inter-item variability. An 
ANOVA on the mixed-effects model (Baayen, Davidson, & Bates, 2008) showed that the 
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following factors contributed significantly to the participants’ reaction times: PRP-SOA β = 
-0.401; F(1,6122) = 741; p < 0.001, relatedness β = 45.5; F(1,6122) = 10.3; p = 0.001, repetition 
β =-48.2; F(1,6122) = 246; p < 0.001, and a three-way interaction between SOA, relatedness, 
and repetition β = 0.0529; F(1,6122) = 4.10; p = 0.04. Further analysis of the effects per SOA 
level revealed that this three-way interaction is caused by the decreasing interference over 
repetition at a PRP-SOA of 800ms (relatedness times repetition, β = 21.9; F(1,2059) = 5.20; p 
= 0.02). This interaction was not significant at other PRP-SOAs (Fs < 1). To summarize, this 
experiment replicates the typical PRP effect, in which response latency on the main task are 
negatively correlated with PRP-SOA, the typical effect of interference when the distractor 
word is related but not identical to the to be named picture, and, additionally, a relatively 
straightforward effect of repetition priming. The interaction indicates that at the 800ms PRP-
SOA, the repetition effect was smaller for trials with related distractors as compared to the 
100ms PRP-SOA.

Discussion

    The difference between the related and the unrelated condition is reflected by a difference 
in response latency, the interference effect. Since in the related condition picture and word are 
semantically related (and not in the unrelated condition), the interference may be an effect of 
competition between semantically related concepts. In both conditions, the word and picture 
activate a conceptual representation, but in the related condition, it is harder to decide on the 
correct conceptual representation of the picture (e.g., W. R. Glaser & Düngelhoff, 1984; Van 
Maanen & Van Rijn, 2007b). In the model, this effect of competition is accounted for by the 
retrieval ratio presented in Equation 2.5. 
    The size of the interference effect decreased with decreasing SOA, as well as with 
repetition of pictures. This observation suggests that the competition between the word and 
the picture is resolved early in the mental processing stream. If the interference effect under 
single-task conditions is caused early in the process (for instance during the visual processing 
of the picture), then this effect will be absorbed in the cognitive slack that is created by the PRP 
paradigm. Therefore, the presence of cognitive slack decreases the overt interference effect 
(Dell’Acqua et al., 2007).
    All three panels of Figure 2.13 show latency curves very similar to the power law of 
learning, indicating that participants become faster with more repetitions. This is in line with 
the idea that at each repetition, the conceptual representation of the picture is retrieved from 
memory, strengthening its memory trace and making it easier to retrieve the concept at the 
next presentation. The effect of repetition on interference can be modeled by incorporating 

Figure 2.13. Data from Experiment 1. Each panel represents the latency on each PRP-SOA level for all repetitions of the picture.
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the long-term declarative memory mechanisms of ACT-R. This way, the starting points of all 
competing memory representations will be set at a principled value, because the starting 
values are determined by a validated theory of long-term memory processes, as well as precise 
predictions of the time course of the memory retrievals, both within trial and between trials.

Model of Experiment 1

    The low-level pwi aspects of the model of Experiment 1 are identical to the earlier 
discussed models: The model retrieves conceptual representations from memory if a picture-
like stimulus is presented and retrieves a lemma representation from memory if a word-like 
stimulus is presented. Because lemmas spread activation to the conceptual representations 
that relate to them, the presentation of a distractor word causes interference at the conceptual 
level. The relative decision boundary that determines retrieval from memory becomes harder 
to reach for the conceptual representation of the picture, increasing the retrieval time. The 
different activation levels of the target chunk versus competing chunks determine the latency 
difference between the related and unrelated pwi conditions. In the related condition, the 
concepts of the target and the distractor spread activation to each other, making it even 
harder to reach the relative decision boundary. This mutual excitation is not present in the 
unrelated condition, resulting in less competition and thus a faster retrieval. These dynamics 
are also apparent from the simple simulations presented in Figure 2.6a and Figure 2.7a, which 
reflect the competition in the unrelated and related condition, respectively.
    Once a concept has been retrieved, the model initiates a response. First it retrieves a 
lemma representation that encodes the syntactic information associated with the desired 
response, than it retrieves a motor program to articulate the desired response. 
    In addition to mechanisms to account for the pwi-aspects of the experiment, the model 
also contains mechanisms to account for the tone-classification task. If a tone is presented, 
the model processes auditory information and retrieves a memory trace that encodes the 
appropriate stimulus-response mapping (that is, which button to press given the perceived 
tone). Because of the task instruction to withhold the vocal pwi response until the tone 
classification is made, the model includes a control state that ensures that the retrieval of 
the response lemma (as part of the pwi task) does not start until the retrieval of the response 
stimulus response mapping (as part of the tone classification task) has been completed. 
As soon as the response mapping is retrieved, the pwi mechanisms can access declarative 
memory again, so the pwi task can continue before the actual button-press is made.
    Each time a chunk has been retrieved from memory, its base-level activation is updated 
because it has gained an additional reference. This means that the starting point in the 
accumulation process differs in the next retrieval for which that chunk is a competitor. Thus, 
at each repetition of a picture, the starting point for the associated conceptual representation 
is higher than on the previous repetition. A higher starting point results in a faster retrieval of 
the relevant concept and therefore a faster response. Moreover, a fast retrieval results in little 
time for the other, distractor-related chunks to accumulate activation, resulting in a smaller 
interference effect. This accounts for the repetition priming effect observed in Experiment 1.

  Model results and discussion
    Similar to Experiment 1, we excluded outliers that were more than three standard 
deviations of the mean of each PRP-SOA-Relatedness combination. In the model, these 
outliers represent cases in which the model is unable to come to a decision due to multiple 
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chunks accumulating at the same rate. When the model reaches a deadline, the accumulation 
is halted and an error is returned. Consecutively, the model tries to retrieve the desired chunk 
again, resulting in prolonged response latencies.

    Figure 2.14 shows that the model accounts for the repetition effect (Rmse = 56 ms). As the 
number of repetitions increases, the responses become faster. In the model, strengthening 
the memory trace of conceptual information as well as information at response levels causes 
the repetition priming effect. Previous studies have provided evidence for the existence of this 
dual process. For example, bilinguals show repetition priming for concepts that are presented 
in one language on the first presentation and in another language on the next presentation 
(e.g., Francis, Augustini, & Saenz, 2003; Francis & Saenz, 2007). Thus, a repetition benefit 
was present in the absence of a repetition of responses. This is evidence that conceptual 
information is being reinforced on the first presentation, enabling a faster response on the 
second presentation. On the other hand, certain lexical decision studies demonstrate that 
non-word response latencies are also decreased by repetition, indicating that repetition 
priming also has a speed-up effect if no conceptual representation is present, as is generally 
believed to be the case for non-words (e.g., Wagenmakers, Zeelenberg, Steyvers, Shiffrin, & 
Raaijmakers, 2004b; Zeelenberg, Wagenmakers, & Shiffrin, 2004).
    As an extra validation of the model, Figure 2.15 shows the models fit to the main PRP 
effects (Rmse = 20 ms); a decreased latency as a function of increased SOA (for all relatedness 
conditions), and a decreased interference effect with increased SOA.

Experiment 2: Task strategy

    Experiment and Model 1 illustrate how RACE/A naturally interacts with an important 
intrinsic property of the cognitive architecture ACT-R. The theory of long-term learning and 
forgetting that was already present in the architecture was extended with a theory on short-
term dynamics of memory retrieval. This way, the interaction between (long-term) repetition 
priming and (short-term) interference could be explained. Also, the model makes use of the 
timing of the different subprocesses that are controlled by the production rule system. Thus, 
the model makes use of the possibility to formulate a theory on task execution in terms of the 
cognitive architecture. 
    This synergistic advantage of the integration of RACE/A with a cognitive architecture will 
be further demonstrated in Experiment 2. Participants in Experiment 2 were asked to perform 
exactly the same two tasks as in Experiment 1. However, this time an extra condition is included 
in which the word names the picture. This condition will be referred to as the congruent 
condition. This relative minor manipulation has the potential to change the outcome of the 

Figure 2.14. Model fit for Experiment 1.
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task significantly. In the context of Experiment 1 it is assumed that the participants tried to 
minimize the processing of the words as much as possible, since in all conditions the word 
hampered task execution (that is, naming the picture). However, in Experiment 2 it might be 
beneficial to follow a different strategy, because in one third of the trials (the congruent trials), 
reading the word actually facilitates the correct answer. Because of the increased benefit of 
word processing as opposed to Experiment 1, more interference is predicted, which should be 
observable in a larger latency difference between the related and the unrelated condition.

Methods

  Participants
    22 students of the University of Groningen (mean age 22.2, 14 male, 8 female) took part 
in this experiment for course credit. All were native speakers of Dutch and had normal hearing 
and normal or corrected-to-normal vision. The participants that took part in Experiment 1 
were excluded from participation in Experiment 2.

  Stimuli
    The stimuli were the same as in Experiment 1, except that for the congruent condition, 
a third set of pwi-stimuli was created. The distractor words for these stimuli were the Dutch 
image descriptors.

  Design
    The design was the same as in Experiment 1.

  Procedure
    The procedure was the same as in Experiment 1. Due to the length of the experimental 
block (441 trials and three filler trials), the participants were allowed three breaks, after 25%, 
50%, and 75% of the trials.

Figure 2.15. (a) Model fit for Experiment 1, aggregated over repetitions. (b) Data of Experiment 1, aggregated over repetitions.
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Results

    Again, we excluded trials according to the following criteria: Responses that were more 
than three standard deviations from a participants’ mean were excluded (2.1% on the pwi 
stimulus, and 2.3% on the tone, respectively). Trials in which the responses were in the 
incorrect order were also excluded (5.3%). Overall, 7.7% of the trials were excluded. The 
data of Experiment 2 are presented in Figure 2.16b. Experiment 2 is analyzed analogous to 
Experiment 1. Thus, we fitted a linear mixed effects model with relatedness, PRP-SOA, and 
repetition as fixed effects and participant and picture as random effects. An ANOVA on the 
factors revealed that there were main effects of PRP-SOA level (β = -0.460; F(1, 8947) = 1192; p 
< 0.001), relatedness (βrelated = 408; βunrelated = 238; F(2, 8947) = 188; p < 0.001), and repetition (β 
= -22.0; F(1, 8947) = 315; p < 0.001). Repetition also interacted with the other factors (repetition 
times relatedness interaction: (βrepetition x related = -43.7; βrepetition x unrelated = -16.7; F(2,8947) = 9.23; p 
< 0.001 and repetition times PRP-SOA interaction: βrepetition x soa

 = -0.00586; F(1,8947) = 18.7; p < 
0.001) and there was a significant three-way interaction (βrepetition x soa x related = 0.0639; βrepetition x 

soa x unrelated = 0.0352; F(2,8947)=8.41; p<0.001). However, the main finding in Experiment 2 is that 
the PRP-SOA between tone presentation and pwi presentation does not have an effect on the 
interference effect size (PRP-SOA times relatedness interaction: F(2,8947) < 1).

Discussion

    The typical PRP speed-up is present, suggesting a correct operationalization of the PRP 
design and indicating the presence of “cognitive slack”. Therefore, the observation that the 
mean response latencies per relatedness condition differ at the shortest SOA (100 ms), suggests 
that the interference between distractor word and picture was longer than could be absorbed in 
the cognitive slack time. If participants process the word more often or to a higher level than in 
Experiment 1, the competition between conceptual representations will be stronger and hence 
the interference of the related words will be higher. However, it cannot simply be the case that 
the interference in the first stage of the process becomes larger. That would mean that for the 
long SOA level of 800 ms, the interference effect would become even larger, because with an 
SOA of 800 ms there is no cognitive slack time in which part of the interference can be resolved. 

Figure 2.16. Data from (a) Experiment 1 and (b) Experiment 2.

- Accumulators in context: an integrated theory of context effects on memory retrieval -



38

- CONTEXT EFFECTS ON MEMORY RETRIEVAL: THEORY AND APPLICATIONS -

Since the data show no interaction between interference and SOA, this simplest explanation 
does not seem likely. An explanation for this observation might be that the interference 
becomes more distributed over different stages of the task. The extended processing of the 
word does not only cause interference during the initial conceptual processing of the picture, 
but also during response stages. This explanation is in line with cascading models (Levelt, 
Roelofs, & Meyer, 1999; McClelland, 1979) in which activation from different stages spreads 
to each other, affecting processing later in the task. In this experiment, cascading activation 
means that the increased interference may partly be due to competition in the response stages, 
and is therefore not affected by the cognitive slack time, because the response is always after 
the delay. The cognitive model discussed below will demonstrate that one way of accounting 
for these effects is by assuming a different strategy than the one taken in Experiment 1.

Model of Experiment 2

    The model of Experiment 2 is the same as the model of Experiment 1, with the exception 
of the repetition priming mechanisms to keep the model tractable. The model performs the 
same task as in Experiment 1, but we assumed that participants in Experiment 2 were more 
likely to process the word than in Experiment 1. To account for this strategy, the model retrieves 
the lemma activation associated with the word stimulus upon word presentation. This differs 
from the strategy in the model of Experiment 1 in which the word was not actively retrieved 
and stored in the retrieval buffer until the response selection stage.
    If word and picture are congruent, this new strategy means that lemma information on 
the picture is already available when the model requires it. It can therefore directly continue 
with retrieving relevant wordform information. In this case, the model performs two steps 
in parallel (conceptual and lemma retrieval), which accounts for the faster responses in the 
congruent condition. However, if word and picture are not congruent (that is, in the related 
or unrelated condition), the model initially retrieves the incorrect lemma. The reason for 
this is that that lemma’s activation was increased by the presentation of the word, which 
spreads more activation than the picture. Thus, the incorrect lemma is much more activated 
than the correct lemma, which represents the picture. Next, the model retries to retrieve the 
correct lemma, this time excluding the previously retrieved lemma from the retrieval set. 
However, the incorrect lemma still spreads activation, mediated by the concept chunks, to 
other lemmas, increasing the relative decision boundary. Therefore, retrieval in the related 
condition is slower than in the unrelated condition. To validate that a different strategy has 
been adopted in Experiment 2 as compared to Experiment 1, we also ran a model without the 
reading strategy.

  Model results and discussion
    Figure 2.17b presents the fit of the model to Experiment 2 (Rmse = 74 ms). Similar to the 
empirical data, the model shows an increased interference effect at an PRP-SOA of 100ms as 
compared to Experiment 1. Also, the model shows the standard PRP effect.
    Figure 2.17a presents the model’s fit without the reading strategy on the previous 
experiment (Experiment 1, Rmse = 48 ms). Here, the model shows the dependence of the 
interference effect (the difference between the relatedness conditions) on the PRP-SOA 
between the tasks. If we calculate how well the no-reading-strategy model fits with Experiment 
2, we find a much worse fit (Rmse = 392ms). Likewise, if we compare latency predictions 
of the reading-strategy model of Experiment 2 with the data of Experiment 1, we also find 
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a worse fit (Rmse = 514ms, with congruent condition excluded). Thus, the two simulations 
combined show that in Experiment 1 participants are more likely to ignore the word as much 
as possible, whereas in Experiment 2 they are more likely to read the word upon presentation. 
This difference in strategy accounts for the difference in response latency patterns observed 
between Experiments 1 and 2.

General Discussion

Summary

    In this paper, we have provided a theory of context effects on declarative memory. The 
theory, called Retrieval by Accumulating Evidence in an Architecture or RACE/A makes three 
important assumptions. First, RACE/A assumes that memory retrieval is a dynamic process, 
in which the probability of retrieval of information is continuously updated. Second, RACE/A 
assumes that memory retrieval consists of a competitive process, in which potentially relevant 
pieces of information influence each other’s probability of retrieval. Third, RACE/A takes into 
consideration that memory retrievals are embedded in a larger cognitive system. Although 
architectures or models that share the first two assumptions are not uncommon, RACE/A is 
the first account in which the detailed accounts of memory retrieval are embedded in a larger 
cognitive system that enables explanations on all levels of processing. Thus, these three 
assumptions make it possible to account for a large range of phenomena with a single theory.
    First, RACE/A explains how latencies are a function of the distributed presentation of 
stimuli. Because the probability of retrieval is continuously updated, the cognitive system 
can adapt its retrieval process to new information that becomes available during the retrieval 
process (as in the pwi model), or adapt the retrieval process when information is no longer 
available (as in the masked priming model). 
    Second, RACE/A provides an explanation for interference effects found in the Stroop 
paradigm. The interference that exist between the target stimulus and the distractor 
stimulus is explained as a competition between chunks, in which both chunks related to the 
target stimulus and chunks related to the distractor stimulus accumulate activation, which 
results in lower Luce ratios and slower retrieval. Two major characteristics of the Stroop 
effect, the semantic gradient effect and the Stroop asymmetry, naturally follow from RACE/A. 

Figure 2.17. Model fits of Experiment 2. (a) The panel shows simulations of the model without reading the word upon presentation. 
The gray dotted line indicates the hypothetical condition in which word and picture are congruent. (b) Model fit of Experiment 2, with 
reading the word upon presentation.

- Accumulators in context: an integrated theory of context effects on memory retrieval -
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The semantic gradient effect refers to the finding that the degree with which a distractor is 
semantically related determines the size of the interference effect (Klein, 1964). For picture-
word interference this is apparent from the latency difference that exist between the related 
and unrelated distractors (see also Figure 2.8a and W. R. Glaser & Düngelhoff, 1984; Lupker, 
1979). In RACE/A, distractors that have a stronger relationship spread more activation towards 
each other, which leads to decreased Luce ratios and increased competition. In the pwi model 
and the repetition-priming model, this property of RACE/A explains the difference between the 
related and unrelated conditions.
    The asymmetry between word reading responses and color naming (or picture naming) 
responses that is present in the Stroop paradigm is explained by the different processing 
routes that are often hypothesized for words and pictures and colors (e.g., W. R. Glaser & 
Glaser, 1989; La Heij, Happel, & Mulder, 1990; Roelofs, 1992). Whereas naming colors or words 
requires retrieval of conceptual information from declarative memory, pronouncing a word 
can be done without access to the meaning of that word. Thus, the longer route for colors or 
pictures creates an asynchronous start of accumulation for the potential responses. As words 
are also processed faster than colors or pictures, the correct lemma is retrieved before the 
color or picture concept increases the activation of associated lemmas, effectively precluding 
any interference effects for word reading in Stroop or pwi tasks.
    The third class of phenomena that are accounted for by RACE/A relate to the interplay 
between long-term memory and short-term retrieval processes. Because in RACE/A memory 
retrievals are embedded in a general theory of cognition, RACE/A can explain the interference 
dynamics in complex experimental designs. For example, the different interference patterns 
that Experiment 1 and Experiment 2 provide is explained by assuming that participants use a 
different strategy in Experiment 2, which boosts the activation of the distractor in such a way 
that the interference is increased.

Why not just retrieval models?

    Many tasks can be thought of a sequence of declarative memory retrievals. For instance, 
word production can be thought of as a process in which the speaker first need to retrieve 
a message from memory, then lexical information, then morpho-phonological information 
finishing with a phonetic code (cf., Levelt, Roelofs, & Meyer, 1999). Each of these stages 
comprises one or more memory retrievals, that all influence each other. Moreover, when 
producing multiple words, each new word is influenced by the memory processes of the previous 
words. This is similar to a simple experiment with a sequence of trials, all of which comprise 
one or more memory processes. Often this results in (undesired) between-trial effects.
    A cognitive architecture provides a framework in which between-trial effects can be 
studied, because it provides a theory on how declarative memory processes interact – with 
each other as well as with other cognitive processes. In addition, the architecture provides a 
theory on the temporal dynamics of a task or a sequence of trials. For a theory in which memory 
retrieval is presented as an sequential sampling process with asynchronous retrieval onsets, 
such as RACE/A, this is a crucial feature, because it provides a validated basis for the starting 
point values of the sampling process. The benefits of an architecture become clear when 
examining the cognitive models developed for the experiments reported in this paper. The 
pwi model demonstrates that a competitive memory process as RACE/A proposes can account 
for the interference effects observed in typical pwi experiments. However, to account for the 
complex interference patterns observed in Experiments 1 and 2, it is necessary to incorporate 
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the repetition priming mechanism in the model. In addition, theories of cognitive control as 
well as visual and aural perception as well as of manual and vocal responses are necessary to 
provide a quantitative prediction of the response latencies in Experiments 1 and 2. 
    In contrast, consider a study of a lexical decision task that had been repeated over 5 
days, Dutilh et al. (in press; see also Wagenmakers, in press) found the typical speed-up in 
performance usually observed in practiced behavior. A diffusion model analysis of this task 
revealed that the speed-up could be attributed in part to the non-decision part of the response 
times. That is, the speed-up could be explained by processes other than the actual lexical 
decision, but rather by the perceptual or motor response processes that are also part of the 
task execution. We hypothesize that a RACE/A model analysis would have provided a similar 
result, but with RACE/A it would have been possible to theorize on the mechanism underlying 
the speed-up in non-decision time. One explanation would be that proceduralization of the 
motor responses would account for the speed-up. In RACE/A this process may be accounted 
for by production compilation (Taatgen & Anderson, 2002; Taatgen & Lee, 2003), in which 
multiple production rules are combined in one new one. This speeds up task execution because 
less production rules have to be selected in order to finish a trial.
    This example shows that integrating an accumulator model of memory retrieval in a 
cognitive architecture may enhance the explanations derived from the model. In this case, an 
extra explanation for why the non-decision time decreases might be provided. In the cognitive 
models of the experiments reported above, the architectural structure provides a theory of 
cognitive control (Altmann & Gray, 2008; Salvucci & Taatgen, 2008) , as well as theories on 
perception and action. While these theories may not be extremely detailed, they provide enough 
detail to understand memory and decision behavior in various task contexts (Gray, 2007a).

Why not just ACT-R?

    There have been previous attempts to model the Stroop effect in ACT-R (e.g., Altmann & 
Davidson, 2001; Juvina & Taatgen, 2009; Lovett, 2002, 2005). Thus, the question arises why 
a more detailed retrieval theory is needed in the first place. However, these models describe 
retrieval in a Stroop task as a ballistic process, with a retry-mechanism that checks if a retrieved 
chunk matches already retrieved information; If not, the retrieval is retried. Because words 
are processed faster than colors, the probability of an incorrect retrieval is highest if word and 
color do not match. If they do match, the response to the word is also the correct response, 
so no retry is required. Stroop interference is in this sense a function of the mean number 
of retrieval attempts before the correct answer has been retrieved. Although on average 
this may result in correct latency predictions, the predicted latency distributions essentially 
consist of a set of unimodal distributions, distributed around the time required to perform 
one retrieval, two retrievals, and so on, plus the time required for other processing steps. This 
does not seem to be a correct interpretation of the Stroop effect, since generally the latency 
distribution is considered to be unimodally (Heathcote, Popiel, & Mewhort, 1991).
    A previous more general solution to interference effects in ACT-R is competitive latency. In 
this account, the predicted retrieval time is scaled according to the activation of competitors. 
If there are multiple competitors or relatively active competitors, retrieval times are decreased 
(Equation 2.7).

		  (equation 2.7)
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    While in some situations this equation may give an accurate prediction of response time 
(e.g, Van Rijn & Anderson, 2003), there are some modeling-technical difficulties. However, the 
competitive latency equation remains a ballistic model of response time and is therefore not 
able to account for the kind of interference effect that we address in this paper. Similar to the 
default latency prediction in ACT-R (Equation 2.3), this model cannot account for the effects of 
asynchronously presented stimuli or masked stimuli. 

Implications for the Stroop effect and picture-word interference

    The PRP paradigm has been used to elucidate the mechanisms underlying the Stroop effect 
and picture-word interference (Dell’Acqua et al., 2007; Fagot & Pashler, 1992; Van Maanen, 
Van Rijn, & Borst, submitted). Fagot and Pashler (1992) performed a similar experiment as 
the Experiment 1 reported above, but instead of a picture-word interference task they used a 
Stroop task. In their experiment, participants were requested to classify a tone as either high 
or low and subsequently name the color of a Stroop stimulus. Fagot and Pashler tested two 
Stroop conditions, a congruent one in which word and color refer to the same color concept, 
and an incongruent one in which word and color refer to different color concepts. To remain 
consistent with our terminology, we will refer to this second condition as the related condition. 
The results of this experiment show that the difference between the congruent and related 
condition (the Stroop interference) is not dependent on the PRP-SOA between the tone onset 
and the Stroop stimulus onset. Assuming a central processing bottleneck (Pashler, 1994) or 
a cognitive control structure (Meyer & Kieras, 1997b; Salvucci & Taatgen, 2008), this result 
suggests that interference in a Stroop task takes place after the bottleneck stage, because 
otherwise the interference would have been absorbed in the cognitive slack time at small 
PRP-SOAs. This result is different from Experiment 1 as well as from (Dell’Acqua et al., 2007), 
were interference was found to be affected by PRP-SOA, suggesting that interference in pwi is 
absorbed in the cognitive slack time.
    Dell’Acqua et al. argue that this difference between pwi and Stroop (absorption in 
cognitive slack time versus no absorption in cognitive slack time) is an indication that the 
mechanism that causes Stroop interference differs from the mechanism that causes picture-
word interference (but see Van Maanen, Van Rijn, & Borst, submitted, for another interpretation 
of these results). However, the pwi conditions contrasted in our Experiment 1 and in the 
Dell’Acqua study are the related and the unrelated conditions, whereas the Fagot and Pashler 
(1992) study contrasts the related and the congruent conditions. Experiment 2 provides a new 
perspective on this discussion, because here a congruent pwi condition is included. Given that 
in Experiment 2 the difference between the congruent and related condition was not mediated 
by PRP-SOA, we might conclude that the difference between picture-word interference and 
Stroop was a difference in task conditions, and not caused by a different processing stage. 
However, this conclusion is still speculative, since Experiment 2 included a third condition as 
well. As our experiments demonstrate, the latency patterns in PRP experiments depend on the 
participants’ expectations as much as on constraints on cognitive processing.
    RACE/A shows that an accumulator model in the context of a cognitive architecture 
provides accurate latency predictions, that can account for the interactions that exist between 
competitive processes in memory retrieval, long-term learning effects, and cognitive control. 
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Introduction

  In the previous chapter Retrieval by ACcumulating Evidence in an Architecture (RACE/A) 
was introduced. This theory is aimed at explaining competitive effects during memory 
retrieval. The competition between different memory traces is evoked by association between 
the competing traces. Thus, if two traces spread activation to each other and they are both 
possible candidates for a particular retrieval from memory, they will compete for retrieval.
Competition in memory retrieval seems to be ubiquitous in behavior. For example, every 
decision one makes based on previous knowledge involves memory retrieval. To demonstrate 
that many interference phenomena are competitive effects in memory retrieval, we will discuss 
a series of different experiments in this chapter that show the breadth of RACE/A. The most 
obvious effects that RACE/A should account for are effects in lexical decision. The accumulator 
models on which RACE/A is inspired are often intended at lexical decision experiments (e.g., 
Wagenmakers et al., 2008). We will first shortly introduce the RACE/A model of lexical decision 
(Section 3.1), and then elaborate on two RACE/A models that account for competitive effects 
that are less straightforward. These are the asynchronous presentation of stimuli (Section 3.2) 
and the masked or subliminal priming paradigm (Section 3.3).
    If the onset of stimulus presentation is asynchronous, the interference effects that 
stimuli have on each other is a function of the onset asynchrony. That is, the closer the stimuli 
are presented in time, the more effect there is. For example, in picture-word interference, in 
which participants are required to name a picture, while ignoring a word that is presented at 
an asynchronous onset (either before or after the picture), the effect size is correlated with 
the onset (but not monotonically, see Section 3.1 and W. R. Glaser & Düngelhoff, 1984). While 
this effect is something that may be studied in a regular accumulator model, the architectural 
foundation of RACE/A provides a theoretical framework for the onset timing of the various 
memory retrievals that play a role in the picture-word interference paradigm.
    If the presentation of a stimulus is only present temporary, such as if the stimulus is 
masked (e.g., Marcel, 1983) or in a signal-to-respond paradigm (e.g., Wagenmakers et al., 
2004a), than the effect size of interference effects is also affected. The model in Section 
3.3 describes this situation. The model fits data from a Stroop task in which the words are 
presented subliminally. That is, the words are presented for such a short time that participants 
report not being aware of the presence or absence of the word. The color patches on which 
they have to respond are continuously present. Smaller Stroop effects than in the default 
experiment are found under these conditions (Marcel, 1983), which is explained by RACE/A by 
less time to accumulate activation for the word, resulting in a higher Luce ratio for the color.

Evaluation of the RACE/A 
Integrated Model of Memory Retrieval

- Evaluation of the RACE/A Integrated Model of Memory Retrieval -
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A RACE/A model of Lexical Decision

    In lexical decision, participants are presented with a letter string and are required to 
indicate whether the string forms a correct word (e.g., BALK for Dutch or CREAM for English) 
or not (e.g., BALC and CEARM). Lexical decision is often ascribed to a sampling process in 
which evidence for the hypothesis that the letter string is a word is sampled, until a threshold 
has been reached. If the threshold is reached, the participant will provide a “word” response. 
If a certain fixed amount of time (a deadline) has passed, the participant will respond “non-
word” (e.g., Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001; Grainger & Jacobs, 1996). These 
models can be interpreted as a serial search of memory for a word matching the letter string.
    Contrary to these deadline models, in the RACE/A model of lexical decision, the non-word 
responses are driven by an extra accumulator that samples the likelihood that the current 
letter string is not a word. This means that when time passes, the likelihood of a non-word 
response increases. If the Luce ratio of the non-word crosses the decision boundary (as 
discussed in Chapter 2), the model responds with a non-word response. If the Luce ratio of 
the word-response crosses the decision boundary, the model responds “word”.
    Because the drift rate in the model is determined by the familiarity of the word (in case 
of “word” responses), words that have a high frequency of occurrence in natural language are 
recognized faster, resulting in faster responses. Figure 3.1 presents the fit of the lexical decision 
model on data from an experiment by Glanzer and Ehrenreich (1979). In the experiment, 
Glanzer and Ehrenreich studied the difference in response time between high frequent and 
low frequent words, as well as the response time associated with non-word responses. 
They found that on average, participants respond faster on high frequent words than on low 
frequent words, and slowest to non-words. 

    The model accounts for the basic lexical decision word frequency effect by assuming 
higher base-level activation values for high frequent than for low frequent words. This results 
in a faster decision process, and therefore shorter response times.
    The model is very straightforward and in line with previous accumulator models of lexical 
decision (e.g., Brown & Heathcote, 2008; Ratcliff, Gomez, & McKoon, 2004; Wagenmakers et al., 
2008; Wagenmakers et al., 2004a), but it accounts for an extra finding that most accumulator 
models of lexical decision cannot explain (but for an exception see, Wagenmakers et al., 2008). 

Figure 3.1. Fit of the lexical decision model to a 
data set by Glanzer and Ehrenreich (1979). HF: 
High frequent words; LF: Low frequent words; 
NW: non-word letter strings.
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If the stimuli are words that are very infrequent, that is, word that are extremely rare in natural 
language use, then participants remain able to accurately respond to these, but at a significant 
time cost: The average response time under these conditions exceeds the average response 
time for non-word responses (Wagenmakers et al., 2008). Models that incorporate a strict 
deadline for the accumulation process fall short here, because these would assume that the 
non-word responses are only given if the word search has terminated. Therefore, the mean 
latency of non-word responses is predicted not to exceed the mean latency of correct word 
responses. These model predictions are not in agreement with Wagenmakers et al.’s findings.
    The RACE/A model of lexical decision does account for the effects found by Wagenmakers 
et al. (2008). In the RACE/A model, the probability of not retrieving a word accumulates, 
similar to the probabilities of finding a particular word. Because the decision on what to 
retrieve from memory depends on the Luce ratios of the words and the non-word representation, 
the response latency for very low frequent (Vlf) words can be extended beyond the average 
non-word response time. In case of a Vlf trial, the memory trace of the Vlf word accumulates 
very slowly, but so does the non-word representation. The Luce ratio of the Vlf word 
increments thus very slowly, increasing the decision time. In case of a non-word trial, only the 
non-word representation accumulates. Because no word representations (including the Vlf 
word) interfere, the decision time may be shorter than on Vlf trials (and so is the latency). By 
contrast, the non-word decision time is longer than the decision time for words that are more 
frequent. For these words, the decision time is fast because the accrual rate is much higher 
than the accrual rate of the non-word representation. Figure 3.2 presents the fit of the model 
on the data from Wagenmakers et al. (2008). Besides the median latency, the model also 
captures the latency distributions to some extent, as indicated by the plotted quantiles. 

Figure 3.2. Fit of the lexical decision model to a data set of Wagenmakers et al. (2008). The figure shows the 10%, 30%, 50% (black 
markings), 70%, and 90% quantiles of the latency distributions. HF: High frequent words; LF: Low frequent words; VLF: Very low 
frequent words; NW: non-word letter strings.

- Evaluation of the RACE/A Integrated Model of Memory Retrieval -
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A Model of Stimulus Onset Asynchronies in Picture-Word Interference

Introduction

    Often, symbolic models of cognition can be thought of as giving a stroboscopic account of 
cognition. By illuminating a process such as a movement with a stroboscope, the movement 
is sliced into discrete steps that together represent the original, continuous, movement. 
However, information about the movement is lost when the stroboscope does not flash, and 
an observer will not be aware of how the movement develops during these brief flash intervals. 
Similarly, symbolic models of cognition reflect a continuous cognitive process on a higher level 
of analysis, but on a lower level of analysis, analogous to a single flash of the stroboscope, these 
models provide a discrete account of that process. In most cases, interpreting the higher level 
of analysis as a continuous process is sufficient for understanding cognitive functioning, but in 
some tasks, the underlying discrete account might provide a misinterpretation of the process. 
    As a general example of such a task, consider the way retrieval of memory chunks is 
modeled in the ACT-R architecture of cognition (Anderson et al., 2004; Anderson & Lebiere, 
1998). Retrieval latency is based on the activation of the to-be-retrieved memory chunk:
	              (equation 3.1)

    Equation 3.1 states that the retrieval time (RT) of a chunk (i) is inversely proportional 
to the exponentionally scaled activation of that chunk (Ai), with F a scaling parameter. If a 
retrieval request is made to the declarative memory system, the activations of all chunks are 
compared, and the highest is selected for retrieval. The latency is calculated according to the 
above equation and, after the appropriate amount of time has passed, retrieval of that chunk 
is reported. Even if new information is presented between the retrieval request and the actual 
retrieval, the retrieval result and latency cannot be influenced.
    However, many experiments show that information that is presented shortly before or 
after a target stimulus can influence both the timing and accuracy of the task at hand (e.g., 
MacLeod, 1991; Neely, 1991). In a picture-word interference task for example, participants 
respond slower in the picture-naming task when a distractor word is presented, even if that 
distractor word is presented shortly after the target stimulus.
    Since ACT-R has been successfully applied to numerous memory related tasks (e.g., 
Anderson et al., 1998; Pavlik & Anderson, 2005; Taatgen & Anderson, 2002), it should also 
provide an explanation of picture-word interference phenomena. However, given the ballistic 
nature of the way memory retrieval is currently modeled in ACT-R, the question becomes how 
ACT-R can be extended to include interference phenomena on very short latencies. In this 
paper, we will present a means to extend the ACT-R architecture of cognition to incorporate 
these interference effects. While we extended the memory system of ACT-R, we have made 
sure that the main characteristics of the tested and proven declarative memory equations 
were not altered. This way, we made sure that our approach towards semantic interference 
fits in with a broader theory of cognition, while at the same time we add a new phenomenon 
to the subset of cognition that ACT-R can account for. 
    A candidate explanation for semantic interference effects comes from the field of choice 
behavior modeling. In sequential sampling models of simple choice behavior, the choice 
between candidates is modeled by competition between candidates. Sequential sampling is 
based on the idea that choosing one option over the other is based on sampling of inherently 
noisy neural representations of these choices, until one has sampled enough evidence to 
be chosen (Ratcliff & Smith, 2004). The RACE (Retrieval by ACcumulating Evidence) model 

RT = Fe−Aii
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presented in this chapter is very similar to a specific instance of sequential sampling models: 
The leaky competing accumulator model as discussed by Usher and McClelland (2001).
RACE is implemented using the same basic principles as the leaky competing accumulator 
model: (a) it consists of a set of non-linear stochastic accumulators, all of which represent 
one memory chunk that can be retrieved. (b) The activations of the accumulator units are 
increased by external input and recurrent activation, but are decreased by lateral inhibition 
and decay. However, the actual implementation of some aspects differs, most importantly 
different activation and evidence accumulator functions, both of which have been adapted to 
fit RACE in the ACT-R framework. 

RACE Architecture

    The name RACE (Retrieval by ACcumulating Evidence) reflects both the accumulation of 
evidence for memory representations and the competition between memory chunks during 
retrieval: The comparison with a race between chunks seems appropriate in this respect.
The activation levels of memory chunks in RACE consist of two components: A long-term 
component that governs the global activation of chunks and a short-term component that 
comes into play during the retrieval process. The long-term component is represented by the 
ACT-R base-level activation equation (Anderson et al., 2004):

Bi = ln t j−d
j=1
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		   (equation 3.2)

where tj is the time since the jth presentation of a memory chunk and d is the parameter that 
controls decay, which is fixed at 0.5, as is common practice for ACT-R models (Anderson et 
al., 2004). The idea is that memory decays over time unless attention is shifted to a memory 
chunk and its activation is strengthened.
    RACE’s short-term component, called accumulated activation (Ci, to avoid confusion with 
the general symbol for activation Ai used in ACT-R), is continuously computed from the moment 
that a request for retrieval of a chunk is made. The accumulated activation of chunks changes 
as a consequence of positive and negative influences from other chunks. Chunks from the 
same chunk type inhibit each other, thereby competing for accumulated activation increase. 
Chunks of different chunk types excitate each other, spreading their activation in the classical 
sense (Collins & Loftus, 1975). Thus, by continuously updating positive and negative spreading 
activation, some chunks may reach a level of activation at which retrieval can take place.
    The accumulated activation can be described as a system of two dependent equations 
(Equations 3.3 and 3.4 presented below). As stated earlier, these equations incorporate 
the basic assumptions of Usher and McClelland (2001), but are adapted to fit in the ACT-R 
framework. 

Ei
k (t) = eA j (t−1)

j∉k
∑ S ji − eAl (t−1)

l∉k
∑ Sli 						    

				    (equation 3.3)

    The system functions as follows: At every time step, positive associative values (reflected 
by the first term of Equation 3.3) and negative associative values (second term of Equation 3.3) 
towards a memory chunk are computed and the difference is calculated. This is called the net 
evidence (Ei

k(t)) of chunk i of chunk type k at a certain time t. Since relative - not absolute – 
activation values are what count in ACT-R, an exponential scaling is applied to calculate net 
evidence. Also, both positive and negative associative values are weighted by the associative 
strengths (Sji and Sli) that exist between sources of activation and the chunk i. There are two 
types of sources of activation in RACE: Chunks (l in Equation 3.3) of the same chunk type (k) 
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spread negative activation to each other, while chunks (j) of different types spread positive 
activation. This is analogous to neurobiological findings from which it is clear that lateral 
inhibition between cortical representations of visual stimuli (Kastner, De Weerd, Desimone, 
& Ungerleider, 1998) as well as excitatory projections to other cortical layers (Callaway, 1998) 
exist. Note that most ACT-R models do not place constraints on the functional role of chunk 
types (although it does pay a role in production compilation, Taatgen, 2005).
Ci(t) = Ci(t −1) + eβEi (t )−1 − d acc ⋅ lnT 	 (equation 3.4)

    At each point in time, the net evidence determines the accumulated activation growth 
(Equation 3.4). Accumulated activation increases exponentially according to the amount of 
net evidence and a scaling factor β. If net evidence is negative (that is, more inhibition than 
excitation), then growth is negative. At all time steps, evidence decays with Ci(t) = Ci(t −1) + eβEi (t )−1 − d acc ⋅ lnT  
(represented by the second term of Equation 3.4), in which T is the time since the start of the 
accumulation and dacc a decay parameter. This way, accumulation decay in RACE resembles 
decay in the ACT-R optimized learning equation (Anderson & Lebiere, 1998).
    The activation of a chunk at any time is the sum of base-level and accumulated activation, 
plus a small normally distributed noise sample. A chunk is retrieved if this total activation 
crosses the accumulation threshold.5 The retrieval latency is defined as the time between 
the retrieval request and the time that the total activation of a matching chunk reaches this 
accumulation threshold.
    If no evidence is sampled, accumulated activation decreases because of decay. Therefore, 
continuous evidence-based positive reinforcement is necessary for successful retrieval, and 
absence of positive evidence results in prolonged retrieval latencies or retrieval failures.

Picture-Word Interference

    One of the most well-known experimental paradigms in cognitive psychology is the 
Stroop-task (Dyer, 1973; Stroop, 1935), where, in the original setup, participants have to either 
name the color a word is written in, or read the word, which is always a color name. It turns 
out that naming the color is much more difficult than reading the word – especially if color 
and word of a single stimulus do not correspond – as is reflected in increased reaction times 
and decreased accuracy in the color naming condition. The Stroop-task can be regarded as 
an instance of a more general class of experiments that demonstrate interference effects in 
various naming tasks between pictorial stimuli and word-form stimuli. These experiments 
are generally called picture-word interference experiments (W. R. Glaser & Düngelhoff, 1984; 
MacLeod, 1991). In the case of the Stroop-task, the pictorial stimulus is the word color.
    We tested the RACE model in a picture-word interference task, using two tasks and 
four different conditions, similar to the experimental setup in Glaser and Düngelhoff (1984, 
Experiment 1). One task consisted of reading a word (target stimulus) while a picture is 
presented as distractor; the other task consisted of naming the depicted item (target stimulus), 
while a word is presented (distractor). In both tasks, the distractors were presented at different 
SOAs (Stimulus Onset Asynchronies). If a distractor was presented at a negative SOA, it was 
presented before the target stimulus. At positive SOAs, the distractor was presented after 
the target stimulus. Figure 3.3 presents stimuli examples of the different conditions. The 
first condition (Figure 3.3a) was one in which both target and distractor stimulus refer to the 
same concept. This is referred to as the concept-congruent condition. In two other conditions, 
target and distractor stimulus refer to different concepts. In the category-congruent condition 
the concepts belong to the same semantic category (e.g., a picture of a house and the word 
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church were presented, Figure 3.3b), in the incongruent condition the concepts do not belong 
to the same semantic category (e.g., a picture of a house versus the word cat, Figure 3.3c). 
In the neutral condition the target stimuli were accompanied by non-word or non-picture 
distractors, respectively, to minimize the amount of processing of the distractor stimulus 
(Figure 3.3d and 3.3e).
    Glaser and Düngelhoff (1984) found that interference is highest in the category-congruent 
condition, which is known as the semantic gradient effect. They also showed facilitation in 
the concept-congruent condition, meaning that latency is decreased when both target and 
distractor stimuli refer to the same concept. A third effect they report is a clear asymmetry 
between the picture naming task and the word reading task. The semantic gradient and 
facilitatory effect virtually disappear in the word reading task, but they are prominent in the 
picture-naming task.

Picture-Word Interference Model

    We will begin our discussion of the picture-word interference model with a review of the 
weaver++ model of speech production (Levelt, Roelofs, & Meyer, 1999). weaver++ is similar 
to RACE in some ways, but lacks the integration in a cognitive architecture that we provide. 
weaver++ has a similar memory structure as RACE, and a similar activation accumulation 
mechanism as RACE. In weaver++ however, it remains unclear how the model is connected 
with other aspects of cognition besides language production. Although weaver++ and previous 
versions of that theory have been demonstrated to fit an impressive number of data sets (e.g., 
Levelt, Roelofs, & Meyer, 1999; Roelofs, 1992, 1997, 2003), it lacks a unified account of cognition, 
that for instance ACT-R does provide. RACE’s integration in the ACT-R framework ensures that 
our account can be naturally integrated in models of other aspects of cognition. One example 
of this is the subliminal priming model described by Van Maanen and Van Rijn (2007a).
    Word production in weaver++ goes through a sequence of stages, one of which is the 
retrieval of the to-be-spoken word from semantic memory. In weaver++ this response 
selection stage (choosing a lemma) is followed by response programming and execution 
stages. Since our focus has been on the retrieval process, these vocalization aspects of the 
task are not included in our model of picture-word interference. The RACE mechanism is 
similar to the mechanism proposed for the lexical selection stage in weaver++ (1992).
    The lexical processing stage from weaver++ is modeled as follows: A network of 
conceptual nodes is connected to a network of lemma nodes. The conceptual nodes convey 
meanings, and are connected with labeled links. For instance, The concept DOG(X) represents 
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Concept-congruent condition, (b) 
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neutral condition in picture naming. 
The example images are taken 
from the image set by Rossion and 
Pourtois (2004).
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the meaning of the noun dog, and has a labeled connection of the type IS-A to the concept 
node ANIMAL(X), indicating that a dog is an animal (Roelofs, 1992). The nodes in the lemma 
network represent the syntactical dependencies of the concept nodes. Each lemma node 
has a labeled SENSE link to the corresponding concept node, labeled links to syntactic 
properties – grammatical gender, syntactic category. The links between concept nodes and 
between concept and lemma nodes differ in their connection strength, indicating a difference 
in accessibility. Via a spreading activation mechanism, activation of one node influences 
activation of neighboring nodes. Activation is also mediated by decay.
    If the ratio of the activation of one lemma node against the activations of the others exceeds 
a predefined (relative) criterion, selection of that lemma node takes place, and weaver++ will 
proceed with the retrieval of the morpho-phonological properties of that lemma.

    Analogous to weaver++, our model of picture-word interference comprises three chunk 
types (Figure 3.4): Icons, lemmas, and concepts. The concept chunks can be regarded as 
representations of semantic properties. Chunks of the icon type represent iconographic 
instances of the stimuli. This might be similar to Roelofs (1992) object-form memory store. 
Chunks of the lemma type can be regarded as sets of both orthographic and syntactic 
properties of a word. Note that this is a simplification of Roelofs’ (1992) model, in which the 
response selection stage (choosing a lemma) is followed by response programming and 
execution stages. Since our focus is on the retrieval process, these vocalization aspects of the 
task are not included in our model of picture-word interference. 
    Positive activation is spread between chunks of different types. That is, icons spread to 
concepts and vice versa, and lemmas spread to concepts and vice versa. As in Roelofs’ (1992) model, 
no direct spreading activation was allowed between lemmas and icons. The concept chunks also 
have negative associations between them and spread negative activation to each other.
    At different SOAs, distractor stimuli were presented to the model, except in the neutral 
condition in which only a target stimulus was presented. We tested the same four conditions 
as Glaser and Düngelhoff (1984) did. The only deviation from the original experiment was the 
neutral condition: Glaser and Düngelhoff presented the participants with a non-word distractor 
and a non-picture distractor respectively in the picture naming and word reading neutral 
condition. As said, these were chosen in such a way as to minimize the amount of picture or word 

Figure 3.4. Processing route for pictures and words in 
the picture-word interference model. The route for 
words is shorter, since words do not require concept 
retrieval. Interference takes place between concept 
type chunks.

6. An R implementation of 
RACE and the picture-word 
interference model can be 
retrieved from http://www.
ai.rug.nl/cogmod/models.
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processing as possible. Assuming a successful operationalization by Glaser and Düngelhoff, we 
simulated this condition by not presenting a distractor in the neutral condition.
    In the concept-congruent condition, the distractor consisted of a word stimulus referring 
to the same concept as the target, but of a different stimulus type (as in Figure 3.3a). When 
activation spreads through the model, both distractor and target activate the same chunks, 
but not in the same order. The word will activate its associated lemma directly, whereas the 
picture will first activate the associated icon and concept chunks. In the category-congruent 
condition and the incongruent condition, the distractor and the target refer to different 
concepts. However, in the category-congruent condition, associations between chunks 
representing these concepts exist, reflecting the fact that the target and distractor stimuli 
belong to the same semantic category.
    The distractors were presented at SOA times relative to the onset of the target stimulus 
of -400, -300, -200, -100, 0, +100, +200, +300, and +400ms, similar to the original Glaser 
and Düngelhoff experiment. The stimuli presentations were modeled as a fixed increase in 
activation of the lemma or icon type chunks during the period that a stimulus was presented.
    Since the task was a verbalization of either the picture name or the word, a trial was 
finished when the stimulus-designated lemma was retrieved or after two seconds, indicating 
a retrieval failure.

    In the picture naming task, the model predicts the following behavior: In the concept-
congruent condition with negative SOAs, a distractor word is presented before the target 
picture. The word activates a lemma chunk, which increases the activation of the associated 
concept chunks, but inhibits the activation increase of other lemma chunks. The higher 
activation of the concept chunks increases the activation of the associated icon chunks. 
Thus, after the distractor is presented, all chunks that are involved in naming the picture 
(one icon, one concept, and one lemma chunk) have an increased activation. When the target 
is presented, all concept-congruent chunks have a higher activation as compared to the 
stimulus onset in the neutral condition, and thus a shorter retrieval latency. In the concept-
congruent condition with positive SOAs, the same process occurs, but to a lesser extent since 
the distractor lemma’s activation has less time to influence the activation of the target lemma 
before it is retrieved: The picture has already increased the target lemma’s activation before 
the word is presented.
    In the incongruent and category-congruent conditions (both at negative and positive 
SOAs), the activation of the chunks that are activated by the distractor interferes with the 
activation of the chunks that are activated by the target, because the target and the distractor 
stimulus activate different sets of chunks.

Results

    Figure 3.5 summarizes the results of our simulation studies.6 The figure represents the 
latency differences in different conditions relative to the neutral condition. Since the focus 
of our model is on the retrieval part of the picture naming and word reading tasks, we can 
compare the latency differences between the different conditions from the model to the data. 
The observed latencies from the data set also comprise timing effects from other subtasks, 
such as pronunciation or perceptual encoding.
    Negative values in Figure 3.5 indicate faster retrievals than in the neutral condition, and 
positive values indicate slower retrieval than in the neutral condition. The qualitative effects 
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observed in Glaser and Düngelhoff (1984 Experiment 1) can be seen in the predicted latency 
differences from the RACE model. The semantic gradient effect can be observed by noting the 
different relative latencies of the category-congruent and incongruent conditions. The higher 
latencies in the category-congruent condition compared to the incongruent condition indicate 
that higher associations between concepts result in stronger inhibition.
    The facilitatory effect in the picture-naming task is also apparent, although the effect 
appears to be too large. Our explanation for this increased effect is that the activation of the 
target lemma chunk is too high if the target stimulus is presented, probably caused by too little 
decay after the previous retrieval initiated by the distractor stimulus. Another consideration 
might be that the base-level activation goes to near infinity directly following a retrieval, thus 
causing too much increase in activation of the target lemma chunk. This may also explain the 
observed effect in the simulation of the word-reading task. Thus, it seems that the base-level 
activation may not be a good measure of the level of activation of a chunk at these short time 
intervals. Because RACE is intended as an extension of the ACT-R framework, it did not seem 
appropriate to change the way in which the global, long-term activation is computed.
    When comparing the differences between the two simulated tasks (picture naming and 
word reading), the asymmetry observed by Glaser and Düngelhoff is also shown by RACE. We 
explain this asymmetry by two effects: The shorter processing route and the faster encoding 
of word type stimuli. As Roelofs (W. R. Glaser & Glaser, 1989; La Heij, Happel, & Mulder, 1990; 
1992) noted, pronouncing words does not require retrieving a concept from memory, therefore 
processing word type stimuli can be much faster than processing pictorial stimuli. In Figure 
3.3 it can be seen that the route in our model from a picture to the associated lemma is much 
longer than from the word to the associated lemma: Two intermediate steps have to be taken 
(that is, processing of icon chunks and processing of concept chunks), before the lemma 
chunk is retrieved. Thus, potentially interfering pictures do not activate lemma chunks before 
the target lemma is retrieved. Only at high negative SOAs an effect can be seen (Figure 3.5), 
because under that condition there is enough time for the distractor stimulus to activate the 
inhibiting distractor lemma and interfere with retrieval of the target lemma.
    A difference in encoding speed is incorporated to account for the observation that word 
recognition is an automated process and picture recognition is not. Without this difference, 
the model processes pictures nearly as fast as words, and picture naming in the incongruent 
condition is as fast as in the neutral condition. The faster encoding of words reinforces the 

Figure 3.5. Simulation results and experimental data (Glaser & Düngelhoff, 1984, Experiment 1) for the picture naming task and the 
word reading task.
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effect that the lemma associated with a word is processed before the lemma associated with 
the picture stimulus is retrieved.

Discussion

    We have shown that a sequential sampling model can account for the time course 
of memory retrieval during asynchronously presented stimuli. This is an extension of the 
results from Usher and McClelland (2001) in which they only investigated accumulators with 
equal onset times. Moreover, RACE can be regarded as an extension of the ACT-R theory of 
cognition. It combines the long-term base-level activation equation of ACT-R with a short-
term accumulated activation used for retrieval. Race replaces the retrieval mechanism in 
ACT-R represented by Equation 3.1.
    The general fit of our model of picture-word interference is quite reasonable, thereby 
indicating that the RACE equations can provide for semantic interference effect in memory 
retrieval. Retrieval in the concept-congruent condition seems to be too fast, however. We 
hypothesize that this is a result of the way we modeled the global, long-term activation 
component, namely by using ACT-R’s base-level activation equation. Because in the concept-
congruent condition the target and distractor stimuli both refer to the same chunks, retrieval 
of these chunks - caused by the distractor stimulus - increases their base-level activations. 
The high activation of these chunks will result in a very short latency for the retrieval caused 
by the target stimulus. It seems that the base-level activation equation is a better predictor 
of activation at slightly larger time scales, when the retrievals are more spaced. This is 
supported by the observation that retrievals in most ACT-R models are temporally more 
separated than ~100ms. Further research in the interaction between the base-level activation 
and accumulated activation seems necessary to correct for the fast retrievals in the concept-
congruent condition.
    Also, our model accounts for facilitatory effects. In line with the findings from Glaser and 
Düngelhoff (1984), RACE predicts that semantic facilitation occurs if target and distractor both 
refer to the same concept. 

    In the past, ACT-R models of semantic interference effects have been proposed (Altmann 
& Davidson, 2001; Lovett, 2002, 2005). The wact model (Altmann & Davidson, 2001) seems 
similar to RACE at first sight, since it combines ACT-R with insights from the weaver++ model. 
However, wact describes retrieval in a Stroop task as ballistic, but with a retry-mechanism that 
checks if a retrieved lemma chunk matches already retrieved conceptual information; If not, 
retrieval is retried. Thus, wact accounts for inhibitory effects by multiple retrievals caused by 
retrieval failures. As such, wact is a perfect example of a stroboscopic account of cognition. 
Retrieval latency for one trial can be the latency associated to one retrieval attempt, or two 
retrieval attempts, or many, but nothing in between. Therefore, the distribution of reaction 
times predicted by wact is clustered around the time it takes for one or multiple retrieval 
attempts. This does not correspond with the general assumption that participants’ reaction 
times in the Stroop-task are unimodally distributed (Heathcote, Popiel, & Mewhort, 1991).
    Njamos (Lovett, 2002, 2005) is an ACT-R model of the Stroop task that theorizes that 
the Stroop effects are due to utility differences in the production rules for word and picture 
recognition. In the model, a general production rule is assumed that fires if a stimulus is 
present that has some word-like qualities, irrespective of the current task (color naming or 
reading). In addition, a more specific production rule is assumed that only fires if the task is 
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color naming. The second rule has a lower utility than the first, meaning that the system has a 
preference to execute the first rule over the second. Therefore, in most cases (because of noise 
over the utility values), the second rule will only be selected after the first production has fired. 
In those cases the first rule has not completed the task successfully, because the task was 
color naming, not word reading. The second rule thus has to fire to complete the task. This 
two-step procedure for color naming is intended to explain the Stroop asynchrony between 
reading and color naming.
    If the color and the word are congruent, the chunk that encodes the word-like features 
of the stimulus spreads activation to the chunk that encodes the color information. The 
activation of that chunk will increase, resulting in the facilitatory effect at negative SOAs. 
In the incongruent condition, negative spreading activation is introduced to explain the 
interference effects.7

    At small positive SOAs (e.g., +100ms), njamos also predicts a divergence between the 
latencies for different conditions, although smaller than that observed in the data (Lovett, 
2002). Given the ballistic retrieval latency equation of ACT-R, it seems that these latencies 
can only be explained by averaging over several trials. That is, either one (the general rule) or 
two production rules (both general and specific) will fire, resulting in a bimodal distribution of 
the data. Again, the distribution of the Stroop-latencies does not seem bimodal (Heathcote, 
Popiel, & Mewhort, 1991).
    We suggest that not fully processed words at small positive SOAs might explain this 
difference between model and data. Perhaps a combination of the utility-based explanation 
Lovett proposes combined with RACE will produce a better fit to the data.
    The picture-word interference experiment shows that the RACE model can be a useful 
extension of the ACT-R architecture of cognition. However, one crucial feature of RACE is 
not supported by the ACT-R architecture. In RACE, all chunks in declarative memory spread 
activation to all other chunks. ACT-R assumes that only chunks that are presently in the buffers 
spread their activation (Anderson et al., 2004).8 Global spreading-activation was not included 
in the architecture because it appeared that no second-order priming effect exists, indicating 
that spreading of activation through declarative memory was not necessary (Anderson, 1990). 
However, more recent evidence suggest a second-order priming effect, although very weak, 
that cannot be explained by assuming only first-order associations between prime and stimulus 
(Livesay & Burgess, 1998). Therefore, we consider this deviation of ACT-R theory reasonable.
    Experiments using subliminal primes indicate that priming may also occur when a prime 
is not fully processed (Marcel, 1983; Merikle, Smilek, & Eastwood, 2001), which hints that 
priming already occurs before chunks in the buffers are fully identified. A dynamical activation 
mechanism such as RACE may provide accurate modeling accounts for this observation. In 
RACE, activation of chunks – either in the buffers or in declarative memory – always affects 
the activation of other chunks, even before the accumulation threshold is reached and a chunk 
might be retrieved. A RACE model of a subliminal priming task has been shown to account for 
retrieval latencies typically observed in these kinds of tasks (Van Maanen & Van Rijn, 2007a).
    This section demonstrates how RACE can account for picture-word interference 
phenomena. We believe that RACE can account for all effects that involve semantic interference 
or facilitation. Using RACE, an explanation of these effects can be provided on a higher 
level of abstraction than connectionist modeling, because it is integrated in a full cognitive 
architecture. This way, RACE combines insights from multiple levels of abstraction.
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A Model of Subliminal Perception

Introduction

    Successful behavior depends for a large part on having declarative knowledge available 
at the right time. Humans are therefore continuously retrieving declarative facts from long-
term memory storage, based on their continuously updated perception of the environment. 
The continuous character of perception is reflected in the memory retrieval process, as can for 
instance be observed in the retrieval latencies of psychonomic experiments in which stimuli are 
asynchronously presented (e.g., picture-word interference, W.R. Glaser & Düngelhoff, 1984) or 
in experiments in which the presentation durations of stimuli are manipulated (e.g., subliminal 
priming, Marcel, 1983). A cognitive model of declarative memory retrieval should also reflect 
the continuous character of the input on which memory retrievals are based. However, current 
cognitive architectures such as ACT-R (Anderson et al., 2004) or Soar (Newell, 1990) cannot 
satisfactorily account for this (Van Maanen & Van Rijn, 2006; Van Maanen & Van Rijn, 2007b). 
Retrieval by ACcumulating Evidence (RACE) is a model that does describe the process of 
retrieving one or more chunks of information from memory. In RACE, memory retrieval is not 
considered ballistic, but is rather thought of as a process in which the likelihood that a piece of 
information will be needed for successful behavior is continuously estimated. Therefore, the 
likelihood estimate can be continuously adapted to the changing environment.
    RACE can be perceived as an interaction of ideas from cognitive architectures that rely 
on symbol manipulation (Anderson et al., 2004; Newell, 1990) and ideas from sequential 
sampling models (Ratcliff & Smith, 2004; Usher & McClelland, 2001). The architectural nature 
is clear from the cognitive constraints imposed on RACE. In the current implementation of the 
theory, we constrained RACE by adopting the rational approach that is intrinsic to the ACT-R 
cognitive architecture (Anderson et al., 2004). However, the subsymbolic computations that 
drive declarative memory retrieval are rooted in sequential sampling. 
    This paper will describe how RACE is implemented in the ACT-R architecture of cognition 
and will present a RACE model of a subliminal priming task. We will discuss which features of 
RACE naturally align with ACT-R, and which features of RACE seem to contrast with ACT-R. We 
chose to implement RACE as an extension to ACT-R because of ACT-R’s widespread use in the 
cognitive modeling world (see for instance the web site of the ACT-R community: http://actr.
psy.cmu.edu). More importantly however, adopting an existing general approach towards 
cognition will reduce the proliferation of different cognitive theories (Newell, 1990), and will 
constrain theorizing about RACE. A third reason for choosing ACT-R as a modeling framework 
is that the way ACT-R defines retrieval latency has difficulties with modeling semantic 
interference (Van Maanen & Van Rijn, 2006; Van Maanen & Van Rijn, 2007b). Extending ACT-R 
with RACE might solve this issue.

ACT-R

    A prominent theory that explains behavior at the symbol manipulation level is the 
ACT-R architecture of cognition (Anderson et al., 2004). Because RACE is implemented as an 
extension to ACT-R, we will give a very short overview of the architecture, concentrating on 
these aspects of the theory that relate to declarative memory retrieval.
    ACT-R is a cognitive theory in which production rules operate on declarative memory and 
the environment. Production rules are conditions-actions pairs whose actions are executed 
if their conditions are met. To determine which production rule’s actions will be executed, 

7. Note however that this is 
an undiscussed deviation 
from standard ACT-R, 
where spreading activation 
is intended to be positive 
because it represents the 
increased likelihood of 
needing one chunk when 
another chunk is present. 

8. In ACT-R 6.0, chunks 
in all buffers can spread 
activation, as opposed 
to ACT-R 5.0, in which 
only chunks in the goal 
buffer could be a source of 
activation.
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ACT-R contains a set of buffers of which the content is matched against the conditions of each 
production rule. If multiple production rules are applicable – meaning that, given the buffer 
contents, multiple sets of actions may be performed – the production rule with the highest 
utility will be selected, a process called conflict resolution. By default, the buffers represent 
the current goal of the system, the current perceptual state, and a declarative fact that is 
currently in the focus of attention, that is, that is recently retrieved from long-term memory. 
Other buffers may be defined if necessary for the task at hand (as has for instance been done 
for prospective time interval estimation, Taatgen, Van Rijn, & Anderson, 2007). The content 
of a buffer is a chunk: a symbolic unit that represents a simple fact, such as The capital of 
Canada is Ottawa, or The object I am attending is green and spherical. Both these example 
chunks are declarative facts, but the first example can typically be found in the retrieval buffer, 
and represents a fact that has been retrieved from long-term memory, whereas the second 
example represents a visually observable fact of the world, and might be present in the visual 
buffer. In the context of this paper, we are primarily interested in the way ACT-R incorporates 
retrieval of chunks from long-term memory, although we not necessarily want to constrain 
RACE to declarative memory retrieval.
    All chunks have an activation level that represents the likelihood that a chunk will be 
needed in the near future. The likelihood is in part determined by a component describing the 
history of usage of a chunk called the base-level activation (Bi in Equation 3.5).
					   
		  (equation 3.5)

    In this equation, tj represents the time since the jth presentation of a memory chunk and 
d is the parameter that controls decay, which in most ACT-R models is fixed at 0.5 (Anderson 
et al., 2004). The idea is that the activation of a chunk decays over time unless attention is 
shifted to that chunk and its activation is increased. This way, the base-level activation can be 
used to model both forgetting and learning effects (Anderson & Schooler, 1991).
    The total activation is the sum of the base-level activation and another component 
describing the influence of the current context (spreading activation, Equation 3.6). The 
spreading activation component is the sum of strengths of association from chunks j to chunk 

i, weighed by Wkj, representing the importance of various buffers (k) 
and of associated chunks (j). 

(equation 3.6)

    A more detailed description of the ACT-R cognitive architecture is provided in (Anderson 
et al., 2004; Anderson & Lebiere, 1998).

RACE model of memory retrieval

    RACE is a proposal for a new retrieval mechanism in ACT-R. In RACE, retrieval of a chunk 
is thought of as a process in which the likelihood that a chunk will be needed given the 
current context is continuously estimated. This is different from ACT-R, were the context can 
influence the retrieval of a chunk only at the onset of a particular retrieval request. Note that 
the continuous aspects of ACT-R’s base-level learning equation (Equation 3.5) are retained in 
RACE. The continuous updating of context-based activation is similar to the account presented 
in the leaky competitive accumulator model described by Usher and McClelland (2001).
    Also similar to ACT-R, the accumulation process in RACE is influenced by various sources of 
evidence. Increases in activation may be caused by the current context, which may be formed 
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by the current buffer contents, or other chunks that are currently active. Via a spreading 
activation mechanism these chunks provide evidence for the likelihood that other chunks will 
be needed. That is, they increase the activation of these chunks.
    Another source of evidence for the likelihood that a chunk will be needed is the history of 
usage of that chunk. Frequently or recently used chunks are more likely to be used again in the 
near future. In RACE, this is reflected by the starting point of the accumulation process. The level 
of activation at which accumulation starts is determined by the base-level activation of ACT-R, 
which reflects the frequency and recency of the usage of a chunk (Anderson & Schooler, 1991).
To preserve the temporal nature of the evidence for a chunk, the accumulated RACE activation 
is subject to continuous decay. Activation of a chunk thus decreases if not enough evidence for 
that chunk is present. Since the context may change over time, the accumulation process is 
not determined when a retrieval process is initiated (the retrieval onset), but may also change. 
Therefore, incoming information or the removal of information from the buffers may influence 
which chunk will be retrieved.
    Activation values represent the relative likelihood that a chunk may be needed (Anderson 
& Lebiere, 1998), which means that the level of activation at which a chunk has been retrieved 
should also be defined relative to the activation of other chunks. Therefore, RACE uses a 
retrieval ratio that determines how much the activation of a particular chunk must stand out 
against the total activation of all competing chunks. This is analogous to the relative stopping 
rule described by Ratcliff and Smith (2004, cf., ACT-R’s former competitive latency mechanism, 
discussed in Van Rijn & Anderson, 2003). If multiple chunks match the criteria of the retrieval 
request, the chunk that reaches the retrieval ratio first will be retrieved. In these cases, the 
eligible chunks compete for retrieval. If the activation levels of multiple chunks increase, the 
total activation of the system also increases, making it more difficult for a chunk to reach the 
retrieval ratio. This feature of RACE will prove to be important in explaining differences in 
retrieval latency, for example in the model of subliminal priming explained later in this paper.

     So far, we described the general idea of the RACE model of memory retrieval. In this 
section, the exact implementation of RACE will be presented and how RACE relates to the 

ACT-R architecture.
    The accumulated activation component of RACE 

is described by the following equation:
		
(equation 3.7)

    This equation reflects the idea that the accumulated activation of a chunk at a certain 
moment in time (Ci(t+∆t)) is determined by the level of accumulated activation one time step 
ago (Ci(t)), summed with spreading activation from other chunks; that is, the accumulated 
activation of other chunks (Cj(t)) weighed by strengths of association between these chunks 
and the chunk i (Sji). At retrieval onset, accumulation starts with the history-based evidence, 
which is the current base-level activation. Thus
				         (equation 3.8)

    Accumulated activation decays away, the speed of which is controlled by the parameter 
dacc. A smaller value of dacc results in faster decay. The parameter β in Equation 3.7 controls the 
amount of influence of the context. Although in ACT-R activation can have a negative value, 
we have chosen in our current implementation to ignore the spreading activation from very 
small – that is, negative – activation values for reasons of computational efficiency.
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    By continuously updating spreading activation towards a chunk, the chunk may reach a 
level of activation at which retrieval can take place. The time at which retrieval takes place is 
the first moment after the start of accumulation at which the following inequality holds:
 		

	       (equation 3.9)

    This means that for a chunk to be retrieved (i in Inequality 3.9) the activation should be 
high with respect to all competing chunks (j). Because ACT-R activation values represent the 
relative likelihood that a chunk will be needed, an exponential scaling is applied to eliminate 
effects from possible negative values, as is common in ACT-R equations.

    Perhaps a clarification is needed on the notions base-level activation (Bi, defined 
in Equations 3.5 and 3.8) and accumulated activation (Ci in Equation 3.7). To incorporate 
frequency and recency effects in the retrieval process, the accumulation of activation starts 
at the current level of base-level activation (Equation 3.8). During a retrieval process however, 
activation is estimated according to Equation 3.7. At retrieval, the base-level activation of the 
retrieved chunk is also increased to account for the recent encounter with the retrieved chunk, 
because at the next retrieval attempt the base-level activation is again used as the starting 
value of the accumulation process.
    The question arises which of the two activations (Bi or Ci) is a better predictor of the 
likelihood that a chunk will be needed. We believe that at very short time intervals – such as 
the SOAs from the subliminal priming experiment discussed below – accumulated activation 
better aligns with the empirical data. However, at longer time intervals, base-level activation 
has been shown to give good predictions (e.g., Anderson et al., 1998; Anderson & Schooler, 
1991). Because in the subliminal priming task and model described below prime and target are 
retrieved in a very small time window, focusing on accumulated activation only will suffice to 
model the priming effects. Therefore, for this model the base-level activation values were kept 
constant over all chunks.

Subliminal priming

    In this section, we will discuss the task we modeled using RACE: a subliminal priming study 
by Marcel (1983). Also, we will discuss why this particular task is interesting given the specific 
nature of RACE. In subliminal priming tasks, primes are presented that are not consciously 
perceived by the participant. Usually, primes are presented for a very short period and are 
followed by a visual mask, so that participants can not discriminate between the presence and 
absence of a prime (Marcel, 1983; Merikle, Smilek, & Eastwood, 2001). Marcel (1983) showed 
that under these circumstances priming effects persisted. His Experiment 3 describes a 
Stroop-task in which words are presented as primes, and color patches are presented as cues. 
Participants had to respond to the color patches by pressing a button associated to one of the 
colors. He found the same kind of interference and facilitation as usual in the Stroop paradigm, 
but a smaller effect for the subliminal primes than for the consciously perceived primes (Figure 
3.8 presents the latencies that Marcel observed). Marcel concluded that subliminal primes 
have an effect on latency, even though participants are not aware of their presence.
    Four prime conditions were tested by Marcel (1983 Experiment 3): Color congruent, color 
incongruent, neutral, and no-word. In the congruent condition, the prime was the name of the 
target color, whereas in the incongruent condition the prime was the name of another color. In 
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the neutral condition, the prime was a non-color word that was also unrelated to colors. The 
no-word condition presented the mask only. Thus, no prime was presented. The condition in 
which the prime was subliminal was called the unaware condition. In the aware condition, by 
contrast, the presentation duration was 400ms. Both prime and cue were presented at the 
same time.9

    From a symbolic perspective, stimuli have to be considered as symbols in order to engage 
in cognitive processing. In ACT-R, this means that a stimulus has to be present in a buffer. 
However, stimuli that are presented for such short durations as common in subliminal priming 
paradigms do not reach the visual buffer. ACT-R assumes an attention shift to the stimulus 
before an object can be encoded as a symbolic chunk, which takes a certain amount of time, 
estimated at 185ms (Anderson, Matessa, & Lebiere, 1998). This exceeds the presentation 
duration of the prime in the unaware conditions (which is 80ms at maximum, Marcel, 1983). 
In ACT-R models, stimuli that are presented for less than the time it takes to shift attention 
can therefore not influence central cognition. The way ACT-R deals with stimulus durations is 
all or none. Either the stimulus has been presented not long enough, and the stimulus is not 
perceived at all, or it is fully is perceived. Consequently, symbolic theories of cognition cannot 
account for subliminal priming data. The next section will show how RACE deals with the short 
presentation durations typical in subliminal priming tasks.

Subliminal priming model

    The subliminal priming model comprises three chunk types, as outlined in Figure 
3.6: Lemmas, concepts, and motor mappings. The concept chunks can be regarded as 
representations of semantic properties. Chunks of the lemma type can be regarded as sets 
of orthographic and syntactic properties of a word. The motor mapping chunks represent the 
information which button to press for which color.
    Now, for example in a no-word condition, the cue (being a color patch) spreads activation 

to its associated concept, which spreads activation to the associated motor mapping resulting 
in a button press. A similar flow of activation will occur in the other conditions, albeit that 
because of the presentation of a prime word, lemma chunks will also be activated. The 
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Figure 3.6. The flow of activation in the congruent condition 
of the subliminal priming model.



60

- CONTEXT EFFECTS ON MEMORY RETRIEVAL: THEORY AND APPLICATIONS -

activation of multiple motor mapping chunks causes competition in RACE, because the 
retrieval ratio is harder to reach with multiple accumulating chunks.
    Before the experiment, Marcel determined for each participant the critical presentation 
duration for which participants could not discriminate between presence and absence of a 
prime (see Marcel, 1983 for details of the procedure). The presentation durations he found 
ranged from 30 to 80 ms. We used the presentation duration as an extra parameter in fitting the 
model to the data, with the constraints that its value should be in the range that Marcel found 
and that the activation of the prime chunk would not exceed the retrieval ratio (Inequality 
3.9). Because the primes in the original experiment were visually masked, we assume that the 
presentation duration is equal to the time that the prime is available to the visual system.
    Table 3.1 presents all relevant parameters for the subliminal priming model. The 

presentation duration of primes in the aware condition is 400ms, as in the original experiment. 
The unaware presentation duration was estimated at 70ms, serving as the model’s critical 
presentation duration. This duration depends on the RACE parameters presented in bold-face 
in Table 3.1. These parameters were not estimated for this experiment, but rather copied from 
a RACE model of picture-word interference (an updated version of Van Maanen & Van Rijn, 
2006; Van Maanen & Van Rijn, 2007b). Hence, the only parameters presented here that were 

Parameter   Value
Acolor    1.8
Atext    1.5
β    .255
dacc    .72
∆t    5 ms
θ    .81
aware presentation duration  400 ms
unaware presentation duration 70 ms

Table 1: Estimated parameter values for the subliminal 
priming model.

10. As the variance in the 
original data cannot be 
deduced from the published 
results, a sensible formal 
comparison is not possible.

Figure 3.7. Associative values between different chunks in the subliminal priming model.
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estimated for this model were the activation of the words (Atext) and of the color (Acolor). The 
association values (Sji) between chunks are presented in Figure 3.7.

Results

    The results of the subliminal priming model are presented in Figure 3.8. We present 
here differences in latency relative to the no-word condition as this model only captures the 
memory retrieval process, which comprises the time course from the start of retrieval of a 
chunk until the retrieval of the motor mapping chunk. The model captures quite nicely the 
effects observed in the data10 by Marcel (1983) (r2 = 0.987). 	
    In the unaware conditions, only the target chunks reached the retrieval ratio, and no other 
chunks. Therefore, these chunks are the only ones that are consciously perceived by the model. 
The model thus remained unaware of all other chunks, as is required for these conditions.
    An explication of how the activation flows through the model will be insightful. We split 
this up in four sections, each describing one condition.

  Neutral
    In the neutral condition, there is no competition between motor mappings, because 
there is no button associated with the neutral word. The activation cascades through the 
network similarly to the no-word condition, because no association exists between the 
neutral word and the target color, both at the lemma level and at the concept level. Therefore, 
the activation of the motor mapping associated with the target color increases similarly to the 
no-word condition because the activation of all the motor mapping chunks increases as in the 
no-word condition. 
    As an example, Figure 3.9 gives the activation accumulation in the neutral unaware 
condition. The activation of the neutral word lemma increases, but, due to the short 
presentation duration, it does not reach the retrieval ratio. This indicates that the neutral 
word does not reach awareness.

 
No-word
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10. As the variance in the 
original data cannot be 
deduced from the published 
results, a sensible formal 
comparison is not possible.

Figure 3.8. Comparison of the latencies found by Marcel (1983) (a) and the latencies predicted by the subliminal priming model (b). 
Shown here are the latency differences relative to the no-word condition.
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    The no-word condition is similar to the Neutral condition, because no distractor stimulus is 
present, resulting in the same behavior of the model as in the Neutral condition. Because in the 
no-word condition, there is no distractor, there is no difference between aware and unaware.

  Congruent
    Both target and distractor stimuli activate the same concept: the color chunk directly, the 
text chunk mediated via the lemma chunk. Spreading activation towards the associated motor 
mapping chunk is therefore higher than in the Neutral and No-word conditions, resulting in 
faster retrieval.

   Incongruent
    Because both target stimulus and distractor activate a motor mapping, competition for 
retrieval takes place at the motor-mapping level. Higher activation for competing chunks 
means that it is more difficult to cross the retrieval ratio, leading to longer retrieval latencies. 
The effect is strongest in the aware condition, representing the longer presentation duration 
of the prime, and thus the longer accumulation of activation of prime-related chunks.

Figure 3.9. Activation 
accumulation in the Neutral 
Unaware condition. The stimuli 
are a red color patch and an 
unrelated prime word. The 
vertical dotted line indicates 
when the presentation of the 
prime ends. At this point, the 
activation of the related lemma 
has not crossed the retrieval 
ratio. After 100ms the red motor 
mapping chunk does cross the 
retrieval ratio.
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Discussion

    A difficult question when modeling cognitive tasks that deal with awareness is how 
awareness is defined within the model. We chose to set a strict boundary for awareness, 
the retrieval ratio. When a chunk reaches the retrieval ratio, it becomes available inside the 
buffers. We assume that people are aware of chunks that are currently in the buffers (Taatgen, 
in press), and not aware of chunks that have not yet reached the activation needed to enter 
the buffers.
    RACE involves a direct connection between information in the external world (that is, 
the visual module) and the activation values of declarative chunks in declarative memory. 
In this respect, RACE deviates from ACT-R, in which all visual information must be mediated 
by the visual buffer. However, since the visual buffer is associated with awareness as chunks 
appearing in the visual buffer enter the declarative system, another pathway must be present 
to account for the subliminal priming data modeled in this paper. We hypothesize that the 
connections in RACE from the visual module to the declarative memory module may represent 
part of the ventral visual pathway, that is known to involve connections from striate cortex 
(associated with ACT-R’s visual module) to temporal brain regions (associated with the 
declarative memory module Anderson et al., 2004). 
    The model of subliminal priming discussed in this paper demonstrates that RACE can 
account for the retrieval latencies observed by Marcel (1983, Experiment 3). By using standard 
RACE parameter values, the fit of our model to the data set of Marcel was quite good. In 
combination with previous models of declarative memory retrieval that use RACE (Borst & Van 
Rijn, 2006; Van Maanen & Van Rijn, 2006; Van Maanen & Van Rijn, 2007b), this suggests that 
RACE might be regarded as a general model of declarative memory retrieval. The added value 
of the RACE model is that it gives a rational account of how the process of declarative memory 
retrieval develops. Even the effects on declarative memory retrievals of changes in the world 
that last only milliseconds can now be taken into account.

- Evaluation of the RACE/A Integrated Model of Memory Retrieval -
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This chapter is submitted for publication as Van Maanen, L., Van Rijn, H., & Borst, J. P. (submitted). Stroop and 

picture-word interference are two sides of the same coin.

Introduction

    Over the years, the idea that the picture-word interference (pwi) effect and the Stroop 
effect are two manifestations of the same process has gained wide support. For instance, 
MacLeod’s influential review on the Stroop effect (MacLeod, 1991) also discusses picture-
word interference, and even lists the picture-word task in his list of “eighteen major empirical 
results that must be explained by any successful account of the Stroop effect” (MacLeod, 1991, 
Appendix B, p. 203). Recently, Dell’Acqua, Job, Peressotti, and Pascali (2007) have argued that 
the underlying processes of both effects are different, challenging the assumption of a single 
underlying process. In this paper, we will present a computational model that, on the basis of 
a single process, can explain both the traditional phenomena discussed by MacLeod (1991) and 
the data of Dell’Acqua et al. (2007). 
    In the Stroop paradigm, participants are presented with a word written in a specific color, 
and are instructed to either read the word, or name the color the word is printed in (MacLeod, 
1991; Stroop, 1935). A typical Stroop experiment usually consist of three conditions: a congruent 
condition in which the word and the color refer to the same color concept (e.g., the word “red” 
written in red ink), an incongruent condition in which the word and the color refer to different 
color concepts (e.g., the word “red” written in green ink), and a neutral condition in which only 
the text or the color is displayed. This is often operationalized by presenting a set of X’s in red 
ink (for color naming) or the word “red” printed in black ink (for word reading).
    Three experimental findings in a Stroop study are extremely robust. First, color naming 
in the incongruent condition is slower than color naming in the neutral condition. That is, 
participants who are required to name the color of the ink are slower if the word describes 
a different color than if they have to name a color of a row of X’s. This is often referred to as 
semantic interference, since many accounts of this effect assume that the relation in meaning 
between the color of the ink and the word itself causes the interference that results in reaction 
time differentiation (e.g., Cohen, Dunbar, & McClelland, 1990; W. R. Glaser & Glaser, 1989; 
Klein, 1964). A second finding in the Stroop literature is that naming the color of the ink of a 
word that describes the same color (congruent condition) is faster than the neutral condition. 
This will be referred to as semantic facilitation (but see MacLeod & MacDonald, 2000, for 
an alternative explanation of semantic facilitation that is based on accidental reading of 
the word). A third important observation is that both semantic interference and semantic 
facilitation disappear when the participants are not instructed to name the color of the 
stimulus, but instead are asked to pronounce the word, irrespective of the color the word is 
printed in. This so-called Stroop asynchrony is often explained by the difference in processing 
speed between colors and words (e.g., Cohen, Dunbar, & McClelland, 1990; Roelofs, 1992), or 
the difference in automaticity between color-naming and word-reading (e.g., Lovett, 2005). 
    The picture-word interference task (pwi) typically has a similar set-up to the Stroop task. 
Participants are presented with a picture on which a word is super-imposed, and are instructed 
to either name the picture, or read the word. As in the Stroop task, semantic interference, 

Stroop and picture-word interference 
are two sides of the same coin
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semantic facilitation and Stroop asynchrony are usually observed in the pwi task (W. R. Glaser 
& Düngelhoff, 1984). Semantic interference is observed if participants are required to name 
a picture on which a category-member word of that picture is super-imposed (e.g., a picture 
of a dog with the word “cat” inscribed in it) as their responses are slower compared to the 
condition in which a picture without a superimposed word has to be named or to the condition 
in which the superimposed word is completely unrelated (e.g., a picture of a dog with the word 
“desk” superimposed). Semantic facilitation is observed if, by contrast, the picture and the 
word refer to the same concept (e.g., a picture of a cat with the word “cat” superimposed) as 
the participants are faster. The Stroop asynchrony can be observed in the disappearance of 
these effects if the task is to read the word instead of naming the picture.
    At a more general level, these effects are often aggregated in terms of a single Stroop or 
pwi-effect. This more general effect is the difference in performance for trials in which there 
is an interfering stimulus present versus trials in which there is no interfering stimulus. For 
the Stroop task, this entails the difference between trials in which a color word is written in 
different colored ink and trials in which a color word is written in similar colored ink. For the 
pwi task, the effect is the difference between trials in which the picture is presented with a 
semantically related, but different word superimposed versus trials in which picture and word 
are completely unrelated.
    Given the similarity of both tasks, it is not surprising that both tasks have often been 
explained in similar terms. In fact, in our previous work in which we presented a computational 
model of pwi, we took for granted that picture-word interference is just an instance of the 
Stroop effect. (Van Maanen & Van Rijn, 2007b). Other computational models also present a 
single mechanism that underlies both pwi and Stroop performance (e.g., Cohen, Dunbar, & 
McClelland, 1990; Lovett, 2005; Roelofs, 1992, 2003). 
    Most of the theoretical accounts of Stroop-like effects have focussed on finding the locus 
of the interference effect in the mental processing stream. For instance, many theorists assume 
that interference is caused by a competition between different response options (Cohen, Dunbar, 
& McClelland, 1990; e.g. Dyer, 1973; and W. R. Glaser & Glaser, 1989; Kuipers, La Heij, & Costa, 
2006; Lovett, 2005; Roelofs, 1992, 2003). In this view, interference is caused by an increased 
difficulty of selecting the appropriate response in the incongruent condition. Often, this has been 
attributed to either a difference in the speed of processing between the stimulus dimensions or 
to a difference in automaticity between the stimulus dimensions (MacLeod, 1991). 
    Some theoretical accounts assume an interference effect during an early stage. In 
particular, Dell’Acqua et al. (2007) argue that the picture-word interference effect is caused 
by a competition that occurs before an appropriate response is selected. With respect to the 
Stroop effect, many studies now suggest that the Stroop effect may be manifested at multiple 
stages (e.g., De Houwer, 2003; Risko, Schmidt, & Besner, 2006; Schmidt & Cheesman, 2005; 
Van Veen & Carter, 2005).
    Recently it has been suggested that the Stroop effect and picture-word interference are 
not caused by the same process (Dell’Acqua et al., 2007). In particular, it has been argued 
that the loci of the two interference effects in the mental processing stream differ. Many 
studies suggest that the locus of the Stroop effect is on the level of response selection (e.g., 
Fagot & Pashler, 1992; Kuipers, La Heij, & Costa, 2006; MacLeod, 1991; Roelofs, 2003). That 
is, Stroop interference occurs because an incorrect response possibility that is triggered by 
the distracting feature of the stimulus (the word), interferes with the correct response that 
is triggered by the target feature (the color). Dell’Acqua et al. argue that this is not the case 
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for pwi. Their result suggests that picture-word interference is on the level of the perceptual 
encoding. Based on these results, Dell’Acqua et al. concluded that although the effects in both 
tasks seem similar, they are in fact caused by different mechanisms.
    This paper presents a computational cognitive model of both the Stroop and the pwi 
effect, reconciling the recently observed differences between Stroop and pwi with the general 
view that pwi is an instance of the Stroop effect. In this model, both Stroop and pwi effects 
are accounted for by the same underlying mechanism. In other words, the model provides 
additional evidence for the view that the underlying mechanism that causes interference in 
both tasks is the same (cf. Cohen, Dunbar, & McClelland, 1990; Lovett, 2005; Roelofs, 1992, 
2003), whilst still being able to explain the observation that participants respond differently 
to Stroop and pwi stimuli under certain circumstances (Dell’Acqua et al., 2007).

Analyzing the locus of interference

    To analyze the time course of the Stroop effect, Fagot and Pashler (1992, Experiment 7) 
studied whether the Stroop effect would persist in a psychological refractory period (PRP) 
design. In a PRP design, participants are required to perform two tasks concurrently. The 
main manipulation in PRP designs is an asynchrony in onset between both tasks. Usually, the 
instruction is to first give the response associated with the stimulus that was displayed first. 
If the stimulus onset asynchrony (SOA) between tasks is relatively long, the processing of the 
first task is finished before the stimulus of the second task is presented. On the other hand, if 
the SOA is short, processing associated with the first stimulus might not be finished yet when 
the second stimulus appears. The typical observation with short SOAs is that the response 
to the second task is delayed (Telford, 1931). This delay is often interpreted as evidence 
for a bottleneck in processing. The central bottleneck theory assumes that there exists a 
processing stage during which only a single process can proceed concurrently (e.g., Pashler, 
1994). Therefore, the secondly presented task will be delayed by processing of the first task. By 
testing the effect of different SOAs the time course of processing can be unraveled. 
    Fagot and Pashler (1992) used the PRP paradigm in the context of the Stroop task. They 
presented participants with a simple tone classification task as primary task, and a Stroop task 
as secondary task. Fagot and Pashler hypothesized that if the Stroop effect – operationalized 
as the latency difference between an incongruent Stroop stimulus and a congruent Stroop 
stimulus – would be caused by the perceptual encoding of the stimulus, the Stroop effect 
would disappear at short SOAs. This would be the result of the delay in execution of the second 
task. The delay causes a gap in processing of the second task in which the interference could 
be resolved. Fagot and Pashler found no effect of SOA on the magnitude of the Stroop effect, 
which they interpreted as evidence that the locus of the Stroop effect is located relatively 
late in the stream of mental processing. This finding, they argued, is in line with a response 
selection account for the locus of the Stroop effect, because response selection is also late in 
the mental processing stream.
    In a similar experiment, Dell’Acqua et al. (2007) answered the same question for the pwi 
effect. Dell’Acqua et al. conducted an experiment very similar to the experiment ran by Fagot 
and Pashler (1992), but instead of a Stroop task, participants were presented with a pwi task. 
In this experiment, the interference was operationalized as the latency difference between a 
semantically related word-picture pair and an unrelated word-picture pair. Interestingly and 
surprisingly, SOA mediated the pwi effect: shorter SOAs were associated with smaller pwi 
effects. This indicates that the inference originates from the initial stages of processing, as 
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with short SOAs most interference is captured in the PRP-induced delay, but with long SOAs 
the delay does not account for all interference. This finding is in line with the view that the 
locus of pwi is early, possibly during perceptual encoding of the stimulus.
    Based on this result, Dell’Acqua et al. (2007) argue that the difference between their 
findings and Fagot and Pashler’s (1992) are “incompatible with the often reiterated principle 
that the pwi effect comes about for limitations of the cognitive system that are analogous 
to those causing the Stroop effect” (Dell’Acqua et al., 2007, p. 720). They conclude that their 
analysis “favor[s] an interpretation of the present findings that points to the functional 
dissociation of the sources of Stroop and pwi effects” (Dell’Acqua et al., 2007, p. 722).
    Based on the PRP studies by Dell’Acqua et al. (2007) and Fagot and Pashler (1992), we may 
arrive at two possible explanations. The first possibility is the one advocated by Dell’Acqua et 
al., that Stroop and pwi are two different effects. The other possibility is that the interference 
in Stroop and pwi is distributed over multiple stages. However, the amount of interference 
per stage may differ between Stroop and pwi. This explanation is in line with findings from 
the Stroop literature that besides response competition, Stroop may be caused by stimulus-
related competition as well (e.g., De Houwer, 2003; Risko, Schmidt, & Besner, 2006; Schmidt 
& Cheesman, 2005).
    We will support this second possible explanation by presenting a cognitive model that 
can account for reaction time data of both pwi and Stroop experiments. The cognitive model 
utilizes a single mechanism to account for both data sets; the sole difference is a different 
speed of processing for the perceptual input (that is, pictures vs. colors). Next, we will 
demonstrate that the model accounts for the response time patterns of Stroop and pwi tasks 
under PRP conditions. As these fits are obtained with a single-mechanism model, this argues 
against the claim that the differential findings for Stroop and pwi favor a dissociation of the 
sources of Stroop and pwi effects. 
    The cognitive model that we will describe here is an integrated cognitive model (Gray, 
2007b) of the task, implemented in a previously validated cognitive architecture (Taatgen 
& Anderson, 2008). We will simulate the complete process that is involved in the task, from 
the presentation of the stimulus up to the participant’s response, resulting in quantitative 
predictions of reaction time data. 
    The model is implemented in the cognitive architecture ACT-R (Anderson, 2007a). ACT-R 
assumes that specialized modules process different kinds of information. For instance, a 
visual module handles visual perception, and a motor module executes motor commands. 
Other modules that will play a role in the model described below are the declarative module, 
used for storing and accessing information in declarative memory, the speech module for 
speech output, the aural module for auditory perception, and a goal module for keeping 
track of goals and intentions (see Anderson, 2007a; Taatgen, Van Rijn, & Anderson, 2007 for 
extensive descriptions of the identified modules). A central production rule system integrates 
the information that is made available by the different modules, and issues new instructions 
to those modules. The production rule system communicates with the different modules 
through a set of interfaces called buffers. Behavior in ACT-R emerges from the selection and 
subsequent execution of production rules that consist of simple conditions-actions pairs. If 
the information that is present in the buffers matches the conditions of a production rule, 
that rule may be selected to execute its actions. Production rule actions consist of operations 
on the buffer contents, such as a request for new information from declarative memory, or a 
request for pressing a button on a keyboard.

 - Stroop and picture-word interference are two sides of the same coin -
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    Declarative information in ACT-R is represented in symbolic entities called chunks. 
Chunks represent simple facts, such as The capital of The Netherlands is Amsterdam, or The 
object I am attending is green. Note that where the first example is a typical semantic memory 
fact, the second example represents a visually observable feature of the world as might be 
present in the visual buffer. All chunks in an ACT-R model have an activation level that reflects 
the likelihood that they will be needed in the near future. The activation of a chunk depends 
on two components: the chunk’s history of usage (Anderson & Schooler, 1991) and the current 
context (Anderson & Milson, 1989). The activation of a chunk is the main determiner of the 
time it takes to retrieve that chunk from memory. All other things being equal, the higher the 
activation of a chunk, the faster it will be retrieved. 
    Because Stroop tasks and pwi tasks usually involve well-known colors and words, and 
pictures of well-known objects, we will assume that the history component of the activation is 
approximately equal for all chunks as well as stable over the time span of a single experiment. 
For the context component of the activation we will adopt a more fine-grained model that will 
be discussed later. This context component will be the main determiner for the reaction time 
differences that our models will display.
    The model’s behavior is determined by the interaction between specified production 
rules, chunk retrievals and the task setup. In terms of response latency (the usual dependent 
measure in Stroop and pwi tasks), the model’s behavior is the result of an aggregation of the 
timing of the sub processes, such as the execution time of the production rules and the time 
associated with module-specific operations, such as declarative retrievals, or button presses 
(cf., Donders, 1868/1969; Sternberg, 1969). However, although internally most module actions 
are executed sequentially, the modules themselves operate in parallel. For example, while the 
visual system is busy with the perceptual processes involved in perceiving a new stimulus, 
production rules might initiate a request for the retrieval of a fact from declarative memory 
without disturbing the perceptual process. Critically however, the modules cannot execute 
multiple operations in parallel. Thus, if two tasks require retrieval from declarative memory, 
one of the tasks has to wait until the declarative module is finished with the request of the 
other task. This seriality will be critical in the explanation of pwi and Stroop performance. 
Although this seriality has not been specifically designed to account for performance in tasks in 
which scarce resources determine behavior, it has been successfully applied in many different 
experimental domains (Language Development, Hendriks, Van Rijn, & Valkenier, 2007; e.g., 
Attentional Blink, Taatgen, Juvina, Schipper, Borst, & Martens, in press; Van Rij, Van Rijn, & 
Hendriks, submitted; Temporal Cognition, Van Rijn & Taatgen, 2008).

Model overview

    The model presented here, in line with the proposal of Dell’Acqua et al. (2007), assumes 
that both the Stroop task and pwi consist of three main stages, the perceptual encoding 
stage, the response selection stage, and the response execution stage. During the perceptual 
encoding stage, the stimulus features are transferred to the visual buffer. During the response 
selection stage, a chunk that reflects the syntactic properties of the response (that is, a 
lemma, Levelt, Roelofs, & Meyer, 1999) is retrieved from declarative memory. In the response 
execution stage, the model retrieves a motor program associated with the retrieved response, 
and this motor program is executed.
    During each stage, one or more memory retrievals take place. The duration of these 
retrievals are the main determiners of the response latency. Given that we assumed that all 
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chunks are equally active, all differences in activation are driven by the context activation. 
If the current state of the system is favorable for a chunk that is requested from memory, 
the chunk will be retrieved faster than in a situation when the context is less favorable. This 
context phenomenon determines whether semantic interference or semantic facilitation is 
observed.

  A more fine-grained account of context effects
    The current declarative retrieval module in ACT-R can account for many memory-related 
phenomena (e.g., Anderson et al., 1998; Taatgen & Anderson, 2002; Van Rijn & Anderson, 
2003). While the module accurately predicts the duration of memory retrievals, ACT-R 
does not provide an account for what happens during memory retrievals. This is especially 
problematic in tasks with multiple stimuli presented at short SOAs, since the first, not-yet-
completed retrieval is influenced by a second process. This dependency cannot be explained 
by default ACT-R (Van Maanen & Van Rijn, 2007b). Another issue is that context effects on 
retrieval latencies are solely driven by chunks that are available in the buffer of one of the 
modules. This results in a threshold function: no context effects can be observed of retrieval 
or perception processes until a chunk is placed in a buffer, at which point it starts spreading 
activation to contextually related chunks. 
    To overcome these issues, we proposed an adaptation of the declarative retrieval 
mechanism in the cognitive architecture ACT-R to account for the time-course of memory 
retrieval on short time scales (Van Maanen & Van Rijn, 2007b). This retrieval account (RACE/A, 
for Retrieval by ACcumulating Evidence in an Architecture) predicts what happens during the 
actual retrieval process. RACE/A is driven by two key assumptions: (1) The activation of one 
chunk is determined (in part) by the activation of other chunks. (2) The activation of one chunk 
relative to the activation of other chunks determines the likelihood that it will be retrieved.
    The first assumption represents the notion that the relevance of information is context-
dependent, even when this context is not yet available at a symbolic level (that is, accessible 
to the production system). This is for instance reflected in subliminal priming studies in which 
a related prime decreases the response latency on a target stimulus, even when participants 
were not consciously aware of the prime (Marcel, 1983). We operationalized this by adopting 
a spreading activation strategy (Collins & Loftus, 1975) in which increased activation of one 
chunk increases the activation of related chunks. 

         				           (equation 4.1)

    Equation 4.1 implements this assumption. The equation reflects how the activation of a 
chunk (Ci(t)) accumulates during retrieval. The activation at time t depends on the previous 
activation of that chunk (Ci(t – 1)), as well as additional spreading activation (Cj(t – 1)Sji) from 
other chunks (k). This includes the chunks that are available through perceptual processing. 
The spreading activation is mediated by the associative strength between two chunks (Sji), 
such that chunks that are strongly associated exchange more activation than chunks that are 
loosely associated. α and β are scaling parameters that determine the relative contributions 
of both components. Because α is set to a value in the range (0,1), it can be interpreted as 
temporal decay of activation. The accumulated activation thus decays after a retrieval has 
been attempted.
    The second assumption states that the relative activation of a chunk determines the 
likelihood that that chunk will be retrieved. This assumption reflects the insight that if multiple 
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memory representations are relevant, responding becomes more difficult (Luce, 1986). 
Following ACT-R, the activation of a chunk determines the likelihood that it will be needed in 
the near future. However, RACE/A extends the default ACT-R equations to take the activation 
of competing chunks into account. The activation of competing chunks are accounted for by 
taking the ratio of activation of the to be retrieved chunk (chunk i in Equation 4.2) to the sum 
of activations of other relevant chunks (chunks j in Equation 2, cf., Luce, 1986; Roelofs, 1992). 
In the current model, the relevant chunks are all other chunks that match the criteria specified 
by a retrieval request. 
    If the ratio specified in Equation 4.2 crosses a threshold (θ, the retrieval ratio), the relative 
activation of the chunk in the denominator (chunk i) warrants the retrieval of that chunk. As soon 
as a chunk passes this threshold, RACE/A returns that chunk as the result of the retrieval process.

		
	    (equation 4.2)

    Based on Equations 1 and 2, we have provided quantitative predictions for variants of both 
picture-word interference (Van Maanen & Van Rijn, 2007b) and the Stroop task (Van Maanen 
& Van Rijn, 2007a). The pwi model focused on the effect of SOA differences; the Stroop model 
fitted a data set in which the distractors were presented subliminally.
    Besides a theory of memory retrieval (RACE/A), which is the core of our modeling efforts 
in this paper, also a theory of perceptual encoding is needed to study the Stroop and pwi 
effects. Similar to RACE/A, we deviate here from the theory currently implemented in ACT-R, 
because it is to crude for our purposes here.

  Perceptual Encoding
    Before the processing of task-relevant information can commence, visual or auditory 
information has to be made available to central cognition. In both pwi and Stroop tasks, all 
information is presented visually. In ACT-R, the perceptual encoding process results in a chunk 
entering the visual buffer, and thus becoming available for further processing. By default, it is 
assumed that this process takes a fixed 85 ms (Anderson, 2007a). Although this is a sensible 
number when the details of the perceptual processing are less relevant for the task under 
study, the emphasis on perceptual encoding in Stroop and pwi tasks requires a more detailed 
account. However, it should be noted that our implementation of a perceptual encoding process 
should not be considered a complete theoretical account of perceptual processes. Rather, our 
implementation should be considered a functional description, aimed at differentiating between 
the effects on the encoding time caused by different stimulus features (cf., Gray, 2007a).
    We assume that features of the stimulus become available during the first stages of 
perceptual encoding (cf., feature integration theory, Treisman & Gelade, 1980). Based on these 
features, chunks in declarative memory compete for retrieval. This process is implemented 
using the RACE/A mechanism: The visual features spread activation to chunks that represents 
concepts that are likely to be needed in the context of those features. Thus, concepts that relate 
to the visual features of the current stimulus receive activation, while concepts that do not 
relate do not receive activation. When a concept’s activation results in a retrieval ratio larger 
than the threshold (see Equation 4.2), that concept is made available for non-visual cognition 
as the result of visual processing. So, instead of a fixed duration for perceptual encoding, we 
have implemented perceptual encoding as a combination of a feature integration and selection 
process with a variable duration that depends on the characteristics of the input.

eAi

eA j

j
∑

≥θ
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    The variation in encoding time between different stimuli originates from two sources. 
First, as the relative activation of a chunk determines whether it will be encoded, the activation 
of other chunks in declarative memory partly determines the encoding time. Second, the 
speed by which activation spreads from features to chunks will be different for different types 
of stimuli (e.g., a color patch is easier to recognize than a complex line drawing). Therefore, 
a parameter is introduced that reflects the speed and strength of spreading activation from 
features to chunks, to account for the different encoding times associated with different types 
of stimuli (Dell’Acqua, Lotto, & Job, 2000; Rossion & Pourtois, 2004). Although our encoding 
account is much simpler than existing models of perceptual encoding (e.g., Itti & Koch, 2001; 
Treisman & Gelade, 1980; Wolfe, 1994) it provides the necessary detail to account for the 
perceptual processing in the pwi and Stroop tasks. 
    In the Stroop task, the color feature of the stimulus spreads activation to a concept 
representing that color, and the text feature of the stimulus spreads activation to the lemma 
associated with that word. For the pwi task, the features representing the line drawing 
spread activation to the concept chunk representing the content of the picture, while the word 
spreads activation to a lemma. As word reading is faster than color naming (M. O. Glaser & 
Glaser, 1982), more activation spreads from the text feature to the lemma representing the 
associated word, than from the color feature to the associated color lemma. 
    In addition, we assume that line drawings are encoded slower than color patches. This 
assumption is supported by studies that show faster naming for sequences of color patches as 
opposed to sequences of images (e.g., Denckla & Rudel, 1976; Vukovic, Wilson, & Nash, 2004). 
    In the model these differences are operationalized by different settings for the parameter 
that reflects the speed of perceptual processing. In the remainder of this paper, we will 
demonstrate that the interference dynamics observed in Stroop and pwi PRP tasks might be 
caused by differences in this perceptual processing speed. 

  Simulation 1: A Single Model for pwi and Stroop
    Before discussing our model of the Stroop and pwi effects under PRP conditions we will 
first discuss the model’s performance in non-PRP Stroop or pwi trials. Note that although this 
section focuses on a Stroop trial, exchanging references to color dimensions with references 
to pictures results in a description of how the model would perform a pwi trial.
    As soon as visual features become available to the model activation is spread to the chunks 
associated with that visual information. The color features spread activation to a conceptual 
chunk representing that color, whereas the textual features spread activation to a lemma.
    When a chunk representing either the lemma or the concept crosses the retrieval ratio 
threshold, a second stage is initiated. As availability of a lemma is a prerequisite for starting 
the response execution stage, the model directly enters this stage when the lemma crosses 
the threshold. In this stage, the model retrieves a word-form and the response is uttered. 
If the color has to be named, the model waits until a concept is selected on the basis of the 
visual input, after which a retrieval is initiated to retrieve the lemma that is associated with 
the concept. However, because word reading is a highly trained and automated process, the 
word activates its associated lemma even if the model expects a color concept. Because of 
this activation, and the earlier discussed retrieval ratio, color naming will show interference 
from the presented word, whereas word reading will show less interference. Note that the 
model described so far is very similar to models of the Stroop and pwi tasks presented by 
Roelofs (1992, 2003). In some cases, the visual word representation might have spread so 
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much activation, that the word-based lemma chunk exceeds the color-based lemma chunk 
in activation. In these situations, an incorrect lemma will be retrieved. To account for this, 
the model checks if the meaning of the lemma is consistent with the stimulus color (other 
models of the Stroop task that incorporate a similar strategy include Altmann & Davidson, 
2001; Juvina & Taatgen, 2009; cf., Van Rijn & Anderson, 2004). If the correct lemma has been 
retrieved, the model continues with the response execution. If not, the model tries to retrieve 
another lemma. The response selection stage is the same for the word reading task: the model 
retrieves a word-form and utters a response.

Simulation Results & Discussion

    Figure 4.1A presents the fit of the Stroop model for both the color naming task and the 
word reading task (Rmse=33ms, R2=0.93) on the data from Glaser and Glaser (1982, Experiment 
1 for SOA=0). The model captures both Stroop interference in the incongruent color naming 
condition, and facilitation in the congruent color naming condition. In addition, the Stroop 
asynchrony between color naming and word reading can be observed. Given our hypothesis 
that the Stroop effect and picture-word interference are manifestations of the same process, 
the challenge is to demonstrate that both effects can be fitted with the same model. Figure 
4.1B presents the model fit on picture-word interference response time data (W. R. Glaser & 
Düngelhoff, 1984, Experiment 1 for SOA=0). Similar to the fit of the Stroop task, all the behavioral 
patterns (interference, facilitation, and asynchrony) are captured by the model (Rmse=60ms, 
R2=0.85). The only difference between the two simulations underlying Figure 4.1 is a single 
parameter that controls the speed of processing of the stimulus that is adjusted to reflect 
the differences in stimuli between the two tasks: The processing speed was set lower for the 
picture-word stimulus than for the color-word stimulus, to reflect that visual processing of 
pictures is slower than visual processing of colors.

    Following our assumption that semantic interference is an effect of competition during 
the retrieval of declarative facts, we analyzed the amount of interference by comparing 
the duration of declarative memory retrievals between conditions. Thus, in our model, 
interference constitutes the difference in retrieval times. Figure 4.2 presents the difference in 
memory retrieval time between the model’s incongruent and congruent conditions, for both 
the Stroop task and the pwi task. Following others (e.g., Fagot & Pashler, 1992; Ferreira & 
Pashler, 2002; Jolicoeur & Dell’ Acqua, 1998; McCann & Johnston, 1992; Pashler, 1994; VanSelst 
& Jolicoeur, 1997) we assume that the bottleneck that Fagot and Pashler (1992) and Dell’Acqua 
et al. (2007) hypothesize is located after the perceptual encoding stage. Figure 4.2 shows the 

Figure 4.1. Data and Model for the Stroop task (A) and pwi (B). The Stroop data are from (M. O. Glaser & Glaser, 1982, Experiment 1 for 
SOA=0), the pwi data are from (W. R. Glaser & Düngelhoff, 1984, Experiment 1 for SOA=0).
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proportion of interference that is located before and after the hypothesized bottleneck. In the 
model of the Stroop task, 9% of the interference is located before the bottleneck, and 91% is 
located after the bottleneck. For pwi, these percentages are different. 18% of the retrieval-
induced interference is located before the bottleneck, which is twice as much as the early 
interference in the Stroop task. This is in line with Dell’Acqua et al.’s conclusions, because 
more interference in the picture-word interference simulation is indeed located early in the 
processing stream. 
    Simulation 1 shows how a single cognitive model can account for pwi and the Stroop 
effect. Although this result has been obtained before (e.g., Cohen, Dunbar, & McClelland, 1990; 
Roelofs, 2003), the model presented here provides insights in the temporal distribution of the 
interference patterns. The model assumes that interference is a consequence of competition 
during memory retrieval, and shows that different processing speeds for different stimulus 
types (pictures vs. colors) mediates the competition in subsequent stages of the task. 
    The ability to model both a Stroop task and a pwi task with a single model, supports 
the view that both tasks are manifestations of the same interference process (e.g., MacLeod, 
1991). By studying the memory retrieval times in different processing stages, we showed that 
different stimulus features may lead to a different temporal distribution of the interference 
patterns. This result leaves the puzzling observation by Dell’Acqua et al. (2007) that Stroop 
and pwi behave differently under PRP conditions. In the next section, our model will be 
extended to account for the PRP experiments by Fagot and Pashler (1992) and Dell’Acqua et al. 
(2007). We will demonstrate that a difference in stimulus features between colors and pictures 
may lead to different behavior in the Stroop and pwi tasks under PRP conditions.

  Simulation 2: A Cognitive Model of Interference during PRP

    The cognitive model presented above can account for prototypical Stroop and pwi data 
sets (M. O. Glaser & Glaser, 1982, Experiment 1 for SOA=0; W. R. Glaser & Düngelhoff, 1984, 
Experiment 1 for SOA=0). Moreover, analysis of the locus of interference in the model suggested 
that the magnitude of the interference effects differed between stages of the model, as well as 
between tasks. To demonstrate that the different loci of interference may appear as different 
response latencies under PRP conditions, we added PRP conditions to the model. With this 
extention, we can assess whether the results of Fagot and Pashler (1992) and Dell’Acqua et al. 
(2007) can indeed be explained with a single mechanism.

 - Stroop and picture-word interference are two sides of the same coin -

Figure 4.2. The proportion of interference before and 
after the hypothesized bottleneck. This is calculated 
as the proportion in each stage of the memory 
retrieval time for the incongruent trials minus the 
memory retrieval time for the control trials.
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Model of Fagot and Pashler (1992, Experiment 7)

    Following the experimental setup by Fagot and Pashler (1992), each trial started with a 
tone classification task. In this task, the participants were instructed to classify presented 
tones as either having a low or a high pitch by pressing one of two buttons. This additional 
task was added to the model using ACT-R’s standard auditory perception module. As soon as 
the auditory system perceived a tone, a retrieval was initiated for a tone-to-button mapping. 
Finally, the model made a motor response to press the correct button. The model’s processing 
of the Stroop stimulus only commenced after the response to the tone was selected, as was 
required according to the instructions provided to the participants. Note that this does not 
mean that the button press has to be finished, but that the information that has to be sent to 
the motor system has become available. As in the Fagot and Pashler experiment, the delays 
between tone onset and Stroop stimulus were -50ms, 50ms, 150ms, and 450 ms. All other 
aspects of the model were kept constant, apart from the estimation of a fixed intercept for 
voice-key responses. To account for differences in naming speed between this experiment and 
the previously modeled datasets, we estimated the voice-key response parameter at 167 ms 
(see also Meyer & Kieras, 1997a; Salvucci & Taatgen, 2008).

  Simulation Results & Discussion
    The model fits of the PRP Stroop experiment (Fagot & Pashler, 1992, Experiment 7) are 
presented in Figure 4.3. The model shows the same latency effects as Fagot and Pashler 
observed (Rmse=16ms, R2=1.00). First, latency in the tone classification task is not affected 
by the interval between tone and the combined picture-word stimulus. In discussion of their 
paper, Fagot and Pashler attribute this to the instruction that was given to the participants to 
always respond to the tone first and to the Stroop stimulus second. We simulated this in the 
model by requiring a response to be selected for the tone before the model could commence 
with the response selection for the Stroop task.

    Second, the model shows a decrease in reaction time as a function of an increasing SOA, 
similar to the typical PRP effect found in the data. The model achieves this because as the 
interval between the two tasks increases, the probability that both tasks need one of the 
ACT-R modules at the same time decreases. As only one task can use a module at a certain 

Figure 4.3. Model fit to the data of Fagot and Pashler (1992). Stroop denotes responses on the Stroop task, Tone denotes responses 
on the tone classification task.
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time, one of the tasks has to wait when two parallel requests are made to a module. Also, as 
the interval between the tasks increases, the delay due to the task instruction regarding the 
response order is less. That is, if the Stroop stimulus is presented later (that is, when the SOA 
is longer), the delay for the response is shorter. This is illustrated in Figure 4.4, which presents 
Gant diagrams of the module-specific processing for both tasks. The dark grey bars represent 
the tone classification task, and the light grey bars represent the Stroop task. In the upper 
panel of Figure 4.4, the SOA between the tasks is long, which is reflected by the late activity 
in the visual module of the model. In the lower panel, the SOA is short. Initially, the Stroop 
stimulus is perceived, as indicated by the activity in the visual module. However, the model 
withholds further Stroop processing until the response in the tone classification task has been 
initiated. Thus, parallel to activity in the manual module, representing the button press in 
response to the tone classification, the model initiates response selection in the Stroop task.
    Finally, the model shows no effect of SOA on the size of the Stroop effect, which has been 
interpreted as evidence for a late locus of the Stroop effect (Dell’Acqua et al., 2007; Fagot & 
Pashler, 1992). This is because the interference in the Stroop task is mainly located in the response 
selection stage (see Figure 4.2), which does not overlap with the tone classification task.

Model of Dell’Acqua et al. (2007)

    The model of the Dell’Acqua et al. experiment is a direct combination of the pwi model 
described under Simulation 1 and the PRP aspects described above. To match Dell’Acqua et 
al.’s experiment, we changed the SOAs to 100ms, 350ms, and 1000 ms and we extended the 
tone classification task to three options to mirror the exact experimental setup of Dell’Acqua 
et al. The single free parameter, the voice-key intercept, was estimated at 212ms.

  Simulation Results & Discussion
    The model again found no effect of SOA on tone classification latency and the PRP effect 
(manifested as decreased response times on the pwi stimulus as SOA increases). In addition, 
this time the models also shows an increase in interference with increased SOA (Figure 4.5, 
Rmse=61ms, R2=1.00), which is in line with the result from Dell’Acqua et al. (2007). Because 
the interference is primarily expressed during the perceptual encoding stage, postponement 
of the response on the pwi stimulus (which happens for short SOAs) results in a decrease 
(or disappearance) of the interference effect. This is depicted in the Gant diagram in Figure 
4.6. The upper panel shows the presentation of a neutral word-picture pair, resulting in fast 
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Figure 4.4. Gant diagrams of the model’s 
processing of the tone classification task 
(dark grey) and the Stroop task (light grey). 
T2 onset indicates the onset of the Stroop 
stimulus. Each line denotes activity in a 
specialized module, indicated on the left. 
In the short SOA condition, retrieval of the 
appropriate response in the Stroop task has 
to wait until the retrieval module is available. 
The arrows indicate the responses for the 
two tasks, after which the output modules 
remain occupied with finalizing the motor 
action required for the response.
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perceptual encoding. However, although all information is available for further processing, 
production rules associated with the pwi task will not be selected because of the instruction 
to first finish the tone classification task. In the lower panel of Figure 4.6, an incongruent 
word-picture pair is presented, which results in a longer perceptual encoding stage. However, 
as the pwi production rules have to wait for the tone task, this increased processing time does 
not affect the response latency. Of course, if the SOA is long, the interference effect is still 
apparent in the pwi response latency because the increased latency in the perceptual system 
is not absorbed in the delayed response (Figure 4.4).

Discussion

    In this study, we reconciled the empirical findings of Dell’Acqua et al. (2007) with the vast 
body of evidence towards a one-mechanism theory (as reviewed by MacLeod, 1991). Using 
computational cognitive modeling, we demonstrated that it is possible to account for both 
Stroop and picture-word interference effects in a single mechanism model. Besides this point, 
the model contributes to other discussions as well.
    The first discussion our modeling resutls contribute to relates to theoretical accounts of 

Figure 4.6. Gant diagrams of the model’s processing 
of the tone classification task (dark grey) and the 
pwi task (light grey). Each line denotes activity in 
a specialized module, indicated on the left. The 
processing times of the pwi task are the same, 
irrespective of the duration of the perceptual encoding 
stage, manifested as activity in the visual module. 
The arrows indicate the responses for the two tasks, 
after which the output modules remain occupied with 
finalizing the motor action required for the response.

Figure 4.5. Model fit to the data of Dell’Acqua et al. (2007). pwi denotes responses on the pwi task, Tone denotes responses on the 
tone classification task.



77

the PRP effect. The model implemented the PRP effects by assuming an adaptive executive 
control structure (Meyer & Kieras, 1997b) that controls the order in which the two responses 
are made. After the perceptual encoding stage of the second task (in this case, encoding of 
the Stroop or the pwi stimulus), the control structure locks out execution of the second task 
until the response of the first task has been initiated. This assumption reflects the typical task 
instructions given in PRP tasks, in which participants are either instructed to respond to the 
first task before the second task or the importance of the first task is stressed. In the PRP-
Stroop and PRP-pwi experiments conducted by Fagot and Pashler (1992) and Dell’Acqua et al. 
(2007) the correct response order was stressed as well. 
    Although the model diverges in this respect from the standard central bottleneck model 
of three stages (input, bottleneck, output, e.g, Ferreira & Pashler, 2002; McCann & Johnston, 
1992; Pashler, 1994; Welford, 1967, 1980), it does not refute the logic of the experimental PRP 
design. The executive control structure creates a cognitive slack time as well in which the initial 
interference can be absorbed, similar to the central bottleneck theory. However, the models 
presented here do support the view that such a bottleneck is not a necessary assumption for 
the PRP effect (Meyer & Kieras, 1997b).
    Because the model implements the executive control theory of the PRP effect, we are in 
a unique position to predict behavior in a PRP tasks in which response order is not stressed. 
If the model’s executive control structure is relaxed, that is, if the model is not constraint 
in the response order, the model’s behavior does not show a PRP effect. Indeed, dual-task 
experiments have been conducted in which response order was not a factor, and these do 
not display the PRP effect (e.g., Greenwald & Shulman, 1973; Hazeltine, Teague, & Ivry, 2002; 
Schumacher, Lauber, Glass, Zurbriggen, Gmeindl, Kieras, & Meyer, 1999; Schumacher, Seymour, 
Glass, Fencsik, Lauber, Kieras, & Meyer, 2001; but see Levy & Pashler, 2001; Ruthruff, Pashler, 
& Klaassen, 2001 for opposing evidence). One caveat that should be made however is that 
the participants in these studies were trained to perform the task concurrently. Therefore, it 
might also be that practice, not response order was the main cause of the decrease of the PRP 
effect. This explanation would also be in line with experimental and model findings that show 
that the PRP effect also decreases with practice in a pwi variant of the task (Van Maanen, Van 
Rijn, & Taatgen, submitted).
    Another discussion related to the picture-word interference effect is concerned with the 
locus of the interference. The early locus that was reported by Dell’Acqua et al. (2007), might 
suggest that theories that interpret pwi as a lexical selection effect (e.g., Levelt, Roelofs, & 
Meyer, 1999; Roelofs, 1992) are wrong. This view is supported by evidence that lexical selection 
is subject to central processing and therefore does not take place before the central bottleneck 
in the mental processing stream (Ferreira & Pashler, 2002). By contrast, our model assumes 
that interference is distributed over many stages, and that depending on the task and on 
task instructions lexical selection is either a key process, or appears as one of the many sub 
processes. This is in line with the observation that the Stroop asynchrony is specific to the 
verbal response modality. If manual responses are required, less emphasis is placed on the 
lexical selection, and Stroop asynchrony is often absent (MacLeod, 1991).
    A third discussion our modeling efforts contribute to is the discussion between single-
stage and multiple-stage accounts of semantic interference. The hypothesis that semantic 
interference might be distributed over different processing stages is not new (e.g., McClelland, 
1979). Multiple studies (e.g., De Houwer, 2003; N. Janssen, Schirm, Mahon, & Caramazza, 
2008; Risko, Schmidt, & Besner, 2006; Schmidt & Cheesman, 2005; Van Veen & Carter, 2005) 
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show that the locus of interference is not fixed for a particular phenomenon. Following the 
assumptions underlying our model, we postulate that semantic interference is associated 
with a particular sub process: the retrieval of declarative knowledge from memory instead of 
with the outcome of that process during a specific stage of the task. This assumption is in line 
with studies that suggest a dissociation between stimulus-related interference and response-
related interference in the Stroop task (e.g., De Houwer, 2003; Risko, Schmidt, & Besner, 2006; 
Schmidt & Cheesman, 2005).

Conclusion

    The most important point that our computational modeling efforts make, is that the 
observed difference between the Stroop effect and pwi effect under PRP conditions should 
not necessarily be interpreted as different cognitive mechanisms. Instead, interference may 
be driven by one single mechanism, if we assume that different types of stimuli are encoded 
at different speeds. With this assumption, a single computational model could account for the 
data that Dell’Acqua et al. (2007) and Fagot and Pashler (1992) observed, while doing justice 
to the many theoretical accounts that assume that pwi and Stroop are two manifestations of 
the same mechanism.
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    In Part I, we studied how the context of a stimulus influences the retrieval processes that 
are triggered by that stimulus. For this purpose, we studied small-scale behavioral effects and 
provided explanations for the observed effects by extending the declarative memory system 
of the ACT-R architecture of cognition. The most important conclusion that can be drawn from 
Part I is that memory retrieval is not a static, ballistic process, but rather a dynamic process 
that is adaptive to current environmental demands.
    In Part II of this thesis, we will apply this insight in a larger context, and study how 
prior knowledge and the current environment interact in predicting which concepts will be 
retrieved from memory. The cognitive models that we will develop in this Part, will be used for 
recommending relevant items, first in the cultural heritage domain (Chapter 5), and then in 
the domain of scientific literature search (Chapter 7). This way, we will explore whether these 
so-called recommender systems may be based on principles from cognitive science. That is, 
the main concern in Part II of this thesis is whether in principle it is possible to develop useful 
recommender systems that incorporate models of memory. Part I of this thesis will act as the 
theoretical basis of these models, in the sense that many concepts developed or discussed in 
Part I will be applied in the context of cognition-based recommender systems in Part II.
    Chapter 5 will discuss how a memory model can be used to develop an artwork 
recommender system that selects artworks for presentation that are interesting to an 
individual museum visitor (the Virtual Museum Guide or vmg). The vmg combines the 
perceived interests from its users with its knowledge on the museum’s collection to provide 
a personalized museum tour through the online collection of the Rijksmuseum Amsterdam 
(www.rijksmuseum.nl).
    Chapter 5 will also discuss the results of a user study that we performed with the vmg. 
In this study, the visitors that were presented a tour constructed by the vmg did not rate 
the tour as better suited to their interests as visitors who saw non-individualized tours. This 
unexpected result may be due to two assumptions that we made in developing the vmg. 
Chapters 6 and 7 report work that assesses the effects of these assumptions. 
    The first assumption underlying the work in Chapter 5 is that binary feedback 
(“Interesting” vs. ”Not interesting”) given to the artworks presented by the vmg is sufficiently 
detailed to develop an accurate user model of the visitor that reflects his or her art interest. 
Given that no effect of personalization was found, it might be that this measure was too 
coarse. In Chapter 6 we tested whether eye gaze is a better measure of interest in artworks 
than binary feedback. In Chapter 6, we will present a study in the cultural heritage domain, in 
which the visitor’s eye gaze is used to determine which information on the observed artwork 
is presented next.
    The second assumption we implicitly made in developing the vmg, is that the interest of 
museum visitors is mainly related to the to the cultural-historical value of the artwork. This was 
at least partly due to the annotations of the Rijksmuseum that focus mainly on the cultural-
historical values. As we based our recommendations on these annotations, we modelled the 
vmg’s knowledge on the museum’s collection as a semantic network (Collins & Loftus, 1975; 
Quillian, 1968) of cultural-historic and art-related concepts. Thus, we implicitly assumed that 
visitors would have a similar interest in artworks that had similar cultural-historical values. 
This means that we ignored other aspects of the artworks that also may have influenced visitor 
interest. For example, the use of certain colors, painting or crafting techniques, or a particular 

- Introduction to part ii -
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arrangement of figures in the scene may also contribute to the appeal a work of art may have 
to a visitor. These aspects relate to the expressiveness of an artwork (Arnheim, 1954/1974), 
which is not easily described. For this reason, we turned to the domain scientific literature 
search (Chapter 7), in which the relation between interest and semantic similarity is clearer. 
That is, when searching for scientific literature, it is highly likely that a scientist is interested in 
those papers that share certain keywords with the scientists own published work.
    In Chapter 7, we will discuss a recommender for scientific papers that is based on formal 
models of declarative memory, the Personal Publication Assistant (Publication pa). The 
chapter discusses how the history of usage of words in published abstracts of researchers can 
predict which abstracts an individual researcher currently finds of particular interest. We will 
present an experiment that shows that participants preferred abstracts that were selected 
for them by the Publication pa to abstracts that the Publication pa deemed uninteresting for 
them.
    In Chapter 8, we will study the performance of a memory-based recommender system for 
scientific literature search, by comparing it to a set of often-used decision-making algorithms. 
The reason for this comparison is that, although we refer to scientific literature search as a 
problem of information selection, it can also be perceived as a problem in the broader class of 
decision-making problems. That is, for every abstract, the recommender system has to decide 
whether to recommend it. To compare our system with a broad array of alternative techniques, 
we chose different types of alternative algorithms. Some of the algorithms in the comparison 
are chosen because they provide a performance benchmark in the decision-making literature 
(e.g., take-the-best or multiple regression, Gigerenzer, Todd, & the abc Group, 1999). Others 
are included because they share features with the Publication pa. The results of Chapter 8 
show that the Publication pa outperforms the other competitors that were trained on the 
same data set for some users, but is outperformed for other users.
    Based on the results obtained in Chapters 7 and 8, it seems that it is possible to develop a 
useful recommender system based on a memory model. However, it is important to consider the 
domain for which the recommender system is being developed. In particular, it is important to 
assess whether the cues that are going to be stored in the declarative memory model represent 
the relevance of the items that may be selected. In the domain of literature search, this is the 
case, resulting in a positive evaluation of the memory model. However, in the cultural heritage 
domain, this seems not to be the case (Chapter 5). Here, the recommendations of the vmg 
did not align with the interests of the museum visitors, possibly because the cues, cultural-
historic concepts, did not represent what museum visitors find important when perceiving a 
work of art.
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work recommendation, LWA 2007. Halle (Saale), Germany.

Introduction

    With the advent of online information presentation, cultural heritage institutions are 
starting to make their collections available online. Many museums already have websites 
displaying digital reproductions of parts of their collection. Some of these online repositories 
are annotated, making it possible to search for specific artworks: For example, the website of 
the Amsterdam Rijksmuseum in The Netherlands is driven by an ontology on art and artists. 
    With the online presentation of cultural heritage content, new issues arise. While one of 
the advantages of digitalization and online presentation is the greater accessibility of cultural 
heritage (e.g., because of better search capabilities, Van Ossenbruggen, Amin, Hardman, 
Hildebrand, Van Assem, Omelayenko, Schreiber, Tordai, De Boer, Wielinga, Wielemaker, 
De Niet, Taekema, Van Orsouw, & Teesing, 2007), one of the drawbacks is that there is less 
control over what is presented to an individual visitor. Cultural heritage institutions have as 
one of their aims to educate people on history and culture, which becomes harder to realize 
once the contents of their collection is accessible from anywhere; They can no longer cater 
the individual interests of museum visitors while maintaining coherence in the presented 
information. Besides the decreased control that cultural heritage institutions experience, 
finding interesting artworks in an online museum poses a problem. Just like in a real museum, 
most online museum visitors are not aware of their specific interests or of the exact contents 
of the museum’s collection (Bell, 2002). Instead, they only have a general impression of what 
they want to see and what is available. This makes it difficult to adjust the presentation of the 
artworks to the visitors’ personal interests. 
    Consider the example of a professional, educated museum guide, touring a party of 
interested visitors through a museum. The guide can (and has to) select information on the 
artworks from her extensive knowledge that relates to the personal interests of the party, 
and can choose which artwork to present next from the collection on display. To reproduce 
a similar personal experience in an online setting, personal interests as well as relationships 
between artworks have to be known. A successful recommender system for the cultural 
heritage domain should incorporate both issues mentioned above: On the one hand, it should 
take care of the educational role of a cultural heritage institution, and on the other hand it 
should provide an enjoyable and personalized experience.

Overview

    In this chapter we will present an online recommender system that presents artworks 
from the Amsterdam Rijksmuseum collection. In our approach we will try to model the way 
a human museum guide will behave while touring a visitor through a museum. In order to 
achieve this, we will ground the structure of the recommender system in cognitive theories 
(Anderson, 2007a).
    To stress the analogy with a museum guide touring a group of visitors through a museum, 
we termed the system the Virtual Museum Guide (vmg). The vmg combines the relationships 

Artwork selection for a Virtual 
Museum Guide

 - Artwork selection for a Virtual Museum Guide -



82

- CONTEXT EFFECTS ON MEMORY RETRIEVAL: THEORY AND APPLICATIONS -

that artworks have to each other with the personal interests of the visitor to arrive at suitable 
art recommendations. We will first give an overview of the most important aspects of the 
system, and then discuss each aspect in more detail.
    In the system we will present here, the artworks presented online are accompanied by 
sets of keywords that describe the interesting aspects of the artwork. As these keywords 
are provided by the museum’s art experts, expert knowledge on the artworks and their 
interrelations are contained therein. We have applied statistical inference tools from natural 
language research (Landauer, Foltz, & Laham, 1998) to infer how the artworks relate to 
each other (details will be provided in the section on the Knowledge Base below). This way, 
all artworks are related to each other with an association value indicating the relevance of 
one artwork for another. This structure can be thought of as a semantic network or spreading 
activation network (Collins & Loftus, 1975; see also Niessen, Van Maanen, & Andringa, 2008; 
Quillian, 1968).
    For the system presented here we opted for the use of an explicit interest indicator 
using an Interesting and a Not interesting button. Each time a user indicates interest in an 
artwork by clicking one of the two interest-buttons, this feedback is stored as a declarative 
chunk in the vmg’s memory. All chunks representing a visitor’s feedback form a user profile 
of that particular visitor (the Visitor Model). A new artwork will be selected by computing 
the most relevant and interesting artwork, given the current state of the Visitor Model. First, 
the visitor’s interest in the already visited artworks will be assessed. Second, a spreading 
activation algorithm (described in more detail below) is used to compute a combined measure 
of interest and relevance.

The Rational Analysis of Memory

    The Virtual Museum Guide’s memory is based on a formal theory of human declarative 
memory, referred to as a rational analysis of memory (Anderson & Schooler, 1991), which we 
will apply for the development of a recommender system. The key idea of the rational analysis 
of memory is that human memory is optimally adapted to deal with information that has been 
presented in the past (Anderson & Milson, 1989; Anderson & Schooler, 1991). Anderson and 
Schooler (1991) demonstrated that for each declarative fact stored in memory, the probability 
that that piece of information will be needed in the immediate future reflects the history of 
usage of that piece of information. That is, information that has been presented recently is 
more likely to be needed again than items that have been presented in the more distant past. 
Also, information that has been presented more frequently is more likely to be needed again. 
Often, the probability that information will be needed in the immediate future is represented 
by a quantity called activation. The declarative memory representation consists of small 
pieces of declarative knowledge, called chunks, which together represent a person’s long-
term memory. 
    The two environmental observations (recency and frequency) have crystallized (Anderson 
et al., 2004) into the following equation:						    
										        
		     (equation 5.1)

    Bi represents the base-level activation of a chunk (indicated by the index i). Equation 5.1 
captures the effect of frequency of presentation by summing over multiple presentations, and 
the effect of recency of presentation by dividing by the square root of each presentation time 
lag (represented by tj), that is, the time since each presentation of a chunk. This equation 

Bi = ln 1
t jj=1
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has been used in numerous studies predicting memory retrieval effects, both for theoretical 
purposes (e.g., Anderson et al., 1998; Van Maanen & Van Rijn, 2007b) and for application-
based research (e.g., Pirolli, 2005; Van Maanen et al., in press).
    Besides the frequency and the recency with which chunks are encountered, also the 
contexts in which they are encountered add to their activation. The context effects between 
chunks are represented by an association value that reflects the likelihood that two chunks 
have co-occurred in the past (Anderson & Milson, 1989). The association between chunks 
predicts how relevant each chunk is in the context of another chunk. 
    We used a rational analysis of memory to develop a model of a museum guide. The vmg 
will remember (and forget) the interests of the visitor in a way that is similar to human behavior. 
That is, the vmg will compute which artworks are relevant in the context of its recollection of a 
visitor’s previous feedback. We incorporated the association between artworks by computing 
the semantic similarity between two artworks, based on the likelihood of co-occurrence of 
certain keywords that relate to the artworks.

  Virtual Museum Guide
    Figure 5.1 presents a flowchart of the Virtual Museum Guide. We start out with extraction 
of a Resource Description Framework (rdf) specification of each artwork from the online aria 
(Amsterdam Rijksmuseum InterActief) repository, which can be inspected at http://media.
cwi.nl/sesame/11. The rdf specification is transformed to an associative network structure, 
called the Knowledge Base. The Knowledge Base contains the knowledge the vmg has on the 
artworks and their interrelations. Besides the knowledge on the artworks, the vmg maintains 
a user profile, called the Visitor Model. The Visitor Model incorporates which artworks the 
visitor has already visited, as well as the interests the visitor had in those. Based on both 
knowledge sources, the vmg selects a suitable artwork and displays it for the visitor, together 
with some background information on the artwork.

Knowledge Base

    To be able to recommend a sequence of paintings based on their similarity, we chose to 
represent the artworks in the Knowledge Base by an associative network structure (Collins 
& Loftus, 1975; Quillian, 1968). The association values in the network indicate similarity: The 
stronger the association between two artworks, the more similar they are. The associative 
values in the network are based on the frequency statistics of the keywords that occur in 
the rdf specifications of the artworks. The general idea is that two paintings of which the 
keywords greatly overlap might be considered similar to one another.
    To determine the similarity of artworks, we applied Latent Semantic Analysis (Deerwester, 
Dumais, Furnas, Landauer, & Harshman, 1990; Landauer & Dumais, 1997; Landauer, Foltz, & 
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Figure 5.1. A flowchart of the Virtual Museum Guide.
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Laham, 1998) on the scaled frequency vectors representing the artworks. For this we used the 
standard tf-idf weighting scheme (Salton & McGill, 1983), which scales the frequency of terms 
in a document by the number of documents in which the terms occur. In the vmg’s knowledge 
base, this means that the frequency of keywords in all rdf specifications is taken into account.
    At this point, it is important to note that LSA is more than just a correlation of frequency 
counts (Deerwester et al., 1990; Landauer & Dumais, 1997; Landauer, Foltz, & Laham, 1998). 
Instead, LSA depends on a mathematical analysis (singular value decomposition) that is capable 
of a higher-order inference. For example, let us assume that the specification of Rembrandt’s 
The Night Watch contains the key word claire-obscure, and Gerard van Honthorst’s The Merry 
Fiddler contains the key word caravaggists. The human museum guide knows that these two 
artworks are similar, because of the two terms are used in similar cultural-historic contexts.12 
    If caravaggists and claire-obscure co-occur in similar, yet other, rdf specifications, LSA 
is capable of making a similar inference as the human museum guide. For example, the rdf 
specification of Dirck van Baburen’s Prometheus Being Chained by Vulcan might mention the 
keywords caravaggists, light, dark, and contrast, and the rdf specification of Rembrandt’s Ecce 
Homo might contain the keywords light, dark, contrast, and claire-obscure. Because both claire-
obscure and caravaggists co-occur with the keywords light, dark, and contrast, LSA infers that 
they are related. In a sense, LSA estimates the likelihood that the word claire-obscure would 
occur in the specification of The Merry Fiddler, and the likelihood that caravaggists would occur 
in the specification of The Night Watch. For a more detailed, but still non-technical introduction 
to Latent Semantic Analysis, the reader is referred to Landauer, Foltz, and Laham (1998).
    After LSA-values have been computed for all keywords and for all rdf specifications, 
each rdf specification can be represented by a vector of LSA-values for that specification. The 
similarity between two rdf specifications is computed by calculating the cosine between the 
vectors (Salton, Wong, & Yang, 1975). The cosine between two vectors represents their angle, 
which indicates how much the rdf specifications differ.

Visitor Model

    To select relevant artworks, the long-term, factual knowledge that is stored in the 
Knowledge Base, is combined with vmg’s knowledge on visitor interests, stored in the Visitor 
Model. The rationale of the Visitor Model is that a museum guide perceives how the visitor 
feels about a particular artwork, but forgets these interests over time, similar to declarative 
chunks. Therefore, the perceived interest (PIi) in a particular artwork i may be represented by 

		  (equation 5.2)

in which ti is the time stamp of the presentation of an artwork, and fbi represents the feedback 
that the visitor provided when he or she was presented with that artwork. If the artwork 
appeals to the visitor, fbi = 1; if the visitor is not interested in the artwork, fbi = -1. Because 
visitors encounter each artwork only once, the summation that is present in Equation 5.1 has 
been left out.
    Figure 5.2 presents an example of the dynamics of the perceived interest in two different 
artworks. When the visitor sees Artwork A, he or she indicates interest. This is represented by 
the positive PI-value. However, over time, the vmg forgets the attitude that the visitor had 
towards the artwork, indicated by the decay of PI. In this example, the visitor disliked Artwork 
B, which is indicated by the negative PI-value. This PI-value also decays, but increases to 
indicate that the amount of negativity decreases.

PIi = ln fbi
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Art Selection

    The selection of artworks depends on a weighted scheme of visitor interest and similarity 
between artworks. Thus, for the selection of a new artwork for presentation, the spreading 
activation from already visited art is computed. Art that is rated as uninteresting spreads 
negative activation (because fbi = -1); art that is rated as interesting spreads positive activation 
(because fbi = 1). In addition, the spreading activation is scaled according to the similarity 
between artworks. Thus, artworks that are highly similar spread relatively more activation 
towards each other. Because of the inclusion of the recency component in Equation 5.2, the 
influence of recently presented artwork is higher than the influence of artwork presented 
longer ago. These considerations result in the following equation (Equation 5.3), in which Ri 
represents the relevance of a certain artwork i, PIj represents the perceived interest in already 
presented artworks (j), and Sji represents the similarity between artworks i and j.
									       
	             (equation 5.3)

    This equation represents a match between the Visitor Model, represented by the 
perceived interests, and each artwork that has not yet been presented. The artwork with the 
highest relevance will be selected next for presentation.
    Because PIj can be either a positive value or a negative value (depending on the visitor’s 
feedback), artworks that were considered uninteresting decrease the relevance of related 
artworks, while artworks that were considered interesting increase the relevance of related 
work. Thus, the relevance of an artwork will be high if a visitor expressed interest in related 
artwork, and did not expressed disinterest in related artwork. Similarly, the relevance will be 
low (that is, negative), if a visitor only expressed disinterest in related artworks. 
After an artwork has been selected for presentation, a web page will be generated that 
contains a digital reproduction of the selected artwork and some information on the artwork 
(Figure 5.3). These snippets of information are taken from the Rijksmuseum database, to 
ensure its correctness and relevance.

  Experiment
    In this section, we test whether the combination of an activation-based visitor model 
and an associative network-like Knowledge Base is useful for art recommendations. To this 
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Figure 5.2. An example of the dynamics of the perceived 
interests. The visitor has expressed interest in artwork A and 
disinterest in artwork B. The perceived interest decays over 
time, decreasing the influence it has on the art selection.
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end, we have presented people with artworks that were either selected by the vmg or not, and 
had them indicate how much they appreciated the selection. The idea is that after a training 
phase, the vmg should be capable of inferring the participants’ interests from the feedback 
they had already provided. Therefore, artworks that are selected by the vmg should be better 
aligned with the participants’ interests than when the artworks are randomly selected. 
    To study this hypothesis, we developed three conditions. The first two conditions used 
the cognitive model outlined above (they were termed the Knowledge condition and the 
vmg condition, respectively); in the third condition the artworks were selected randomly 
(the Random condition). In the Knowledge condition, the model incorporates the factual 
knowledge of the museum guide (the Knowledge base), but did not take the visitor feedback 
into account. In the vmg condition, the model weights perceived interests and the similarity 
between artworks. 
    The assumption is that user satisfaction in this study will correlate with the feedback 
that the participants will give on the presented artwork. If a participant is satisfied with a 
certain art selection algorithm, he or she will give more positive feedback on the artworks than 
negative feedback. By analyzing the feedback per condition, we can probe the user satisfaction 
with a particular selection algorithm. We thus hypothesize that the participants will provide 
more positive feedback in the vmg condition than in the Knowledge condition, and even less 
in the Random condition. 
    In addition, the participants had to indicate their agreement with a set of statements 
for each condition to determine their attitude towards the different art selection algorithms. 
A second hypothesis is that participants have a more positive attitude towards the vmg 
condition than to the Knowledge condition, and again the least positive attitude towards the 
Random condition.

Participants

    Twenty-five undergraduates (19 female) from the University of Groningen participated 
for course credit. The participants’ age range from 19 to 25 (mean of 21.5). All had normal or 
corrected-to-normal vision. All were proficient speakers of English.

Design & Procedure

    The participants started with a training block of twenty art presentations of historical 
paintings. Of these, five presentations included landscape paintings, five presented still lifes, 
five were portraits of historical figures, and five presented genre pieces13. The set of training 
art presentations was the same for all participants, but the order was randomized. The 
experimental block consisted of three sequences of art presentations, each consisting of ten 
items. The sequences differ as to the art selection algorithm used. The order of the selection 
algorithms was different between participants. 

Figure 5.3. The interface of the Virtual 
Museum Guide. This interface has 
been used in the training block of the 
Experiment. In the experimental block, the 
feedback options were extended to six.

13. Genre pieces are 
paintings that depict 
scenes from everyday life. 
The most famous example 
of this style is The Milkmaid 
by Johannes Vermeer.
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    In the Random condition, ten art presentations were randomly selected from the complete 
aria database. In the Knowledge condition, ten semantically related art presentations were 
selected. In the vmg condition, the ten art presentations were selected based on the semantic 
similarity and the feedback that participants gave in the training block (that is, the vmg was 
used to select the artworks).
    Each trial consisted of the presentation of an artwork with the accompanying background 
information, taken from the aria database (Figure 5.3). The display also contained feedback 
buttons that the participants could press to indicate his or her attitude towards the artwork 
presentation. In the training block, there were two feedback buttons (labeled Interesting and 
Not interesting). In the experimental block, there were six feedback buttons, ranging from 
Extremely interesting to Extremely uninteresting. 
    Each sequence of ten artwork presentations ended with a small questionnaire consisting 
of six statements. Three statements related to the associative nature of the sequence 
of artworks, while the other three statements related to the personalization aspects. 
The statements were adapted from a questionnaire on usability aspects of an artwork 
recommender (Cramer, Evers, Ramlal, van Someren, Rutledge, Stash, Aroyo, & Wielinga, 
2008). The participants could indicate their agreement with the statements on 6-point Likert-
type scales, ranging from Very strongly agree to Very strongly disagree (0-5). The statements are 
provided in Table 5.1.
    The participants were tested in pairs, and were allowed to take as much time as needed 
to read the information and study the artwork.

Results

    One participant was excluded for an excessive negative attitude (all responses were 
in the two most negative feedback options, of which 90% was in the single most negative 
feedback option). The feedback per condition of the remaining participants is presented in 
Figure 5.4. An analysis of variance did not show any effect of our condition manipulation 
(m

vmg
=2.49; mKnowledge=2.40; mRandom=2.48; F(2,23) < 1). The same general result was obtained 

when analyzing the statements. Figure 5.5 presents the scores on the Likert scales for each 
statement. For this analysis, the scores on Statements 2, 4, and 6 are inverted. Therefore, 
higher scores reflect a more positive attitude towards the experimental manipulations than 
lower scores. For analysis, we aggregated the values of the three Associative items into one 
value, as well as the values of the three Personalization items. An analysis of variance with 
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13. Genre pieces are 
paintings that depict 
scenes from everyday life. 
The most famous example 
of this style is The Milkmaid 
by Johannes Vermeer.

       Type      Statement
1.    Associative     The artworks that this museum guide selects relate to each other.
2.   Associative     I think that this museum guide has no consistent story line in mind 
      when selecting artworks.
3.   Associative     I think the artworks that this museum guide selects form a coherent 
      sequence.
4.   Personalization     I think this museum guide does not understand why I like certain 
      artworks I rated as interesting.
5.   Personalization     I think that the artworks that this museum guide selects correspond 
      to my art interests.
6.   Personalization     The artworks that this museum guide selects do not interest me.

Table 5.1
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Condition as factor showed no significant effect on the Likert scores for the Associative items 
(m

vmg
=2.51; mKnowledge=2.28; mRandom=2.50; F(2,23) = 1.65; p = 0.20), and no significant effect on 

the Likert scores for the Personalization items (m
vmg

=2.38; mKnowledge=2.14; mRandom=2.53; F(2,23) 
= 2.36; p = 0.11).

Discussion

    Following our assumption that feedback reflects user appreciation, we did not find that 
the participants appreciated the vmg more than a random selection, or a selection in which 
only factual knowledge of the museum collection is taken into account. The first reason for 
the lack of appreciation from the vmg users might have to do with the way the information 
is conveyed. In the experiment, the virtual museum tour consisted of a sequence of HTML 
pages containing an image of the artwork and some textual information on the artwork 
and the artist. One reason why the results of our study are not as expected might have to 
do with explainability (Cramer et al., 2008). The study by Cramer et al. suggest that users of 
art recommenders prefer explanations of why a certain recommendation is given. Since this 
extra layer of explanation is not included in the vmg experiments, this might account for the 
negative feedback that the participants of the experiment gave.
    This issue is illustrated by Figure 5.6. In this example, the visitor has given positive 
feedback to The Night Watch. The visitor has provided negative feedback to the chalk 
drawing Resurrection by Lucas van Leyden. If the visitor is now presented with Ecce Homo, 
a chalk drawing by Rembrandt, this may seem as an incorrect recommendation, because of 
the similarity between the disliked artwork (Resurrection) and Ecce Homo. A “reason-giving” 
extension the vmg that explains that this recommendation follows from the visitor’s perceived 
interest in Rembrandt’s work may increase the visitor’s appreciation. One option of providing 
this extension may be by reasoning over the sequence of artworks (cf. Bocconi, 2006), the 
recommender system might offer meaningful and connective extra information on the overlap 

Figure 5.4. Mean feedback per condition. Error bars denote standard errors.

Figure 5.5. Scores on the Likert scales for the six statements. Error bars denote standard errors. The dashed horizontal line indicates 
chance levels.
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between consecutive artworks (e.g., Falkovych, Cena, & Nack, 2006; Stock, Zancanaro, 
Busetta, Callaway, Kruger, Kruppa, Kuflik, Not, & Rocchi, 2007). One recommender system in 
the cultural heritage domain that seems to have implemented this approach is peach (Stock 
et al., 2007), in which personalization is included by having the user select one of four guides 
at the start of the tour, each with his or her own focus on the works presented.

Discussion and Conclusion

Related Work

    The key features of the vmg are the combination of the spreading activation network 
structure of the knowledge base combined with the decaying level of visitor interest. Also, the 
generation of the knowledge base using Latent Semantic Analysis is an important aspect, as 
well as the dynamic generation of web content.
    Although most of these features have been applied in previous information presentation 
tools for the museum domain, the combination we apply is, to our knowledge, unique. Also, 
most other applications focus on the presentation aspects of dynamically generated content, 
especially in the context of a real, non-virtual, museum, where the mobility of the visitors 
poses specific challenges for the presentation of information (Hatala & Wakkary, 2005; for a 
review see Raptis, Tselios, & Avouris, 2005; e.g., Stock et al., 2007). A third obvious difference 
between related work and our approach is that while most applications focus on the 
personalized presentation of background information with an artifact, personalization in the 
vmg involves the selection of the museum artifacts themselves. In this section, we will discuss 
two systems that seem to be most similar to ours in the key features we have identified for the 
vmg. That is, both systems - ec(h)o (Hatala & Wakkary, 2005) and peach (Stock et al., 2007) 
- are constructed around a conceptual network, in which selection of concepts is mediated by 
expressed visitor interests.
    Similar to vmg, peach (Stock et al., 2007) also adopts an activation-based network. 
Since peach’s main output modality is video, the nodes in the network represent video 
segments, and the edges represent semantic relations between these video segments. 
Interest expressed in one video segment propagates as activation through the network to all 
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Figure 5.6. An example of part of an 
art associative network. This image 
illustrates how the vmg selects 
relevant artworks in the presence 
of artworks that are related to the 
already presented works.
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related other segments, and new information will be presented based on the activation values 
of all video segments. This seems to be a similar approach as the vmg deploys, although the 
level of semantic relatedness in peach is less fine-grained, since the relations in peach are 
hand-coded. In the vmg on the other hand, the Latent Semantic Analysis performed on the 
keywords that represent the artworks ensure that also unexpected – yet relevant – relations 
may be present.
    Peach also differs from the vmg in the temporal aspects of the relevance feedback. 
Visitor’s expressed interest in a video segment in peach does not extend to another 
artifact, but only applies to the current artwork. Therefore, decay of visitor interest values is 
unnecessary. Since the vmg is intended for the dynamic selection of artworks, visitor interest 
must extend to other artworks.
    Just like the vmg, ec(h)o (Hatala & Wakkary, 2005) uses a conceptual ontology as a 
knowledge base. In ec(h)o, the ontology is based on the Conceptual Reference Model (Crofts, 
Doerr, & Gill, 2003), which is specifically developed for cultural heritage concepts. Selection of 
information is subsequently established by reasoning over the relationships in the ontology. 
ec(h)o also has a decay mechanism to ensure that interests that are more recent are more 
important than older ones. The mechanism implemented in ec(h)o is however not time-
based (as is the decay mechanism of the vmg), but rather the interest values of concepts are 
normalized such that the highest value stays under a certain upper bound. An advantage 
of that approach could be that a longer visit to an artwork does not result in ‘forgetting’ of 
interests, which is a side effect of the way interest decay is modeled in the vmg.
    The ec(h)o system differs from the vmg and peach in the way relevance feedback can 
be expressed. Were vmg and peach adopt an explicit strategy in which interest as well as 
disinterest can be expressed, ec(h)o presents the user with three small audio snippets, from 
which the visitor can choose. The assumption is that the visitor chooses the audio fragment 
that is the most interesting to him or her. As a result of this design choice, visitors cannot 
express disinterest. Moreover, they have to base their decision on a small snippet of the actual 
information, and could well change their minds after they hear all the information. In this 
sense, ec(h)o does not really incorporate a relevance feedback mechanism.

Conclusions

    This chapter describes an recommender system for sequences of artwork presentations, 
in which the decision on which artwork to present next depends (1) the semantic similarity 
between the artwork descriptions, and (2) the feedback that users of the system provide at 
each artwork presentation. The recommender system, the Virtual Museum Guide or vmg, 
uses principles from cognitive science to provide recommendations that are similar to actual 
museum guide behavior. In developing the vmg, we ensured that both the visitor’s interests are 
considered (maintained by the Visitor Model), as well as the relationships between artworks 
(stored in the Knowledge Base). In the context of a museum, both aspects are important. 
Because of the educational role of museums, recommending artwork is more than mapping 
visitor interest on the museum’s collection. The museum needs to ensure that the resulting 
sequence of artworks is coherent and transfers (part of) the museum’s message. It seems that 
the Virtual Museum Guide ensures both aspects in artwork recommendation.
    An experiment that tested whether users would assess the vmg’s recommendations more 
positively than randomly selected recommendations did not show an beneficial effect of our 
current implementation. Two aspects that may relate to this will be further scrutinized in this 
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thesis. In Chapter 6, we will study if a fine-grained representation of interest may be useful in 
recommendation of art. While the vmg used explicit feedback buttons, the way feedback may 
be provided can be very diverse, ranging from the simple button presses used here to more 
unobtrusive methods, including the time spent observing the artwork (e.g, Claypool, Brown, 
Le, & Waseda, 2001) or eye gaze analysis. This last option will be explored in Chapter 6.  
    Another assumption that we implicitly made in developing the vmg, is that the interest 
that museum visitors expose in art is mainly related to the to the cultural-historical value 
of the artwork. Thus, we implicitly assumed that visitors would have a similar interest in 
artworks that had similar cultural-historical values. This means that we ignored other aspects 
of the artworks that also may have influenced visitor interest. For example, the use of certain 
colors, painting or crafting techniques, or a particular arrangement of figures in the scene 
may also contribute to the appeal a work of art may have to a visitor. These aspects relate to 
the expressiveness of an artwork (Arnheim, 1954/1974), which is not easily described. For this 
reason, we turn in Chapter 7 to the domain of scientific literature search, in which the relation 
between interest and semantic similarity is clearer.

 - Artwork selection for a Virtual Museum Guide -
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Introduction

The need for personalization in cultural heritage information presentation

    Consider visiting a cultural heritage museum accompanied by a professional, educated 
museum guide. The guide has much more information to share about each object in the 
exhibit than the visitor can, or is willing to, grasp in the time available. Thus, the guide has to 
make a selection from his extensive knowledge of the museum’s collection that applies to the 
artwork currently being attended. At the same time, the visitor expects the guide to provide 
an interesting and appealing tour. Thus, a good museum guide provides an entertaining tour, 
in which he adapts the information on each exhibited work of art to the perceived interests of 
the visitors. A system that provides visitors with a personalized tour should ideally incorporate 
this, what we could call, interest-based entertainment aspect.
    On the other hand, cultural heritage institutions also serve an explicit educational role 
in modern day society. Often, museums are funded by public means, and have as objective to 
educate visitors on a particular artist, era, or style. Therefore, an ideal museum guide balances 
the interests of the visitors, who expect an entertaining visit, and the interests of the museum, 
that wants to educate the visitors (Bell, 2002).
    Besides the obvious advantages of personalization from an entertainment point of view, 
personalization of a learning experience also offers advantages from an educational stance. 
For instance, providing extra information that matches the interests of the visitor will extend 
or even deepen the knowledge visitors gain during the museum visit (e.g., Hsi & Fait, 2005; 
Stock et al., 2007). At the same time, this might also lengthen the time visitors are willing 
to spend at a certain exhibit. This is particularly important since the average time spent at 
each object on display is estimated at about only 30s (Beer, 1987; Cone & Kendall, 1978), which 
is hardly enough to communicate the bare facts of an exhibited artwork, let alone provide 
interesting extra information. Therefore, also personalization of information presentation 
within the scope of a single exhibit seems worthwhile.
    One way for a museum guide to probe the visitor’s interests is to follow his or her gaze 
on the work of art. A good museum guide will notice the visitors’ gaze, and will adapt his story 
accordingly. For instance, a long fixation of one of the visitors to a house in the background of 
a painting might trigger the museum guide to tell more about the purpose of that house for 
the painting, or about the architecture from the depicted period. 
    In this paper, we will exploit this feature of human attention to develop a personalized 
storyteller for cultural heritage presentations, which will be referred to as Gaze-based 
Personalization for Art or gpa system. First, we will review work that establishes the relation 
between eye gaze and interest. Next, we will introduce the gpa system, which will be evaluated 
in a laboratory experiment to demonstrate that adapting stories told at cultural heritage 
presentations to the personal interests of visitors improves their experience. We will finish 
with reviewing related work, and by suggesting extensions and possible further applications 
of our system.

Gaze-based personalization for 
the presentation of cultural heritage
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Eye gaze as a window to attention

    Eye tracking is a technique that has been available for over 40 years. Many aspects 
of the eye can be measured, including position, pupil dilation, saccadic movements, and 
fixation duration (Toet, 2006). Essentially, by tracking (one of) the eyes with a camera that is 
fixated with respect to the position of the head, eye movements can be singled out from head 
movements. New computational techniques enable eye tracking without fixating the camera 
position with respect to the head. Instead, the head position is estimated using pattern 
analysis of whole-head video sequences, and the eye movements are computed using the 
head position estimates (e.g., Babcock & Pelz, 2004; Boening, Bartl, Dera, Bardins, Schneider, 
& Brandt, 2006; Li, Babcock, & Parkhurst, 2006).

Eye gaze is an indicator of overt attention 

    The direction of gaze and attention correlate to a high degree. Therefore, eye gaze can be 
regarded as an indicator of attention (Henderson, 2003). Although it has been known for a long 
time that fixations and attention may deviate (Posner, 1980), during free viewing of natural 
scenes they are very likely to align (Findlay & Gilchrist, 2005). In this sense, eye movements 
can be regarded as a behavioral indicator of the spatial allocation of attention.
    In addition to the correlation between eye gaze and attention, eye gaze and 
informativeness are also related (Henderson & Hollingworth, 1999). Several studies (Antes, 
1974; Loftus & Mackworth, 1978; Mackworth & Morandi, 1967; Yarbus, 1967) established the 
relationship between fixations on different regions of a picture and the informativeness of 
these regions. An interesting aspect of this relationship is that the fixation patterns are directly 
related to the goal that the participants have. For example, a request to memorize a scene 
results in different fixation patterns than viewing the painting with the goal of determining 
the wealth of the people depicted (Yarbus, 1967). Mackworth and Morandi (1967) and Antes 
(1974) based their measure of the informativeness of a region on ratings that users gave to 
the different regions. Thus, they established a relationship between eye gaze and users’ idea 
of informativeness. Under the assumption that when perceiving an artwork in a museum, a 
visitor’s goal is to find those regions on a painting that are most interesting to him or her, 
these studies suggest that eye gaze is an indicator of interest that jmuseum visitors might 
have in specific regions of realistic paintings. 
    Various researchers (e.g., Chen & Zelinsky, 2006; R. M. Cooper, 1974; Huettig & Altmann, 
2005; Yee & Sedivy, 2006) have shown the relationship between semantic content and eye 
gaze. In an experiment that involved eye fixations and spoken words, Cooper (1974) showed 
that people fixate more on regions of interest (rois) on the screen that they hear in a snippet 
of spoken text than on rois that are not mentioned in the spoken text. In addition, rois that 
bear a semantic relation to words mentioned in the spoken text are fixated more than rois 
that are unrelated to the text. These results demonstrate that eye gaze is also mediated by 
the semantic content of the display. Again, if we assume that one of the goals of museum 
visitors is to find interesting aspects on each work of art on display, then a prolonged gaze on 
a certain object in the painting may be the result of the overlap between the semantic content 
and the interest of the visitor.

Eye gaze as a pointing device

    In many Human-Computer Interaction applications, gaze has been deployed as an 
explicit pointing device, much like a computer mouse. Typically, users may interact with an 
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interface using stares or blinks to indicate that an action needs to be performed (e.g., Hornof 
& Cavender, 2005; Jacob, 1991). Although the user interaction is mediated by gaze in our 
application as well, it explicitly differs from these applications because we do not intend users 
to control the presentation of information with their gaze, but rather analyze the free viewing 
behavior to determine the most interesting regions of an artwork. 
    The above reviewed studies suggest that it is possible to develop a system that 
personalizes background information on the basis of eye gaze when presenting a work of 
art. In what follows, we will discuss how we implemented this idea, and we will present an 
experiment in which that implementation is put to the test.

Gaze-based Personalization for Art 

    The Gaze-based Personalization for Art (gpa) system that we propose uses the eyes’ 
gaze as an indicator of interest, and presents information on paintings based on the perceived 
interests of the user. The information about the artworks is presented using natural speech. 
Because the selection of information depends on the direction of gaze, which differs between 
individuals, the story that is told at each artwork also differs between individuals.
    The sum of the duration of the various fixations on different regions of interest (rois) on 
a painting determines the choices made by the gpa system. This summation will be referred 
to as gaze duration.

Annotating artworks

    Before interesting audio snippets can be selected, each painting has to be annotated. 
That is, the spatial dimensions of every roi on a painting that might be of interest to a virtual 
museum visitor of the system have to be identified and related to an interesting piece of 
information. In gpa, the spatial dimensions of the rois are represented in a content map that 
indicates which pixels on the screen belong to which roi (Figure 6.1). Regions of interest (rois) 
on the content map can be anything: a figure or a group of figures, objects, buildings, animals, 
et cetera. In addition, rois may consist of multiple components: Several smaller areas on 
the display can combine to one roi. An example of this is if there are multiple animals on the 
artwork, and the audio snippet explains something about the use of animals in paintings of a 
certain genre.

Figure 6.1. Content map of 
the painting  “The Sacrifice of 
Iphigenia” by Jan Steen. In this 
content map, ten regions of interest 
(rois) are identified on which 
information can be presented.
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    Because rois may differ in size, bigger rois would have a higher probability of being 
attended than smaller ones, if there would be no control of eye movements. However, the 
control of eye movements is accurate enough to ensure that most of the fixations are on the 
intended rois. We therefore assumed that the number of fixations that land on an unintended 
roi would not significantly influence roi selection.

Determination of Interest

    The choice of which audio snippet to present depends on the recorded fixations. The 
recorded fixations are represented by a fixation map (Velichkovsky, Pomplun, & Rieser, 1996; 
Wooding, 2002), which is a two-dimensional array in which the gaze duration on a specific 
region of the screen is represented. Depending on the need for spatial resolution of the 
fixations, the dimensions of the array could vary between the pixel dimensions of the display – 
providing maximum spatial resolution – or one or more orders of magnitude smaller than that. 
Because in the context of the gpa system we want to identify which rois on a painting are 
being fixated, we are only interested in whether fixations are within the boundaries of these 
rois. Since in our study the average roi size is relatively large (43 pixels in diameter, see also 
Figure 6.1), we set the size of a patch on the fixation map at 10 x 10 pixels. The pixel dimensions 
of the display we used in the interest-aware system were 1024 x 768, and therefore the fixation 
map consisted of 102 x 77 patches of 10 x 10 pixels (with the patches on the right side of the 
display 8 pixels wide, and the patches on the bottom of the display 14 pixels high). Because the 
number of fixations is typically very large, we followed Wooding’s (2002) suggestion that each 
fixation could be represented by the fixation location only, instead of a Gaussian distribution 
reflecting noise in the eye gaze recording. It is unlikely that this simplification will result 
in different information selection, because the rois we defined were much larger than the 
variance in the Gaussians.
    Over time, the durations of new fixations are added to the already accumulated values 
of the fixation map. In the interest-aware system, the updates to the fixation map are made 
after successive presentations of audio snippets. Thus, the selection of information is based 
on a user’s gaze from the initial presentation of a painting up until the moment of information 
selection.

Region of Interest Selection

    The interest that people show in the rois on the painting is estimated with the following 
equation:

I i = DCi with Ci =
1 if c = i with c C
0 otherwise
 
 
 					                (equation 6.1)

    Ii indicates the interest in roi i, D indicates the array representing the fixation map, and Ci 
indicates the array representing which cells belong to roi i. Ci can be derived from the original 
content map by substituting all cell values (c in Equation 6.1) by 1 if and only if they belong to 
roi i, and by zero otherwise.
    By combining the fixation map and the content map, we arrive at a set of gaze durations 
representing individual interest for each roi on the screen. Based on these values the selection 
of information can be performed by selecting the roi with the highest interest that has not 
been selected before, and presenting the associated audio snippet. 
    In developing the gpa system, we experimented with different algorithms that estimated 
the probability that a fixation on a certain roi was the result of intentionally looking at that 
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roi, instead of by other factors, such as saliency differences between various regions on the 
painting (Itti & Koch, 2001; Itti, Koch, & Niebur, 1998; Koch & Ullman, 1985), or saccadic noise 
(Kowler & Blaser, 1995). Many studies show that, besides attention-mediated processes, 
eye gaze is also controlled by the physical properties of whatever a person is watching 
(e.g., Henderson, 2003; Kootstra, Nederveen, & De Boer, 2008; Theeuwes, 1992). The 
typical distinction is between top-down control of eye-movements, in which some cognitive 
operations are performed, and bottom-up control, which refers to eye movements caused 
by features of the visual field. Bottom-up control is usually linked to saliency, a concept 
representing the differences in physical properties of the visual field, such as color, contrast, 
orientation, or motion. A study by Theeuwes (1992) demonstrates that if a highly salient 
distractor is presented in a visual search task, participants make an eye movement to this 
distractor before fixating on the search target. Therefore, given that the visual acuity of a 
region on a painting is high enough, it will cause the eyes to fixate there. However, when freely 
viewing natural scenes (such as classical paintings), the influence of saliency on the fixation 
duration is typically much less than the influence of top-down modulating factors (such as 
informativeness of the region, or interestingness, Henderson & Hollingworth, 1999). Thus, it 
is interesting to see whether in the context of artworks, the saliency of an artwork contributes 
to the direction of gaze, and whether saliency should be considered when developing gaze-
based personalization systems.

Presenting Information Using Speech

    When the most interesting roi is selected, the associated audio snippet can be presented. 
Obviously, when a subsequent roi needs to be selected, all already presented rois are 
excluded from selection. Care was taken in the construction of the audio snippets that they 
only referred to a single roi, thus diminishing the chance that gazes to other rois could be 
caused by reference to the semantic content of those rois (R. M. Cooper, 1974; Huettig & 
Altmann, 2005; Yee & Sedivy, 2006).
    We chose to present the users of the interest-aware system with spoken text. Using 
another modality than vision for information presentation is useful in the context of attention-
aware systems, because the eyes are not distracted by extra visual information that otherwise 
might appear on the screen (cf., Starker & Bolt, 1990).

Validation of Gaze-based Personalization for Art

    We performed a laboratory experiment to study whether the gpa system outlined in the 
previous section would prolong user interest when perceiving art. In this study, participants 
were asked to look freely at a series of paintings while a voice-over gave information on these 
paintings, and to indicate for each painting when they lost interest in that particular painting. 
We hypothesize that when participants receive information on rois they implicitly expressed 
interested in with their gaze, they would stay interested longer and indicate their loss of 
interest later.

Experimental manipulations

    To contrast the behavior of participants interacting with the actual gpa system, we 
designed three information-selection conditions. In the first condition, henceforth referred to 
as the maximum condition, the participants received information via audio snippets for rois in 
which they showed maximum interest. The maximum condition is contrasted with two control 
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conditions: The random condition and the minimum condition. In the random condition, 
participants were presented with the information in a random order, not depending on their 
gaze durations; in the minimum condition, participants received information pertaining to 
the rois for which they expressed the least interest (that is, the rois with the lowest gaze 
durations). Our main hypothesis is that viewing time on a painting is mediated by these 
information-selection conditions: Longest for the maximum condition, in between for the 
random condition, and shortest for the minimum condition. Note that the random condition 
can be seen as a standard online guide in that the order in which information was presented to 
the participants was not modulated by knowledge of the participant’s perceived interests. 
    A secondary hypothesis will be that in the maximum condition users will look longer 
to the rois on which they receive information than in the random and minimum conditions. 
This effect is hypothesized to result from the mapping between the users’ interest and the 
presented information. The rationale of this hypothesis is as follows: Given the assumptions 
that eye gaze follows interest, and that eye gaze is influenced by the semantic content 
of presented audio, the gaze durations on selected rois in the maximum condition would 
benefit from both factors, whereas the gaze durations on selected rois in the random and 
minimum condition would only benefit from the latter factor. Due to a random presentation 
order of the information in the random condition, we expect the gaze duration on presented 
roi in the random condition to be in between that in the maximum and minimum conditions. 
This reflects the probability that a participant is presented with an audio snippet that relates 
to a highly attended roi.

Participants

    Thirty undergraduate students from the University of Groningen participated in the 
study. The mean age of the participants was 22.6 years. All participants had normal or correct-
to-normal vision and normal hearing and received course credits for their participation. All 
were native speakers of Dutch.

Apparatus

    The paintings were displayed on a 19″ CRT monitor. We measured eye gaze with the Eyelink 
I eye tracker from SR Research. The Eyelink I is a head-mounted eye tracker with a spatial 
resolution of 0.01º, a sampling rate of 250Hz, and an average gaze position error of 0.5º-1.0º. 
Note that the average roi size is 1.2º (an average diameter of 1.7 cm at approximately 80 cm 
distance). The Eyelink I delivers pupil position and head marker position in real-time (based 
on four LED-arrays attached to the screen), and can thus account for both eye movements and 
(small) head movements. Although the Eyelink I is a head-mounted system, the strain on the 
participants was acceptable. We therefore do not expect differences in viewing behavior as 
compared to natural viewing behavior.

Stimuli

  Paintings
    To stay as close as possible to a museum setting, whilst still in a controlled laboratory 
environment, we used digital reproductions of paintings from the Rijksmuseum collection, 
with a resolution of 1024 x 786 pixels. The selection of paintings was such that they contained 
enough identifiable elements to present sufficient audio snippets. The paintings either 
depicted a biblical or mythological scene, or depicted a scene from everyday live (Genre 
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painting). Most selected artworks were created during the Dutch Golden Age (roughly the 17th 
century). Figure 6.2 presents examples of the paintings used in the experiment.

  Audio snippets
    Each painting was accompanied by a sequence of audio snippets. The first, introductory 
audio snippet had an average duration of 20s (±1.5s). It contained the name of the artist, the 
year the painting was produced, a comment on technique or a small anecdote regarding the 
painting as a whole or the artist, and finally the title of the painting. The introductory audio 
snippets were the same for every participant. We made sure that no direct references to rois 
on the painting were made, except when this occurred because of the painting’s title. After 
the introductory audio snippet a maximum of 10 other audio snippets were presented during 
10s each (±1.5s), separated by one-second intervals. The short intervals between the audio 
snippets ensured that a sequence of audio snippets sounded naturally. The texts of the audio 
snippets were based on the explanations that accompanied the paintings as found on the 
website of the Rijksmuseum (www.rijksmuseum.nl). We adapted the texts so they would be 
self-contained and would fit in a timeframe of 10s. As an example, Appendix A presents the 
text of the audio snippets for the painting “The Sacrifice of Iphigeneia”.

Design and procedure

    Every participant was tested individually. First, the eye tracker was set up and calibrated, 
and the participants were instructed on the remainder of the experiment. Second, participants 
were presented with 26 paintings while hearing a sequence of audio snippets accompanied 
each painting. Each presentation of a painting constituted one trial. Each trial was preceded 
by a drift correction screen. The first painting was a practice trial, and was always the same for 
all participants, as was the sequence of audio snippets presented during this trial.
    The participants were instructed that they could indicate loss of interest in the painting 
or the information by pressing the RETURN key, which would result in a new painting being 
presented. Pressing RETURN signaled the participants’ response.
    After the practice trial, 25 paintings were presented in pseudo-random order to each 
participant. Initially, we also were interested in the effects of saliency on the selection of audio-
snippets. However, since there were no effects from the saliency manipulation, we collapsed 
those conditions with the default conditions. Therefore, ten paintings were presented in the 

Figure 6.2. Four examples of paintings 
used in the experiment. (a) “The Sacrifice 
of Iphigeneia” by Jan Steen (1671) (b) 
“Prince’s Day” by Jan Steen (c. 1665) (c) 
“The Fall of Man” by Cornelis van Haarlem 
(1592) (d) “Aeneas at the Court of Latinus” 
by Ferdinand Bol (c. 1661-63).
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maximum condition, ten were presented in the minimum condition, and five were presented 
in the random condition. To counterbalance possible effects of fatigue or loss of interest 
across participants, each painting was presented as often in the first half of the presentation 
sequences as in the second half of the presentation sequences. Moreover, every painting was 
presented equally often in the maximum as in the minimum condition.
    If a participant pressed the RETURN key, the voice-over finished the current audio 
snippet, and then moved on to the next trial. If participants listened to all audio snippets of a 
trial, the system also progressed to the next trial. The set of audio snippets for a painting was 
the same in every condition; only the order in which they were selected differed, depending on 
the condition and the gaze of the participant.

Results

    As the main dependent variable is the listening duration, two participants were excluded 
from further analyses as they listened to only a single audio snippet in more than 50% of the trials, 
and three participants were removed because they listened to all audio snippets in more than 
half of the cases. This leaves 25 participants for further analysis, of which the average listening 
duration in the initial trail was 69s (SD=42s) and in the experimental trials 76s (SD=31s).
    Although the main analysis of interest is the effects of different audio-selection conditions 
on listening duration, we will first turn to the effects of saliency. The saliency condition was 
included as the assumption was that saliency could influence eye movements independent of 
actual interest. However, no differences were found related to the saliency condition (F(1,24)<1) 
or to the interaction of saliency with audio-selection condition (F(1,24)<1). We have therefore 
collapsed the data over Saliency for all subsequent analyses. 
    In contrast to our hypothesis, there was no effect of Audio-selection on listening duration 
(means: mmaximum=76.5s, mminimum=74.3s, mrandom=76.8s, F(2,24) = 1.01; p=0.37). Additional 
exploratory analyses including different personal characteristics (e.g., age, gender, reported 
interest in art, etc) or performance measures (e.g., ratio of gazes on rois) as co-variates did 
not change this outcome. 
    Based on the assumption that interest is reflected by increased gaze durations on the 
regions of interest, the second hypothesis was that participants look longer to items on the 
artwork they are interested in than to items they are not interested in. To test this hypothesis, 
we studied the gaze duration on rois during the presentation of audio snippets. 
    Gaze durations before the presentation of an audio snippet were used to select audio 
snippets in the maximum (and minimum) condition. Thus, the second hypothesis is that during 
the presentation of audio snippets, gaze durations on the rois associated with the presented 
audio-snippet should be longer in the maximum condition than in the random or minimum 
conditions. Furthermore, to rule out the possibility that the participants had not seen the roi 
under consideration, we excluded all instances in which the critical roi was not fixated before 
the presentation of an audio snippet (this led to one participant being excluded that had not 
fixated the critical rois in one condition).
    Figure 6.3a presents average gaze durations on the presented rois during the 
presentation of the associated audio snippets. The gaze durations between conditions differ 
significantly (F(2,23) = 110; p<0.001). This may be a first indication that participants will remain 
interest in rois that they gaze at irrespective of the presented audio information. If gaze was 
primarily determined by the content of the audio snippet (R. M. Cooper, 1974), we would have 
expected no difference between the bars in Figure 6.3a.
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    A second indication that gaze duration reflects interest is presented in Figure 6.3b. If prior 
interest guides the eye movements, then the rois that the participants previously gazed at 
should be gazed at again, irrespective of the presentation of an audio snippet. However, if the 
audio snippet determines the direction of gaze, then we would expect a difference between 
the gaze durations on the most attended rois during presentation of the audio snippet. This is 
because for the random and minimum condition, the presented audio snippet is not about the 
most attended rois. Thus, gaze would be expected to deviate from these regions. However, 
an analysis of variance did not show a difference in gaze duration in Bars IV, V, and VI (means: 
mmaximum=2064ms, mminimum=2219ms, mrandom=2167ms, F(2,23) <1). We did not find evidence that 
the content of the audio snippet determines which roi will be gazed at more, suggesting that 
interest is a stronger determinant of eye gaze than the content of an audio snippet. 

Discussion

    In this experiment, we demonstrated the role of eye gaze in interest detection. Regions 
on a painting that are selected because they are being attended are gazed upon to a larger 
extent than regions that are selected because they were not or hardly attended (Figure 
6.3a). Interestingly, this observation does not result in longer listening durations (the total 
time spent viewing each artwork). This may be in line with earlier observations that museum 
visitors have a typical dwell-time they are willing to spend at each exhibited art work (Beer, 
1987; Cone & Kendall, 1978). Thus, assuming that the time people are willing to invest in each 
art work on display is roughly constant, as well as limited, the need for a smart ordering of the 
information that the museum wants to convey becomes prevalent.
    One complicating factor in the interpretation of the results of our study is that eye gaze 
is implicated in multiple behavioral mechanisms. Thus, other factors could have influenced 
eye gaze. In the “Regions of Interest Selection” Section, we already mentioned the possible 
influence of saliency. Areas on the painting that stand out on a certain dimension such as color 
or contrast are more likely to be attended. However, when viewing paintings, the influence 
of saliency is much less than the influence of interest (Henderson & Hollingworth, 1999). 
Moreover, we counterbalanced the artworks in such a way that each artwork occurred in every 
condition equally often.
    In addition, it has been shown that gaze is also affected by the semantic content of an 
aurally presented message (R. M. Cooper, 1974). This could have affected the results of our 
study as well. However, Cooper found that fixation durations were increased on rois that were 
mentioned in the message. If the eye gaze of the participants in our study was mainly driven 
by the content of the audio snippets, we would therefore find a difference in gazes on the most 

Figure 6.3. (a) Average gaze 
durations (during presentation 
of an audio-snippet) on the rois 
associated with the audio-snippets 
that are currently being presented; 
(b) Average gaze durations (during 
presentation of an audio-snippet) 
on the rois that were  most 
attended before the selection 
of the audio-snippet. Error bars 
denote standard errors.
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attended rois in the maximum and the minimum condition. The fact that we do not find this 
difference (e.g., Figure 6.3b) can be seen as evidence that in our study, the gaze durations are 
not driven by the semantic content of the audio snippet. One interpretation of this difference 
between Cooper’s study and ours is that in his study, the rois were well-defined and known 
to the participants in advance (because of the clear arrangement of items on the display), 
whereas in our study, the demarcations of rois are less clear, due to the natural scenes 
depicted. Moreover, the participants were unaware of the existence of rois, and may thus be 
less likely to acknowledge auditory references to the depicted items by a quick fixation.

Discussion and Conclusion

    In this paper, we proposed a personalized system for information presentation at art 
exhibitions, termed Gaze-Based Personalization for Art. The system uses point of gaze to infer 
a visitor’s interest, following prior studies that suggest a correlation between eye gaze and 
attention. We determined regions of interest (rois) for the artworks, which together form 
content maps of the artworks. By combining the content maps with dynamically updated 
fixation maps, we can compute the how much each roi is fixated, and select the most fixated 
rois for information presentation.
    In an experiment, we contrasted the gpa system with two control systems that had a 
random selection mechanism and a negative selection mechanism, respectively. The results 
show that presented information on the most attended rois increases the fixation duration 
on those rois, although the total time spend examining an artwork does not seem to be 
influenced by personalized information presentation.
    Our results suggest that if visual perception of the artwork is important when presenting 
information, gaze-based ordering of the to-be-presented information is useful. For instance, 
when the information relates to a specific use of colors (e.g., the use of dark and light colors 
in the paintings by Rembrandt van Rijn), it is important that the museum visitor attends the 
regions of the painting on which that technique is exposed. The experiment discussed above 
suggests that if the visitors are not attending those regions in the first place, they are not likely 
to attend them when the presented information is about the use of light and dark in Rembrandt’s 
paintings. Therefore, our work may help cultural heritage institutions to adapt the order of the 
information that they want to convey to optimize the knowledge transfer to the visitor.
  
Related work

  Personalization of cultural heritage presentation
    The idea of personalizing certain aspects of a cultural heritage experience has been 
studied extensively. Most applications focus on the presentation aspects (e.g., Falkovych, 
Cena, & Nack, 2006; Hatala & Wakkary, 2005; for a review see Raptis, Tselios, & Avouris, 
2005; Sparacino, 2002; Stock et al., 2007). Some work is directed at personalized sequences of 
the objects at display (e.g., Fink & Kobsa, 2002; Van Maanen, 2007). All of these approaches 
provide personalization of museum content by adapting which information is being presented 
to the individual user. To our knowledge, the current study represents the only attempt at 
using eye-gaze as an informative devive for personalization of cultural heritage content.
  Gaze-based information selection
    Another relevant concept that has been studied before is the selection of information 
using eye gaze. Previous work in the gaze-based selection of information has focused on 
explicit information retrieval systems (e.g., Oyekoya & Stentiford, 2007; Puolamäki, Salojärvi, 
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Savia, Simola, & Kaski, 2005). In the gpa system, the selection of information is implicit, 
because museum visitors are not intentionally looking at certain regions of the artwork in 
order to receive information about these regions.
    There exists however two systems that share many features with the gpa system. 
These are iTourist (Qvarfordt & Zhai, 2005) and the gaze-responsive system by Starker and 
Bolt (1990). Both systems track the user’s point of gaze, and present new information that 
is selected on the basis of where the user was looking. In iTourist, the information is related 
to tourist information on a virtual city map. iTourist presented spoken as well as visual 
information on points of interest on the map. The system by Starker and Bolt presents spoken 
information on objects on a small planet, similar to iTourist and gpa. These systems differ 
from gpa in that users of both applications are aware of the manipulatory role of their gaze, 
due to the particular layout of the display (a city map with marked tourist highlights and a 
rotating planet with isolated objects). By contrast, users of the gpa system are not aware of 
the manipulatory role of their gaze. Participants in our experiment were not informed on the 
reason for measuring their eye movements. In addition, the regions of interest on an artwork 
are less well-defined than the regions of interest on a city map or on a constructed 3D world, 
which makes it harder to intentionally fixate a certain region. Therefore, it seems to make 
more sense to use eye gaze in the cultural heritage domain in a diagnostic fashion rather than 
an manipulatory or intentional fashion (Duchowski, 2002).

More natural settings

    Although we tested the gpa system in a controlled laboratory environment, the approach 
seems suitable for environments that are more natural as well. For instance, the online 
presentation of sequences of artwork may be augmented with gaze-based interest awareness 
(Van Maanen, Janssen, & Van Rijn, 2006). With the advent of online information presentation, 
cultural heritage institutions are starting to make their collections available online. Many 
museums have websites displaying digital reproductions of part of their collection. Moreover, 
recent advances in eye tracking technology as well as increased quality of standard webcams 
have brought online non-intrusive gaze tracking to the desktop (e.g., the COGAIN initiative, 
www.cogain.org, or Hansen, Hansen, & Johansen, 2001). Using webcams for eye tracking may 
enable the use of gaze-based interest awareness to adapt the presentation of information on 
the artworks available at museum websites.
    In addition, more advanced eye tracking devices have been developed that allow for more 
free movement of the user (e.g., Babcock & Pelz, 2004; Boening et al., 2006; Li, Babcock, & 
Parkhurst, 2006). With these devices, it becomes possible to freely wander through a museum, 
while your point of gaze is being tracked. This allows for adaptive information presentation in 
the real museum, for instance using headphones.

Conclusion

    Eye gaze may provide useful insights in people’s interest, which can be used in cultural 
heritage applications. Detecting personal interests of museum visitors enables personalized 
presentation of the exhibit’s information. This may increase the enjoyment that visitors 
have when attending an exhibition, but may also improve their learning experience, because 
the ordering of the presented information may be such that the information aligns with the 
visitor’s prior knowledge and interest. The gpa thus balances a museum’s educational role 
and a visitor’s personal interests, just like a good real-life museum guide.
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Appendix 

  Example of audio snippet s of “The Sacrifice of Iphigeneia”. 0 indicates introductory snippet, which 
was presented first. 1-10 indicates the remaining snippets, the order of which may be determined by 
the participants gaze and the condition.

Het volgende schilderij is gemaakt door Jan Steen en dateert uit de periode rond 1671. 0.	
Jan Steen werd vooral bekend om zijn “genrestukken” met vrolijke gezelschappen. 
Maar ook met portretten en schilderijen over mythische verhalen. Dit werk is gemaakt 
met olieverf op doek. De titel van het schilderij is “Het offer van Iphigeneia”.
Boven in de rook zit Artemis, de Godin van de jacht. Ze is herkenbaar aan de 1.	
maansikkel op haar hoofd en de pijl en boog. Artemis werd ook vereenzelvigd met 
de maangodin Selene.
Jan Steen hield zich niet aan de regels van de historische schilderkunst. Om het 2.	
verhaal voor zijn tijdgenoten herkenbaar te maken, gaf hij de meeste personen geen 
oud Griekse, maar 17de eeuwse kleding.
Een jongetje loopt bedroefd weg op het schilderij. Het is Amor, de god van de 3.	
vleselijke liefde. Hij is herkenbaar aan zijn pijl en boog waarmee hij mensen verliefd 
kon maken.
Bij dit geschilderde offer vallen geen doden. Als door een wonder verandert het 4.	
menselijke slachtoffer, zonder dat iemand het merkt, in een hert. Hierdoor komt 
alleen het hert om het leven.
De schilder beeldt het moment af vlak voordat een offer wordt gebracht. De beul 5.	
staat al klaar om zijn slachtoffer te doden, het mes glinstert in zijn hand en hij kijkt 
bloeddorstig naar het offer.
De geknielde vrouw is met veel zorg afgebeeld, met details als de glanzende kleding 6.	
en de voeten die vies zijn van het lopen. Het licht van het vuur rond haar afgewende 
hoofd geeft haar zelfs iets mysterieus.
In het midden ziet u Iphigeneia. Omdat het oorlog is zal zij worden geofferd aan de 7.	
Goden om hen gunstig te stemmen. Het offeren van mensen, dieren en voorwerpen 
was zeer gebruikelijk in de Griekse oudheid.
Rechts bovenin is een vrouw aan het bidden. De gevouwen handen zijn een christelijk 8.	
gebaar wat niet hoort bij de Griekse oudheid. Door dit wel te gebruiken is het verhaal 
herkenbaarder voor de tijdgenoten van de schilder.
De figuren rechts hebben een exotisch tintje vanwege hun verschillende 9.	
hoofddeksels. De tulband, de lauwerkrans, een soort bisschopsmijter en een variatie 
op een Romeinse helm zijn te zien.
De afgebeelde koning is Agamemnon uit Griekenland. Hij wil Troje belegeren, maar 10.	
telkens als hij wil uitvaren is het windstil. Om de boze godin Artemis gunstig te 
stemmen moet hij zijn dochter offeren.

 
English translation

The following painting is from Jan Steen en dates from around 1671. Jan Steen became 0.	
especially well known for his genre paintings with fun-loving, cheerful groups of 
people. But also with portrait paintings as well as paintings of mythological scenes. 
This piece is oil on canvas. The title of this painting is “The Sacrifice of Iphigenia”.
In the upper part of the painting sits Artemis, the Goddess of hunt. She can be 1.	
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recognized by the crescent moon and her bow and arrow. Artemis was considered 
the same Goddess as the moon Goddess Selene.
Jan Steen did not keep strictly to the rules of history painting. To make the story 2.	
recognizable for his contemporaries, he has not dressed all the people in ‘Iphigenia’ 
in classical Greek costumes, but seventeenth-century clothes.
A little boy leaves the scene crying. It is Amor, the God of erotic love. He can be 3.	
recognized by his bow and arrow that he used to make people fall in love.
No one dies in this sacrifice. In a miracle, the human victim is switched with a deer. 4.	
Consequently, only the deer dies.
The painter has pictured the moment just before Iphigenia is to be sacrificed. The 5.	
executioner is about to kill her, the knife shines in his hand while he is looking cruelly 
at his victim.
The kneeling woman has been depicted with great care, with realistic details such 6.	
as the shine of her silk clothes and her bare feet that have become a little dirty from 
walking. The light from the wood fire that shines around her turned head gives this 
woman a mysterious air.
In the center stands Iphigeneia. Because of a war, she will be sacrificed to pacify the 7.	
Gods. Human and animal sacrifices as well as sacrifices of goods were very common 
in ancient Greece.
In the upper right corner, a woman is praying. Her hands are folded in a Christian 8.	
manner, which is anachronistic for a scene of ancient Greece. By using this, the story 
has become recognizable for the painter’s contemporaries.
The people on the right all have an exotic appearance due to their different 9.	
headpieces. You can see a turban, a laurel wreath, a miter, and something similar 
to a roman-style helmet.
The depicted king is Agamemnon of Greece. He is determined to10.	  lay siege to the city 
of Troy. Yet, every time he tried to embark his fleet, a calm descended. To sooth the 
angry Goddess Artemis, he must sacrifice his daughter. 

14. Source: ISI Web of 
Knowledge, retrieved 19-
12-2007.
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press). Personal Publication Assistant: Abstract recommendation by a cognitive model. Cognitive Systems Research.

Introduction

    In cognitive science, there has been a long tradition to perceive human behavior as a 
form of information processing. Within this tradition, human cognitive processes are seen 
as operating on similar principles or algorithms as computer programs, since both cognition 
and computer programs have or have been developed to process information. This view has 
lead to the birth of Artificial Intelligence as an independent research field (McCarthy, Minsky, 
Rochester, & Lebiere, 1955), but has also guided the development of cognitive theories (e.g., 
Anderson & Milson, 1998; Marr, 1982; Newell, 1990). Even today, the apparent functional 
overlap between artificial computational systems and the human information-processing 
system is still influential in cognitive theorizing (e.g., Griffiths, Steyvers, & Firl, 2007).
    Many cognitive theorists believe that human beings optimize their behavior to 
successfully cope with the environment (e.g., Anderson, 1990; Marr, 1982; Oaksford & Chater, 
1998). This means that, through evolution and learning, human behavior has adapted to be 
the most suitable behavior in any given circumstance or environment. This is a capacity also 
desirable in artificial systems design, especially when these systems have to operate on an 
unknown or dynamic environment. Therefore, computer scientists and artificial intelligence 
researchers have studied how computer systems can optimize their behavior as well (e.g., 
Goldberg & Holland, 1988; Kohonen, 2001).
    A domain that has not benefited that much from this cross-fertilization is the problem of 
selecting relevant information, either for oneself or for others. The research field that studies 
how to disclose relevant information is known as Information Retrieval (Salton & McGill, 
1983). A typical field in which the problem of selecting relevant information arises is the 
scientific community. For example, the number of scientific publications in the relatively small 
ISI subject category Information Science & Library Science was 2054 in 2006.14 This means that 
researchers working in this area have to read (or at least scan through) over two thousand 
papers a year to keep up with the current developments. However, this number is, if anything, 
an underestimation of the total number of potentially relevant papers, as this number only 
holds if the researcher is interested in a single subject area. In practice, most researchers 
work on the intersection of multiple domains, increasing the number of potentially relevant 
papers enormously. In general, because of the continuous increase of storage capacity for 
digital media, and the increased availability of digital or digitized media sources, companies, 
institutions, and individual people are being confronted with an increase in the amount of 
information that potentially is relevant to their purposes.
    In this paper, we will describe a system that partly solves this problem for the scientific 
domain: Our system selects relevant scientific papers from a large collection of scientific 
abstracts. Instead of working from a pure computer science perspective, we will present a 
system that is based on constraints from cognitive theories. In particular, we chose to follow 
the rational analysis approach (Anderson, 1990; Oaksford & Chater, 1998), as incorporated in 
the ACT-R architecture of cognition (Anderson, 2007a). The rational analysis approach states 
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that human memory is optimally adapted to fit the needs of the environment we live in, based 
on the interactions of the cognitive agent with the environment in the past. This approach has 
been successfully applied to predict various aspects of human behavior (e.g., as reviewed by 
Chater & Oaksford, 1999).
    We will begin with an analysis of how users behave when engaging in the selection of 
information. Next, we will discuss how the ACT-R cognitive architecture incorporates rational 
analysis, and how this can be applied to information selection. We will continue with an 
outline of an application based on the resulting model, the Personal Publication Assistant 
(or Publication pa for short), and how this application behaves under different conditions, as 
well as a user study that will demonstrate the applicability of our approach in a real world 
setting. In the last section, we will discuss in what way the Publication pa deviates from other 
approaches towards the task of matching papers to researchers, or vice versa.

Information Selection

    An example of the problem addressed in this paper is the selection of relevant information 
when attending a large, multi-track scientific conference. Often, an attendee finds him or 
herself overwhelmed by the amount of presentations that can be attended. With so little time 
to find the talks that are really interesting, changes are that one ends up in the wrong track, 
listening to presentations that hardly kindle ones interest, while in another track relevant 
work is being discussed. Although this might bring unforeseen beauty, often a better selection 
of relevant work would be preferable. There are solutions to this problem. For example, giving 
the attendees the proceedings well in advance so they have more preparation time. However, 
this solution is often not viable due to practical constraints. A better solution might be to 
provide an automatic recommendation based on the personal interests of the conference 
attendees, which is the approach that will be discussed in this paper.
    To build a successful recommendation system, it is important to know how the selection 
process takes place in unsupported settings. The information selection process starts when a 
researcher registers at a conference and receives a copy of the conference proceedings. Based 
on informal analyses, the next step is to perform a quick scan of all titles, author names, or 
abstracts for words or names that are familiar. If an entry contains enough interesting words, 
it is selected for further and more careful reading. Obviously, the assumption that is made 
implicitly, is that individual words in the abstract accurately reflects the contents of the paper 
or presentation. Ries et al. (Ries, Su, Peterson, Sievert, Patrick, Moxley, & Ries, 2001) have 
shown that this assumption holds for abstracts and papers, at least in the medical domain. 
In order to determine if a word qualifies as interesting in the context of the conference, the 
researcher might assess whether she has used the word in her own research in the past. 
One could say that the researcher tries to discover the degree of familiarity she has with an 
abstract, and if that degree of familiarity is high enough, she selects that presentation as 
potentially worthwhile to visit. 
    To assist a researcher in the information selection task, we propose a model of the 
recognition aspects of the task. That is, we propose a model that makes a preselection from 
the available information based on a notion of familiarity adapted to the individual researcher. 
To achieve this, we will develop models of the declarative memory systems of individual 
researchers (henceforth refered to as user models) and of the process of recognizing words. 
Each user model can be seen as a representation of an individual researcher’s interests, as 
it incorporates the frequency, recency, and context of the words used by the researcher to 
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describe her research. In previous research (Anderson & Milson, 1989; Anderson & Schooler, 
1991), a formal model has been developed of how the retrieval of declarative facts from memory 
can be described. In the next section, we will give a detailed overview of that model, but we 
will highlight the two most important aspects here. One key idea is that declarative memory 
is optimally adapted to serve the needs of the cognitive agent (Anderson, 1990; Oaksford 
& Chater, 1998). The other is that most facts in declarative memory are initially formed by 
perception (Anderson & Schooler, 1991). Combined, this means that the adaptive nature of 
declarative memory is essentially a reflection of the perceptions of the cognitive agent. As a 
consequence, this means that looking for structure in the environment can derive the structure 
of declarative memory. 

Rational Analysis of Memory

    Anderson and Schooler (1991) showed that the probability that a memory will be needed 
in the near future depends on the pattern of prior exposures to the piece of information stored 
by that memory. For example, the probability that someone will contact you by email today 
depends on the frequency and recency of her emails to you in the past (Anderson & Schooler, 
1991). Likewise, the probability that you will need some declarative fact from memory right 
now depends on the frequency and recency of the prior usage of that fact. Both relations 
are captured by Equation 7.1, in which B stands for the base-level activation (reflecting the 
probability), ti stands for the time since exposure to event i, and d represents the speed with 
which the influence of each exposure decays. The summation is over all (n) previous encounters 
of the events (i).

B = ln ti
−d

i=1

n

∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

		  (equation 7.1)

    Besides frequency and recency of usage of declarative facts, the context in which these 
facts occur also plays a role in the activation of these facts. This activation component will 
be called the spreading activation (Quillian, 1968), and represents the likelihood that one 
declarative fact will be needed if another one is currently being used. These likelihoods depend 
on the pattern of prior exposures with the declarative facts, as represented by the relatedness 
measure Rji between two facts j and i (Anderson & Lebiere, 1998; Anderson & Milson, 1989):

R ji =
F(W j &Wi)F(N)
F(W j )F(Wi)  (equation 7.2)

where F(Wj) and F(Wi) are the frequencies of respectively fact j and i, F(N) the total number of 
exposures and finally F(Wj & Wi) is the number of co-occurrences of the facts j and i. Equation 
7.2 is sometimes refered to as associative strength (Anderson & Lebiere, 1998; Anderson 
& Milson, 1989), to indicate that the relatedness between two facts is determined by the 
environment. The model of declarative memory outlined here has been successfully deployed 
in predicting behavior in a variety of memory related cognitive tasks (e.g., Anderson et al., 
1998; Anderson & Schooler, 1991; Van Rijn & Anderson, 2003).

Implementation of the Personal Publication Assistant

    The Personal Publication Assistant is a personalization tool based on a personalized 
rational analysis of memory. Therefore the user models underlying the recommendations 
are constructed on an individual basis. In these models, each word that occurs in one of 
the abstracts of the user is represented by a combination of base-level activation (adapted 
from Petrov, 2006) and spreading activation from the other words in the model (Anderson & 
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Lebiere, 1998). These activation values can be calculated using the statistical properties of the 
words in the published abstracts of an individual researcher:
  - The year in which it appears for the first time in one of the user’s abstracts,
  - The year in which it most recently appears in one of the user’s abstracts,
  - The frequency of appearance,
  - The frequency of co-occurrence with another word.
    Based on these properties, we create an individual representation of a researcher’s 
interests using the rational analysis described above. The Publication pa applies these 
individual user models to predict the relevance of words that occur in other scientific abstracts, 
by calculating how familiar these abstracts are. In the next sections, we will describe in more 
detail how the Publication pa calculates the base-level and spreading activation values, 
which words from the abstracts are taken into consideration, and how the system comes to a 
selection of the relevant information.

The Relevance of Individual Words in the User Model

    With the equations that are provided by the rational analysis approach to declarative 
memory, we can calculate the base-level activation of a word based on its occurrences in 
publications of the user. The base-level activation can be seen as a measure of interest, with 
the most interesting words having the highest base-level activation.
    For this application, an optimized version (Petrov, 2006) of the base-level equation 
discussed earlier (Equation 7.1) was used. In this equation (Equation 7.3), the decay parameter 
is fixed at .5 (and is reflected in Equation 7.3 as the square root operators) and a history 
parameter (h) is added: 
					   
						      (equation 7.3)

    The first component of this equation reflects the most recent encounter of that word: the 
longer ago the word was encountered, the smaller the contribution is. The second component 
reflects the frequency of usage of the word. This optimized version of the base-level activation 
equation assumes that the encounters of the word are evenly spaced over time between the 
first encounter and the last encounter of the word. In the default equation, the base-level 
activation is a product of both recency and frequency. However, in a recommendation system, 
it might be useful to be able to change the balance between both factors. For example, a 
researcher might still be interested in work relating to older work, even though a recent project 
has resulted in a set of papers on a new topic. To enable this, we added the history parameter. 
The history parameter influences the effect of recency. Informally, a higher value for h spreads 
the publications over a longer time frame, decreasing the relative activation of a word that only 
recently came up in analyzed texts. In Experiment 1 we will demonstrate that the h parameter 
is an important parameter when recommending papers with the Publication pa.

The Influence of Context on Word Relevance

    Apart from the frequency and recency of usage of a word, the context in which a word 
occurs is also important. For instance, using the word model in your paper on user models 
should not elicit conference talks on fashion models. So, context words - like in this example 
user or rational - are important in determining the activation of words such as model or analysis. 
The context in which a word has occurred in previous abstracts is incorporated in the model 
by spreading activation (Equation 7.2), which reflects the personalized probability that a word 

B = ln 1
t1 + h

+
2n − 2

tn + t1 + h

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ with h > 0



109

will be needed in connection with another word.
    Recommendations occur by mediating the base-level activation of a word with the 
spreading activation of other words:

Ai = Bi + WRji
j
∑

(equation 7.4)

    In Equation 7.4, the base-level activation of the word i in a specific abstract is increased 
with the sum of all weighted connections with the words also found in that abstract. The 
connections are weighted because otherwise the ratio between the base-level activation 
and the spreading activation would be dependent on the number of associations. For this 
application the base-level activation of the connecting word (j) is used as the weight (W), to 
scale down with the spreading activation from words that have a low base-level activation. 
This would be the case when the word i co-occurred often in the past with a word j that is 
present in the current abstract but which is not often used anymore (i.e., has a low base-level 
activation). This would cause the spreading activation to be high while the connection is less 
relevant at the current time, negatively influencing the selection of relevant papers.

Filtering of Non-Content words

    The relatedness measure Rji has shown to be a robust method of boosting the base-level 
activation as a function of the connectedness. That is, if two words always occur in tandem, the 
activation of the second word will be boosted when the first word is encountered. At the same 
time, a word that occurs in combination with many other words does spread less activation. 
In normal word usage, words as the and is spread only a small amount of activation because 
of this. In normal word usage, this effect makes sure non-content words do not influence 
base-level activations of other words too much. However, a problem might arise when the 
formulation of sentences in scientific abstracts differs from normal word usage. Because of 
spatial constraints, word usage in scientific abstracts might differ from normal written English. 
This might result in a lower frequency of function words, increasing their spreading activation 
(Equation 7.2), with a possibly negative influence on the eventual recommendations. To 
counter the unwanted influence of normally high-frequent words, these words are filtered 
from the data using a lexical database (Baayen, Piepenbrock, & Van Rijn, 1993). An analysis 
of the frequency distribution of words in both scientific abstracts and normal written English 
will demonstrate that filtering out high-frequent words will not interfere with how well an 
abstract represents the contents of a paper.

  Analysis
    To compare word usage in scientific abstracts with word usage in normal lexical content, 
the abstracts of all publications that appeared in the Cognitive Science Journal between 2004 
and 2006 were used. Numeric symbols and punctuation were removed from the abstracts, 
resulting in a list of the words that were used in the abstracts. For each word, the frequency in 
all the abstracts was contrasted with an estimate of the normal frequency in written English, 
taken from the CELEX lexical database (Baayen, Piepenbrock, & Van Rijn, 1993). If a word was 
not found in the database because of spelling mistakes or terminology, the CELEX frequency 
was assumed 0, and the frequencies of multiple occurrences of a word were summed because 
in CELEX the frequencies of homonyms are counted separately. The CELEX frequencies were 
scaled to the total number of words of the abstracts to make them comparable.
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  Results
    In Figure 7.1, the ratio between the CELEX word frequencies and the abstract word 
frequencies is plotted. We used a logarithmic scale for easier presentation. Figure 7.1 visualizes 
that the usage of words in scientific abstracts differs from the distribution of words used in 
normal written text. If the distributions were similar, then the dashed horizontal line would 
have represented the ratio. However, it becomes clear that a large part of the words used in 
the abstracts occur less often in normal written English; those are the words with a frequency 
ratio below one. Only a small part of the words occurs more often in normal written English. 
Thus, 2190 of the words used in the abstracts of the Cognitive Science Journal between 2004 and 
2006 occur more frequently in scientific abstracts than in normal written English, while only 
412 words occur more often in normal written English. However, those 412 words account for a 
large portion of the total amount of word occurrences found in the CELEX database (440,000 of 
the total of 740,000 occurrences of these words), while the 2190 words that are less frequent in 
normal written English generate less occurrences than the 412 high frequent words (300,000 
of 740,000 word occurrences). This difference is caused by abstracts containing jargon and the 
tendency to use as little function words as possible, whereas in normal language these words 
are used very frequently. Thus, removing the words from the scientific abstracts that are most 
frequent in normal written English will not remove any of the important content words, as 
only words above the dashed line in Figure 7.1 are deleted, while words below the dashed line 
in Figure 7.1 are the words that are relevant to the Publication pa.

Selection of Relevant Abstracts

    The final part in the recommendation is finding the amount of activation for each paper 
and presenting the user with a ranking or selection. In general, abstracts in which many 
words have a high activation, have a high degree of familiarity to the researcher, and are 
thus interesting enough to select. To compare the relevance of papers with each other, every 
abstract has to be represented by a single value. One solution would be to sum the activations 
of all the words in the conference abstract. However, simply summing activation values would 
result in a bias towards longer abstracts. To counteract this bias, we chose to average the 
activation of the words that occur in both the abstract and the user model. This means that 
the effect of abstract length is neutralized, while still taking all activation values of the words 
in the abstracts into account.

Experiments

    To validate the Publication pa, we first analyzed what the influence of the h parameter 

Figure 7.1. Log ratio of word usage frequencies in 
scientific abstracts and normal written English 
(CELEX), sorted by increasing frequency ratio. The 
dashed line indicates when words are used more 
often in scientific abstracts than in normal usage.

15. http://psycinfo.apa.org/
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is. Second, we performed a user study with a sample of researchers from the field of cognitive 
science, asking them to rate how much a recommended abstract aligned with their interests.

Experiment 1: History Parameter Analysis

  Methods
    We analyzed the behavior of the Publication pa with four different values for the history 
parameter: h = 0.0001; h = 0.1; h = 10; h = 1000. The parameter values were chosen to maximize 
a potential effect. The only other parameter in the system (the decay parameter d) was left at 
the default value of 0.5.
    As a test set, we took the abstracts of the publications of professor John R. Anderson, 
for as far as indexed by PsycINFO15. When visually inspecting his publication record, it shows 
some stable interests over time, but also some changes in interest. As a cognitive modeler, 
almost all of Anderson’s publications deal with cognition and the cognitive architecture he 
developed, ACT-R. However, a change in focus can be observed. From the start of his career, 
Anderson’s interests seem to be related to learning and memory (as witnessed by for instance 
Anderson & Bower, 1972, 1973), whereas more recently he seems to have developed an interest 
in functional brain imaging techniques (e.g., Anderson, 2007b; Anderson, Albert, & Fincham, 
2005). These trends should also be visible if we apply different parameter values to the h 
parameter and construct different user models.

  Results
    To compare the user models that were constructed with the various values for the h 
parameter, we ordered the words in the user models according to their activation values. 
Thus, the ordering represented the estimated importance of a word for a person’s interest. 
Figure 7.2 presents the rank order values of various words that are exemplary of the trends 
found in Anderson’s publication record. Small values of h indicate that the relative influence 
of more recent publications increases; this effect is reflected by the decreasing rank (and thus 
increasing importance) of the words functional and imaging for decreasing values of h. These 
words do all relate to the recent research interests. On the other hand, the words memory 
and experiments show the opposite trend. This reflects a shift of interest from proto-typical 
memory-related research in which multiple experiments are presented per paper. Also, the 
ranks of some words stay constant with changing h values. ACT-R and cognitive are words that 
appear in both recent and past abstracts of professor Anderson, indicating a stable interest 
in these concepts.
    This qualitative inspection of the results leads us to believe that the history parameter 
plays an important role in the selection of relevant abstracts, because it determines the 
ranking of the activation values. What the optimal setting for this parameter should be might 
be determined in a large user study in which we ask participants to rate the relevance of 
abstracts that are selected using various values for the history parameter (as has been done 
for this analysis). However, given the personal nature of interest, it seems better to leave 
the optimal setting to the user, for example, by presenting the user with the possibility to 
set this parameter in the user interface. To evaluate the performance of the Publication pa 
independent of the relative importance of word usage history, we decided to run the user 
study with h set to 10.
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Experiment 2: User Study

    We performed a user study to evaluate the recommendations provided by our abstract 
recommender system. We asked 10 researchers (2 full professors, 2 associate professors, 5 
assistant professors, and 1 post-doc) from various subfields of cognitive science and from 
various countries how much they are interested in a paper after reading the abstract. 

  Methods
    For each of the researchers, we constructed user models based on the abstracts of their 
published work insofar it was indexed by PsycINFO. Next, we ordered all abstracts from the 
last three volumes (2004-2006) of the Cognitive Science Journal according to their relevance for 
an individual researcher, based on the researcher’s published abstracts. 
    From the ordered list of abstracts, we presented the top five abstracts, the bottom five 
abstracts (that is, the least relevant abstracts), and five abstracts from the middle of the list 
to each researcher. The presentation order of these 15 abstracts was randomized, to eliminate 
any effects from expectations about the presentation order. We asked the researchers to 
indicate with a grade between 0 and 9 how much they are interested in the papers, based on 
the abstracts. We adopted this scale from similar work done by Dumais and Nielsen (1992) in 
order to be able to make a comparison between their approach and ours. Following Dumais 
and Nielsen (1992), we characterized the meaning of the rates as follows:
  - 8-9: right up my alley
  - 6-7: good match 
  - 4-5: somewhat relevant 
  - 2-3: I’m following it, sort of 
  - 0-1: how did I get this one?

  Results
    To analyze the performance of the Publication pa, we applied two measures of 
relevance:
  - Mean rated relevance, 
  - Precision.
    The precision and mean rated relevance were applied to each of the three groups (top 
5, middle 5, bottom 5). Because it is not feasible for the participants to rate all available 
abstracts from the Cognitive Science Journal between 2004 and 2006 (129 abstracts), we did 
not calculate the rate of recall, as is often used in these kinds of applications (Salton & McGill, 
1983). However, the recall rate is implicitly accounted for in the measures we did apply.

Figure 7.2. Rank order of example words that occur in the user models created for one researcher with varying history parameter 
values. The history parameter values we tested are indicated on the x-axis. Low rank order values indicate that a word is important 
for determining the researchers interests. If h decreases, the relative influence of words that were used in the past also decreases, 
and the influence of recently used words increases.
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  Mean rated relevance
    We analyzed the relevance rates given to the abstracts for each group. Figure 7.3 shows 
the means of the rates per group. Welch t-tests between the groups reveal that the rates given 
for the top 5 abstracts differ significantly from the other two groups (t=4.20, df=86.54, p<0.001 
for the top 5 vs. the bottom 5 and t=3.64, df=94.06, p<0.001 for the top 5 vs. the middle 5). The 
rates for the bottom five abstracts did not differ significantly from the rates for the middle 
five abstracts. This is in line with the observation that in multidisciplinary journals such as 
Cognitive Science, the relevance rate does not decrease linearly, but instead that only a small 
part of the published papers is relevant for a researcher, and the rest is not.

    If the Publication pa would not be able to suggest relevant papers, this would mean that 
in all three groups the number of highly rated papers would be equal on average. However, if 
this were the case, we would not be able to observe significant differences in the mean rated 
relevancies between the top 5 recommended papers and the other two groups. The fact that 
we do find this difference indicates that the system is able to provide a meaningful rank order 
in which the higher rated papers will be ranked higher.

  Precision
    Precision of retrieval is usually defined as the number of relevant documents that is 
retrieved relative to the total number of documents retrieved (Salton & McGill, 1983). Following 
the meanings of the anchor points of the scale we provided to the participants, relevance 
should be taken as rated with 4 or higher. Using Equation 7.5, the precision of the Publication 
pa in the top 5 recommended abstracts is p = 0.58. 

p =
{rating > X}∩{retrieved abstracts}

{retrieved abstracts} (equation 7.5)

    Because this notion of relevance may be considered arbitrary, we also calculated the 
precision of the Publication pa with different assumptions on relevance. For example, we 
calculated precision under the assumption that only abstracts rated 8 or higher where 
relevant, or that all abstracts rated 2 or higher were relevant. In Figure 7.4, the results of 
this analysis are presented. The figure shows that, although precision declines with a more 
stringent notion of relevance, the precision in the top 5 recommended abstracts is always 
higher than in the other two groups.

Discussion and Conclusion

    With our experiments, we demonstrated both the flexibility of the Publication pa and 
its applicability. With only one parameter, we could change the recommendations of the 
system in such a way that the relative influence of older papers changed, resulting in different 
recommendations.
    With the h parameter at a fixed value, we demonstrated that the Publication pa can 
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Figure 7.3. Mean ratings per group. Error bars denote standard error. The 
mean ratings that the participants provided for the top 5 recommended 
abstracts is significantly higher than for the other two groups.
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provide meaningful recommendations for individual users. Two observations from this 
experiment should be further discussed.
    From both the precision measure and the mean ratings, it becomes clear that there is no 
real difference between the group of abstracts from the bottom of the order list of abstracts 
from Cognitive Science Journal (2004-2006) and the ‘middle’ group. This shows that from a 
large collection of papers, only a very small subset is relevant for a particular user, underlining 
the need for filtering mechanisms or recommender systems.

    Figure 7.4 shows that the mean rated relevance for the top 5 recommended abstracts is 
4.5. This qualifies as somewhat relevant, but not right up my alley. We contribute this to the 
nature of the data set we used to recommend abstracts from. Cognitive Science Journal is a highly 
multidisciplinary journal, accepting papers from a wide range of research areas (as witnessed 
for instance by the set of keywords authors can use when submitting, published on the website 
of the Cognitive Science Society16). As a result, papers addressing very specific topics, that may 
be right up my alley, will be presented to other, more specialized, journals. Thus, the ratings 
provided by our participants might be a bit lower than expected, because abstracts that would 
be rated as right up my alley were probably underrepresented in the data set.

Related work

    The problem of matching researchers and papers has been addressed before, in the 
context of systems that use Latent Semantic Indexing (lsi) (Dumais, 2003; Dumais & 
Nielsen, 1992; Foltz & Dumais, 1992). Our approach deviates from these earlier attempts in a 
number of ways. lsi assumes that the similarity of two documents is reflected by the similar 
word frequency distributions that are manifest in these documents (Deerwester et al., 1990; 
Landauer & Dumais, 1997; Landauer, Foltz, & Laham, 1998). However, instead of taking the 
raw frequency statistics into account, lsi performs a mathematical analysis (singular value 
decomposition) that is capable of higher-order inference. That is, lsi calculates the probability 
of each of the words occurring in a document, given multiple documents.
    Instead of lsi, the measure of semantic relatedness that we apply, associative strength 
(Anderson & Lebiere, 1998; Anderson & Milson, 1989), is equivalent to Point-wise Mutual 
Information (pmi), given a reasonably large data set (Farahat, Pirolli, & Markova, 2004). pmi 
is also based on the statistical properties of the documents, but, in contrast to lsi, pmi is 
a direct measure of the likelihood that one word will occur, given the presence of another. 
As a measure of semantic similarity, pmi has been shown to perform equal to or better than 
lsi (Turney, 2001). We expect therefore that when pmi will also be a better representation of 
semantic relatedness than lsi. 
    Besides the method of calculating the semantic relatedness, also the corpus of text on 
which it is performed differs. Dumais and colleagues (Dumais & Nielsen, 1992; Foltz & Dumais, 

Figure 7.4. Precision of the Publication 
pa for different interpretations of 
relevance. The dotted vertical line 
indicates the point at which relevance 
is interpreted as somewhat relevant or 
better (rating 4 on the scale provided 
to the participants). The figure 
shows that for all interpretations of 
relevance, the precision for the top 5 
recommended papers is higher than 
for the other two groups.

16. http://cognitivescience-
society.org/journal_csj_
submission_keywords.html
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1992) used a fixed semantic space for all users of their system. Recently, however, it has 
been shown that the choice of corpus greatly influences the semantic distance, even when 
applying the same measure of semantic relatedness (Lindsey, Veksler, Grintsvayg, & Gray, 
2007). By contrast, we constructed personalized semantic spaces for individual users. That 
is, the associations between words in the semantic space reflect the semantic relatedness 
as apparent from the statistical properties of word usage in the abstracts of one user. This 
obviously will result in more individualized recommendations, because only the associations 
between words that a single researcher would also make, are present. Also, the problem 
of corpus selection does not arise, because the corpus used is already the best possible 
representation of a researcher’s interest, namely her own publication record.
    When it comes to the performance of the Publication pa as compared to the approach taken 
by Dumais and Nielsen (1992), the Publication pa seems to perform equally well. Dumais and 
Nielsen (1992) report a precision of p = 0.51, slightly lower than our value of p = 0.58. However, 
the computation of precision differs between the two approaches. In general, comparison is 
difficult because of the different nature of the data sets used. While the abstracts from the 
Cognitive Science Journal are very multi-disciplinary and thus very diverse, the abstracts used 
by Dumais and Nielsen (1992) are from a very specialized conference (ACM Hypertext’91). This 
difference in diversity of topics included in the data sets could explain the difference in mean 
rated relevance between the Publication pa (4.5) and the system by Dumais and Nielsen (5.75). 
In the Dumais and Nielsen experiment, both the abstracts and the researchers they are being 
assigned to, are specialized in hypertext. Therefore, the mean relevance of the data set for the 
researchers is already higher than in our experiment.
    To a certain extent, our work bears resemblance to the work of Pirolli and colleagues 
towards Information Foraging (Fu & Pirolli, 2007; Pirolli, 2005; Pirolli & Card, 1999; Pirolli & 
Fu, 2003). They provided a rational analysis of how users search for relevant information, and 
applied this to information search on the World Wide Web. This way, they were able to model 
web navigation aspects of a typical user. In Information Foraging theory, the likelihood that 
a certain document or webpage is relevant is based on the base-level activation of the words 
in that document and the spreading activation from the words in that document to the words 
in the search query. Similarly, the Publication pa computes the relevance of a paper based on 
the base-level activation of the words in the abstract and the spreading activation from the 
words in that abstract to the words in the user model. One of the important components of the 
Publication pa is the construction of the user model, which ensures that only words that are 
relevant for an individual researcher are considered in computing the relevance of an abstract.
    However, the Information Foraging models differ in that they capture the information 
search behavior of a typical human being serving the web, whereas the Publication pa is 
a personalization tool, and is intended to model the information needs of an individual 
researcher. As outlined above, the semantic relatedness estimates applied by the Publication 
pa are therefore personalized for each individual researcher, resulting in different behavior of 
the model for each researcher.

Conclusion

    In this paper, we proposed a method for the personalization of information selection, 
based on rational analysis and cognitive architectures. We developed an application, the 
Personal Publication Assistant (Publication pa), for the recommendation of relevant scientific 
abstracts to researchers, based on their publication record to date. In two experiments, we 

16. http://cognitivescience-
society.org/journal_csj_
submission_keywords.html
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analyzed the behavior of the Publication pa and found that it is a flexible and adaptable system, 
as well as an adaptive system. From Experiment 1 we concluded that users of the Publication 
pa can adapt the nature of the recommendations to their own personal wishes, using only one 
parameter. In a final version of the interface, this parameter could be controlled by a slider 
bar. Some researchers might be only interested in their current topic, for instance because 
they have just switched research topics. They can choose a low value for this h parameter. 
Researchers that would rather want to follow what is being published in research fields they 
previously published in may choose a high value of the h parameter.
    Experiment 2 demonstrated that the Publication pa can select relevant papers for 
individual researchers. Papers that were recommended by the system were rated higher by 
the participants than papers that were not recommended. 
    The techniques applied in the Publication pa might also be applied to develop recommender 
systems in other domains in which personalized information retrieval is desirable. The domain 
should be primarily characterized by textual information sources, such as conference or 
journal papers, and the users should also be characterized by textual testimonials of their 
interests. Two examples of the wider applicability of the method of information selection that 
we proposed here are the problem of assigning manuscripts submitted to a conference to 
reviewers, and the problem of selecting relevant press bulletins from the stream of bulletins 
provided by press agencies world wide. We will discuss both these examples and hint at an 
implementation of our technique.
    The assignment of manuscripts submitted to a conference to reviewers is a problem 
very similar to the selection of relevant abstracts for a reviewer. Even though reviewers can 
often indicate their areas of expertise, it is hard for conference program chairs to match 
every submission to the most qualified reviewers. Since the area of expertise of a reviewer 
is reflected in his or her publication record, user profiles that reflect the areas of expertise 
could be generated based on the publication record. By matching the profiles against each 
submitted abstract, the best-suited reviewer for each abstract will be associated with the 
highest relevance score. This way, conference chairs can easily assign submitted manuscripts 
to reviewers without having to rely on the reviewer’s own opinion of his or her expertise, or 
without having to burden them with long questionnaires about their fields of research.
    Press agencies produce many bulletins a day, often over 12.500 bulletins a year.17 A 
reporter trying to read the most important press bulletins for his or her interests has to make 
a selection from this vast amount of information. Although press agencies often tag their 
bulletins or assign them to a certain category, it is easy to miss the one that is important. By 
creating profiles of reporters based on the news articles they have written over the years, an 
application similar to the Publication pa could make a meaningful selection for them.
    A cognitive model of information selection can thus guide the development of a 
recommender system, because it provides insights in which features from the pieces of 
information are relevant for the selection process. The analysis suggests that the features 
that people that are engaged in retrieving relevant information use are the history of usage 
of words, and the co-occurrence of words. By incorporating these features in the same way as 
a cognitive model of human memory does, we have created a successful Publication pa, that 
for example can decrease the work load of individual researchers attending a conference by 
creating a preselection in the conference proceedings.

17. Source: ANP Press 
support
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This chapter is an extended version of Van Maanen, L. & Marewski, J.N. (2009). Recommender Systems for Literature 

Selection: A Competition between Decision Making and Memory Models. In N. A. Taatgen & H. Van Rijn (Eds.), 

Proceedings of the 31st Annual Meeting of the Cognitive Science Society, Cognitive Science Society.

Literature Selection

    In 2006, the number of scientific publications in the relatively small ISI subject category 
Information Science & Library Science was 2054. In other words, researchers working in this 
area had to scan through over 2,000 papers a year to keep up with the current developments. 
However, this number is, if anything, an underestimation of the total number of potentially 
relevant papers, as this number only holds if a researcher is interested in a single subject area. 
In practice, most researchers work on the intersection of multiple domains, increasing the 
number of potentially relevant papers enormously. Not only professionals in the scientific 
domain are confronted with masses of potentially relevant information. Also, government or 
business employees often need to decide which of numerous reports, leaflets, and bulletins 
to read, and which to ignore - a challenge that is aggravated by the continuously increasing 
amount of information that is available online. For instance, many press agencies produce 
over 12.500 bulletins a year. Reporters trying to read the most important ones have to make 
selections, and although the agencies often tag their bulletins, the sheer mass of information 
makes that it is easy to miss important ones. 
    In this paper, we will focus on one solution to this problem: recommender systems. 
Typically, corresponding decision aids automatically come up with a pre-selection of 
information that is worth further consideration, saving institutions, firms, and people parts 
of the time and effort otherwise required to separate the relevant from the irrelevant. In 
particular, here we will evaluate six models that can solve the problem of information selection 
for the scientific domain.  
    All models select relevant scientific papers from a large collection of scientific abstracts. 
They include (i) the Publication Assistant (Van Maanen et al., in press), a recommender system 
that was recently developed to assist scientists in identifying relevant articles. We will compare 
the performance of this system to that of (ii-iv) three simple decision heuristics, including a 
unit-weight linear model (see Dawes, 1979; Dawes & Corrigan, 1974; Gigerenzer & Goldstein, 
1996), and two lexicographic rules, called take-the-best (Gigerenzer & Goldstein, 1996), and 
naiveLex. We will also pit all models against (v-vi) two more complex linear weighted additive 
models, one being Franklin’s rule (Gigerenzer & Goldstein, 1999) and the other multiple 
regression (Slovic & Lichtenstein, 1971).  
    While we do not aim to model the cognitive processes that are actually going on when 
scientists make literature choices, except for multiple regression all models tested here are 
grounded in cognitive theories. The Publication Assistant is a memory model that is based 
on the rational analysis framework (Anderson, 1990; Oaksford & Chater, 1998), as incorporated 
in the ACT-R cognitive architecture (Anderson, 2007a). The heuristics are models of decision 
making that are grounded in the fast and frugal heuristics framework (Gigerenzer, Todd, & 

17. Source: ANP Press 
support
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the abc Group, 1999). The linear weighted additive model, Franklin’s rule, is also a model of 
decision making (Gigerenzer & Goldstein, 1999). All models are common in the memory and 
judgment and/or decision making literature. 
    In what follows, we will give an outline of the Publication Assistant. Next, we will 
introduce the five alternative models. In an experiment, we will then evaluate the models’ 
performance in predicting scientists’ literature preferences.  

The Publication Assistant: A Memory Model

    An example of the problem addressed in this paper is the selection of relevant talks when 
attending a large, multi-track scientific conference such as the Annual Cognitive Science 
Conference. The information selection process starts when a researcher registers and receives 
a copy of the conference program. For instance, a strategy often employed by many conference 
attendees is to scan talk titles, author names, or abstracts for words or names that sound 
familiar. If an entry contains enough interesting words, it is selected for more careful reading, 
and the corresponding talk might be attended. In order to determine if a word qualifies as 
interesting in the context of the conference, a researcher might assess whether she has used 
the word in her own research in the past. The assumption is that the words used by someone 
in the context of their own research reflect their scientific interests. The Publication Assistant 
is a literature selection tool that could be run over a (digitized) conference program prior to 
attending the conference. The model recommends talks a given scientist might find useful to 
attend, saving that researcher the time and effort required to scan the conference program on 
his own. To this end, the model searches through the scientist’s own work, examining in how 
far words that appear in conference abstracts also occur in the scientist’s work. Specifically, 
the model bases its recommendations on the following properties an abstract’s words:

Recency of occurrence in the scientist’s own work

Frequency of occurrence in the scientist’s own work

    Based on these properties, the model creates an individual representation of a researcher’s 
interests. The Publication Assistant applies these user models to predict the relevance of words 
that occur in other scientific abstracts, essentially estimating how familiar the contents of 
these abstracts would be to the scientist. In the next section, we will describe in more detail 
how the Publication Assistant estimates familiarity.

Model Equations

    The Publication Assistant works like a model of the contents of a researcher’s memory. Its 
equations are based on Anderson and Schooler’s (1991) rational analysis of memory. According 

- The year in which a word from a conference abstract appears for the first time in the 
abstracts the scientist has published in the past,
- The year in which a word from a conference abstract appears for the last time in the 
abstracts the scientist has published in the past,

- The frequency of appearance of a word from a conference abstract in the abstracts the 
scientist has published in the past,
- The frequency of co-occurrence of a word from the conference abstract with another word 
in the abstracts the scientist has published in the past.

18. Van Maanen et al. 
(in press) found that the 
frequency of words in 
scientific abstracts differs 
from normal word usage in 
written English. To counter 
the unwanted influence 
of normally high-frequent 
words (e.g, “the”), van 
Maanen et al. built a filter 
for these words when they 
developed the Publication 
Assistant. Here, we run 
all analyses using that 
filter. As they showed, the 
filtering does not interfere 
with how well an abstract 
represents the contents of 
a paper.
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to their analysis, the probability that a fact (e.g., a word) stored in memory will be needed 
to achieve a processing goal can be predicted from the organism’s pattern of prior exposure 
to the corresponding piece of information. For example, the probability that a fact about a 
scientific topic is of relevance to a researcher may depend on the frequency and recency of 
his writings about it in the past. Frequency and recency, in turn, feed into a memory currency 
called base-level activation, which influences a researcher’s familiarity with the fact. These 
relations are captured by Equation 8.1, in which B stands for the base-level activation of a fact 
i, ti stands for the time that has passed since the last exposure to that fact, and d represents 
the speed with which the influence of each exposure decays away. The summation takes place 
over all n previous encounters with the fact.

B = ln ti
−d

i=1

n

∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

	 (equation 8.1)

    Besides frequency and recency of encounters with facts, the context in which these facts 
occur also plays a role in the activation of the facts. This spreading activation (Quillian, 1968) 
component represents the likelihood that a fact will be needed if another one is currently 
being used. These likelihoods depend on the pattern of prior exposures with the facts, as 
represented by the relatedness measure Rji between two facts j and i (Anderson & Lebiere, 
1998; Anderson & Milson, 1989):

R ji =
F(W j &Wi)F(N)
F(W j )F(Wi) (equation 8.2)

where F(Wj) and F(Wi) are the respective frequencies of facts j and i, F(N) is the total number of 
exposures, and F(Wj & Wi) is the number of co-occurrences of the facts j and i. 
    With the equations that are provided by the rational analysis of memory, one can 
calculate the base-level activation of a word based on its occurrences in publications of the 
user. However, rather than using Equation 8.1 directly, the Publication Assistant uses Petrov’s 
(2006) version of it. In Equation 8.3, the decay parameter is fixed at .5 and a history factor h is 
added, which represents a free parameter:

B = ln 1
t1 + h

+
2n − 2

tn + t1 + h

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ with h > 0

(equation 8.3)

    To stick to the example of selecting abstracts from a conference program, the Publication 
Assistant makes recommendations by combining the base-level activation of a word (i) with 
the weighted base-level activation of related words (j) in the abstract (Pirolli & Card, 1999):

		   (equation 8.4)

    To compare the relevance of abstracts with each other, each one is represented by the 
average activation of the words that occur in it. In a comparison of two abstracts, the Publication 
Assistant then recommends the more activated one. Abstracts in which many words have high 
base-level and spreading activation values have a high match with the researchers own word 
usage, and thus may be more interesting.18 The Publication Assistant’s recommendations are 
thus based on the structure of the environment of a particular researcher. In particular, the 
structure of word usage in previously published abstracts. The only parameter that may be 
varied is the history parameter h, which represents the relative importance of recency versus 
frequency in determining activation. In the research reported here, we kept h constant at the 
same value reported in Van Maanen et al. (in press).
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 Alternative Models: Decision Strategies

    To evaluate the performance of the Publication Assistant in predicting scientists’ 
literature preferences, we compared it to five alternative models. While the Publication 
Assistant essentially mimics a model of memory, these alternative models have originally 
been proposed as decision strategies in the judgment and decision making literature. 
    In particular, we focus on a class of models that have been prominent in the fast and 
frugal heuristics framework. According to this framework, humans (and other organisms) often 
make decisions under the constraints of limited information processing capacity, knowledge, 
and time - be they about the relevance of scientific articles, or the likely performance of stocks, 
or the nutritional value of food. Such decisions can nevertheless be made successfully because 
humans can rely on a large repertoire of simple decision strategies, called heuristics. These 
rules of thumb can perform well even under the above-mentioned constraints. They do so by 
exploiting the structure of information in the environment in which a decision maker acts and 
by building on the ways evolved cognitive capacities work, such as the speed with which the 
human memory system retrieves information. 
    One of the heuristics tested here, the unit-weight linear model, is particularly simple, 
requiring no free parameters to be fitted. Related models have proved to be almost as 
successful (or even better) in predicting unknown events and quantities as multiple 
regressions (see Dawes & Corrigan, 1974; Dawes, 1979). Just as the unit-weight linear model, 
also naiveLex dispenses with all free parameters. If these two particularly simple heuristics 
predicted scientist’s literature preferences successfully, then they would simplify the selection 
of abstracts more than the Publication Assistant does. In order to be considered a useful 
tool, the Publication Assistant should thus be able to outperform these models. Take-the-
best is a little more complex, requiring one free parameter to be fitted for each individual 
scientist. Take-the-best and related models have been found to be, on average, more accurate 
than multiple regression in predicting various economic, demographic, and environmental, 
variables (e.g., Czerlinski, Gigerenzer, & Goldstein, 1999). Finally, the most complex models 
tested here, Franklin’s rule and multiple regression, require for each individual researcher as 
many free parameters to be fitted as there are words in the abstracts under consideration. 
While these two models are prominent in the judgment and decision making literature, due 
to their large complexity they are not considered heuristic decision strategies in the fast 
and frugal heuristics framework. Rather, they are often used as benchmark to evaluate the 
performance of heuristics in model comparisons (Czerlinski, Gigerenzer, & Goldstein, 1999; 
Gigerenzer & Goldstein, 1996).

Lexicographic Heuristics: take-the-best, naiveLex 

    The first model to be considered here is take-the-best. To make literature 
recommendations, take-the-best uses attributes of articles as cues. In our context, cues are 
the words that occur in an abstract. If such a word also occurs in a scientist’s own publication, 
then it is considered a positive cue, suggesting that an abstract is of interest to that scientist. 
Take-the-best considers all cues sequentially (i.e., one at a time; hence lexicographic) in the 
order of their validity. The validity of a cue is the probability that an alternative A (e.g., an 
article) has a higher value on a criterion (e.g., relevance for a researcher) than alternative 
B, given that alternative A has a positive value on that cue and alternative B does not. In a 
comparison of two abstracts, take-the-best bases a decision on the first cue that discriminates 
between the abstracts, that is, on the first cue for which one abstract has a positive value and 
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the other one does not. The heuristic is defined in terms of three rules:
  (1) Look up cues in the order of their validity.
  (2) Stop when the first cue is found that discriminates between the abstracts. 
  (3) Choose the abstract that this cue favors.
    The second lexicographic model, here called naiveLex, is identical to take-the-best, 
except that it does not estimate the validity order of cues. Rather, cues are simply considered 
in the order of the frequency of occurrence of the corresponding words in each researcher’s 
published abstracts. This aspect of the model is similar to the Publication Assistant, in which 
the word frequency is also taken into account (but weighted with recency). 

A Unit-weight-linear Heuristic

    Lexicographic heuristics such as take-the-best can avoid going through all words (i.e., 
cues) from an abstract, which can save effort, time, and computations once the order of cues is 
known. Unit-weight linear heuristics, in contrast, integrate all cues into a judgment by adding 
them. These models can nevertheless simplify the task by weighing each cue equally (hence 
unit-weight). In a comparison of two abstracts, it reads as follows: 
  (1) For each abstract, compute the sum of positive cues.
  (2) Decide for the abstract that is favored by a larger sum.

Weighted-Additive models: Franklin’s Rule and Multiple Regression

    Franklin’s rule (Gigerenzer & Goldstein, 1999) is similar to the unit-weight linear heuristic, 
but instead weights all the cues by their validities prior to summation. (The cue validities are 
identical to those relied on by take-the-best.) Multiple regression, in turn, estimates the weights 
of the cues by minimizing the error in the calibration set using maximum likelihood estimation. 
In a comparison of two abstracts, Franklin’s rule and multiple regression read as follows: 
  (1) For each abstract, compute the weighted sum of cues.
  (2) Decide for the abstract that is favored by a larger sum.

Experiment

    To compare the Publication Assistant to the alternative models’ capability of predicting 
actual scientist’s literature preferences, we re-analyzed data from a study by Van Maanen et al. 
(in press, Experiment 2). They had asked researchers from the field of cognitive science to rate 
how much they were interested in a paper after reading the abstract. In this study, Van Maanen 
et al. had found that the Publication Assistant could fit researcher’s interests reasonably well; 
however, they did not compare its performance to that of alternative models.  

Methods

  Participants 
    Ten researchers (2 full professors, 2 associate professors, 5 assistant professors, and 1 
post-doc) from various subfields of cognitive science and from various countries were asked 
to participate.

  Procedure 
    For each of the researchers, Van Maanen et al. (in press) constructed user models of the 
Publication Assistant based on the abstracts of their published work insofar it was indexed 
by PsycINFO. They then ordered all abstracts from the last three volumes (2004-2006) of the 

 - A Comparison between Decision Making and Memory Models for Literature Selection -



122

- CONTEXT EFFECTS ON MEMORY RETRIEVAL: THEORY AND APPLICATIONS -

Cognitive Science Journal according to the predicted relevance for the researcher, based on the 
researcher’s published abstracts. 
    From the ordered list of abstracts, they presented each researcher the top five abstracts, 
the bottom five abstracts, and five abstracts from the middle of the list. For each researcher, the 
presentation order of these 15 abstracts was randomized. Each researcher indicated with a grade 

between 0 and 9 how much he or she was interested in the papers, based on the abstracts.

  Analyses 
    To compare the performance of the Publication Assistant to that of the five alternative 
models in predicting each researcher’s ratings, we ran a cross-validation. To this end, we 
constructed paired comparisons of all 15 abstracts for each participant individually (210 
pairs). We divided each participant’s abstracts pairs randomly into two parts. The first part 
represented the calibration set in which we calculated for each participant that person’s optimal 
values for the free parameters in take-the-best, Franklin’s rule, and multiple regression, 
respectively. That is, we identified the parameter value at which each model would correctly 
predict the largest proportion of literature preferences. Take-the-best, Franklin’s rule, and 
multiple regression will therefore be referred to as the calibrated models. 
    We used these optimal values to compute the proportion of preferences consistent with 
each model in the other half, the validation set, where the models’ generalizability is evaluated. 
For each partition, we also computed the proportion of preferences consistent with the 
three not-calibrated models (the Publication Assistant, naiveLex, and the unit-weight linear 
heuristic. The free parameter of the Publication Assistant, h, we set to 10. In fitting the very 
same participants as we do here, van Maanen et al. (in press), had found this value to work 
reasonably well. The other two models were parameter free in this respect.
    We ran these analyses for a subset of possible sizes of the calibration and validation sets; 
that is, we first computed the proportion of each model’s correct predictions for a calibration 
set size of 1 and a test set size of 209, then for a calibration set size of 11, and a test set size 
of 199, and so on. The larger the size of the calibration sets, the larger is the sample of paired 
comparisons from which the parameterized decision models can estimate an individual 
researcher’s interests, that is, the more “experience” these models can accumulate before 
making their predictions. This procedure was repeated enough times to average out noise due 
to the random selection of calibration sets.

Results

    When comparing the Publication Assistant with the other non-calibrated models (naiveLex 

Figure 8.1 The performance of the non-calibrated models. A-J represent individual participants. pa: Publication Assistant; UWL: unit-
weight linear heuristic.
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and the unit-weight linear model), we found that the three models performed differently for 
different participants (Figure 8.1). The Publication Assistant made the most correct inferences 
for three participants (A, D, and J), while unit-weight linear heuristic scored outperformed the 
other two non-calibrated competitors on four occasions (B, C, E, and H). NaiveLex scored best 
for three participants (F, G, and I). Overall, the performance of the models did not differ much 
(meanPA=0.60, meannaïeveLex=0.59, meanUWL=0.60).
    For each of the 10 participants, Figure 8.2 shows the proportion of correctly predicted 
preferences for the three calibrated models as a function of the size of the calibration set. As 
one would expect, for all participants the accuracy of the predictions of the parameterized 
models increases with the size of the calibration set. Of the calibrated models, Franklin’s rule 
was consequently outperformed by the take-the-best heuristic and the multiple regression 
model, which performed equally well, but differed among participants. Take-the-best was 
the best predictor for participants B, C, E, G, I, and J, while the regression model performed 
best for participants A, D, F, and H. Overall, take-the-best performed best (mean

TTB
=0.84, 

mean
MR

=0.81, meanFranklin=0.71).

Discussion 

    We examined the ability of six models to predict scientists’ literature preferences: (i) the 
Publication Assistant, a recommender system that is based on a rational analysis of memory 
and the ACT-R architecture; (ii-iv) three simple heuristics, including take-the-best, a naive 
lexicographic model, and a unit-weight linear model, and (v-vi) two complex weighted-
additive models, Franklin’s rule and multiple regression. 
    For some participants and calibration set sizes, the regression model outperformed take-
the-best. One reason why take-the-best did not fare as well as multiple regression on every 
occasion might be that the structure of information available in the abstracts was not well 
suited for this simple heuristic (Martignon & Hoffrage, 2002). For instance, take-the-best 
essentially bets on a noncompensatory information structure, always preferring the most 
valid discriminating cue to all others. In the domain of literature selection, such information 
structures might not be prevalent. To give an example, the words “Memory” and “Retrieval” 
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Figure 8.2. The calibrated models’ individual predictions of literature selections. Each panel represents one participant. TTB: take-
the-best; Franklin: Franklin’s rule; MR: multiple regression.
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might be equally good predictors of some cognitive scientist’s research interests.
    One result was that the performance of the non-calibrated models differed between 
participants. However, it should be realized that naiveLex and the Publication Assistant only 
differ with respect to the use of the recency component. Both models use the frequency of 
words in published abstracts in the same way. Therefore, the difference in the participants 
in which naiveLex is the better recommender may be attributed to the importance that these 
participants contribute to recency. That is, the Publication Assistant overestimates the 
importance of more frequent words in the published abstracts. Thus, recommendations of the 
Publication Assistant could improve if we would allow the h parameter to be fit individually.
The fact that the non-calibrated models performed differently between participants is in 
agreement with other findings in the judgment and decision making literature, where large 
individual variation in people’s use of decision strategies are commonly observed (Bröder & 
Gaissmaier, 2007; Mata, Schooler, & Rieskamp, 2007; Pachur, Bröder, & Marewski, 2008). In 
this respect, it is somewhat surprising that take-the-best consistently outperforms all other 
competitors. Based on the literature, we would have expected that the most useful approach 
designing recommender systems would have been to build different systems for different 
users, depending on which model predicts the respective scientist’s preferences best.

Why was the Publication Assistant outperformed by the calibrated models? 

    Take-the-best, Franklin’s rule, and the regression model learned about the scientists’ 
interests directly from the paired comparisons between abstracts that were included in the 
calibration sets. The Publication Assistant, in turn, was trained on a participant’s published 
abstracts (Van Maanen et al. in press), under the assumption that word frequencies in those 
abstract would reflect the participants’ interests. While this way of training the model better 
reflects real-life situations of information selection, in which people’s appraisal of items (such 
as abstracts) is often unknown, it might have been detrimental for the model’s performance. 
In addition, our results complement findings by Lee, Loughlin, and Lundberg (2002), who, 
in a study on literature search, examined the performance of a simple heuristic in identifying 
articles that are relevant to a given topic of interest (e.g., eyewitness testimony). Their 
analyses show that a researcher going by a variant of take-the-best would have had to search 
through fewer articles in order to find the relevant ones than a person behaving in accordance 
with a weighted-additive model. 

Conclusion

    In this paper, we evaluated the ability of cognitive models of memory and decision 
making to serve as literature recommender systems. Three of the models were trained on the 
participants’ published abstracts (the non-calibrated models), while three other models were 
allowed to train on a calibration set that contained abstracts that were also part of the paired 
comparisons in the validation set. This second type of training generally yields better results, 
but at a cost of a less realistic training situation. The non-calibrated models showed large 
individual variability, suggesting that for successful recommendation, the best predicting 
model should be determined first. Future work will show if this result is generalizable to other 
domains of literature recommendation and information search.  
    To conclude, in today’s world of mass media, the choice which information to attend to, 
and which to ignore becomes an ever more important challenge for professionals. Automatic 
recommender system might help to cope with these demands of the information age - savings 
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in time and effort that can eventually be invested elsewhere. We hope that comparisons 
between different approaches, such as the ones tested here, help along that way.

Results from Part I

    In Part I of this thesis, a new model for retrievals from declarative memory was proposed. 
The model, called Retrieval by Accumulating Evidence in an Architecture (RACE/A), accounts 
for semantic interference effects within the constraints of the cognitive architecture ACT-R 
(Anderson, 2007a). By adding a sequential sampling model of declarative memory as a 
component to ACT-R, it becomes possible to accurately predict human behavior in tasks that 
involve competitive processes in memory retrieval, such as the Stroop effect (Chapter 4), 
picture-word interference (Chapters 2, 3.2 and 4), lexical decision (Chapter 3.1), or subliminal 
perception (Chapter 3.3). In addition, RACE/A demonstrates the usefulness of the architectural 
approach towards modeling cognition. Without RACE/A, it would have been harder to model 
to explain some of the effects discussed in this thesis.
    One example is the interaction between stimulus repetition and semantic interference (as 
discussed in Chapter 2), which could not be accounted for with a single sequential sampling 
model. RACE/A computes the long-term activation dynamics (estimated by the history of 
usage of the chunks) as well as the short-term activation dynamics (estimated by a sequential 
sampling process). The long-term activation dynamics effectively act as a starting point of the 
evidence accumulation process. Because the long-term activation dynamics is determined by 
the ACT-R architecture, the short-term activation dynamics start at a principled of starting 
point. In this respect, RACE/A differs notably from the standard sequential sampling approach 
in which the starting point of evidence accumulation is treated as a free parameter, which is 
often interpreted after model fitting has taken place.
    Another example is the mechanism that we proposed that may explain the differences 
(and similiarities) between the Stroop task and the picture-word interference (pwi) task 
(Chapter 4). It has often been assumed that the effects observed in these tasks are caused 
by the same principle (MacLeod, 1991). A recent study (Dell’Acqua et al., 2007) questioned 
this long-standing position by presenting data from a dual-task experiment, in which the 
effects from a picture-word interference manipulation differed from those from a Stroop 
manipulation. In two experiments, we replicated and confirmed these observations, but also 
demonstrated that these observations could still be caused by the same underlying principle 
(Chapter 4). The theory put forward in this chapter is that interference in both Stroop tasks 
and pwi tasks is caused by competition among multiple potential memory representations. 
Because at multiple stages during the tasks memory retrievals take place, the interference 
effects can manifest at multiple stages as well. This theory could not have been modeled using 
traditional sequential sampling models, because the amount of competition at every stage 
critically depends on the duration of the stages. In Chapter 4, we showed that the amount of 
interference at every stage could be manipulated by adapting one single parameter, which we 
used to account for the difference between Stroop and pwi.
    The contribution of RACE/A to the theory of declarative memory retrieval lies in the 
possibility to model the retrieval process on a very small time-scale. This proved to be 
especially useful when explaining the temporal dynamics of memory retrievals. For instance, 
asynchronously presented stimuli can influence the time course of memory retrievals (e.g., 
W. R. Glaser & Düngelhoff, 1984), which can be modeled using RACE/A (Chapter 2). Moreover, 

- Conclusion -

Conclusion
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the integration of RACE/A in a cognitive architecture restricts the freedom a modeler has when 
trying to fit data sets. This is because RACE/A models – besides aligning with the specific 
theory behind RACE/A – also have to adhere to the ACT-R central assumptions (R. P. Cooper, 
2007). In particular, besides the retrieval latency equation, RACE/A does not change any of the 
central architectural assumptions. With respect to the retrieval latency equation, we showed 
(Chapter 2) that in the absence of competition during memory retrieval, RACE/A makes similar 
predictions as the default ACT-R retrieval latency equation. Thus, previous ACT-R models of 
tasks in which interference does not play a critical role are not invalidated by our extension. 
The combination of sequential sampling and cognitive architecture only increases the set of 
phenomena that can be accounted for by the architecture, while at the same time remaining 
true to the architecture’s central assumptions.

Results from Part II

    In Part I, we studied how the context in which a stimulus is presented influences the 
retrieval processes that are triggered by that stimulus. For this purpose, we studied small-
scale behavioral effects and tried to explain them within the ACT-R architecture of cognition. 
In Part II, we have focused on the effects of a more general context on the retrieval process. 
With the use of cognitive models we have studied how individual contexts predict which 
concepts will be retrieved from memory. Based on this, we have developed information 
retrieval algorithms in two domains. The applications that have been developed for the 
domains of artwork selection and scientific literature search, the Virtual Museum Guide (vmg, 
Chapter 5) and the Personal Publication Assistant (Publication pa, Chapter 7) incorporate a 
model of the user’s memory structure, and use that to predict user preferences. That is, based 
on an analysis of the statistical properties of the textual environment that a user interacts 
with, a prediction is made about which aspects of this textual environment are more likely to 
be recalled in the near future. These aspects are hypothesized to be the most relevant facts 
for that user given the current environment and time. The Publication pa used this prediction 
to select scientific papers for individual researchers. The vmg used this prediction to select a 
sequence of artworks for individual (online) museum visitors.
    In Chapter 5, we developed a software environment in which users can interact with the 
collection of the Amsterdam Rijksmuseum. An online version of the system was available for 
four months in 2007, allowing users to study the Rijksmuseum’s collection. The system can be 
used to test the applicability of cognitive theories for user modeling in the cultural heritage 
domain. Particularly, we tested an activation-based user model for the cultural heritage 
domain (the vmg) that is capable of infering visitors’ interests by incorporating a model of a 
museum guide’s memory. 
    The aim of this user model was to present an interesting tour to visitors, given the vmg’s 
extensive knowledge on the museum’s collection, and the perceived interests from the visitors. 
However, the study revealed that participants were just as satisfied with an online museum 
guide that incorporated the participants’ feedback as with a simpler algorithm that did not take 
their feedback into account. One reason why the vmg did not perform better might be related 
to the way the participants could provide feedback during the training phase. The participants 
could only indicate with a button press that they liked or disliked the artwork. That is, there 
was no option to indicate why an artwork was liked or disliked, or which aspect of an artwork 
led to the decision between positive or negative feedback. In Chapter 6, we studied - in a 
slightly different setting - if a feedback mechanism in which point of gaze was used would lead 
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to more appreciation of personalized information presentation. Although we did find hints 
that interest and gaze are related, we did not find a sufficient strong effect that could be used 
to include a gaze-based feedback mechanism in a artwork recommender system. 
    Another reason why it was difficult to provide good recommendations with the vmg relates 
to the representation of interest in the items that are being selected. One important aspect of 
the cultural-heritage domain is that interesting aspects of art are not necessarily text-based. 
Although in the context of an art recommender for the cultural heritage domain descriptions 
of the cultural-historic value of an artwork may contribute a great deal to the interest a user 
has in that particular artwork, it may not be the only aspect. The use of certain colors, painting 
or crafting techniques, or a particular arrangement of figures in the scene may also contribute 
to the appeal a work of art may have to a user. These aspects are often not included in the 
descriptions of the artworks that we used in developing the vmg. In addition, these relate to 
the expressiveness of an artwork (Arnheim, 1954/1974), which is not easily described.
    Thus, the nature of art makes it hard to determine user preferences based on cultural-
historic descriptions of the art only. On the other hand, in scientific literature (Chapter 7) the 
interesting aspects of a paper or abstract are names, concepts, and keywords, all of which 
are inherently textual. Therefore, representing the interests of users of a scientific paper 
recommender as a network of textual features is natural. In addition, the mapping between 
the textual properties of the training set (in this case, the already published papers of an 
author) and the user’s interests is more straightforward than in the cultural heritage domain. 
Since the main output channel for science is written text, the expression of interest in words 
is natural, contrary to the cultural heritage domain. Consequently, the ramp-up problem for 
users (Konstan, Riedl, Borchers, & Herlocker, 1998) applies to a lesser extent, since the user’s 
preferences are learned faster. Informal analyses suggested that about five or six recent 
publications are enough to capture a scientist’s current interest.
    Another reason for the difference between the cultural heritage and scientific literature 
domains relates to the need to explain the reasons behind certain recommendations. A study 
by Cramer et al. (2008) suggest that users of art recommenders prefer explanations of why a 
certain recommendation is given over unexplained recommendations. The issue of providing 
reasons for recommendations plays a less prominent role in the selection of relevant scientific 
publications. The selection of publications does not involve a sequence of selections, but rather 
one isolated selection. Therefore, providing reasons for successive recommendations is not an 
issue. By contrast, the selection of artworks for the purpose of an automated museum tour is 
by definition a sequential process, because a tour necessarily consists of multiple artworks. 
In the domain of scientific paper selection, we demonstrated that our approach to predicting 
interests works reasonably well (Chapter 7). A selection of articles that the Publication pa 
considered relevant for a certain researcher was rated higher on a relevance scale by that 
researcher than a selection of articles that the Publication pa considered irrelevant. Also, in a 
competition between various selection algorithms (Chapter 8), the Publication pa performed 
equally well as the other competitors that were were trained on the same calibration set as the 
Publication pa (the profiles of the users). For some users, the Publication pa outperformed the 
other competitors, while for other users, the Publication pa is outperformed. The competitors 
that were cross-validated on a subset of the possible paired comparisons of the abstracts in 
the data set performed better than the Publication pa. However, this only shows that if more 
and more suitable training data is available, performance goes up.
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Conclusion

    This thesis discussed new formal models of memory retrieval, and at the same time 
discusses how these kinds of models can be deployed for information selection problems. We 
showed that activation-based theories of declarative memory retrieval, such as a Rational 
Analysis of Memory can be used in information retrieval applications. This result depends on 
the similarities between declarative memory retrieval and information retrieval, which both 
can be characterized by the history of usage of certain items or relevant words. This result 
complements the results from Part I, in which we presented a new, activation-based, theory 
of declarative memory retrieval. The theory accounts for a wide range of interference related 
phenomena that relate to the history of usage of certain items, and the context in which they 
are retrieved.
    The complementing findings from Part I and Part II show that theoretical cognitive 
science (cognitive modeling) and computer science (cognitive engineering) may be a fruitful 
combination in which theoretical development as well as application-based research may go 
hand in hand.
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    Het geheugen is één van de belangrijkste eigenschappen van de mens. Het geheugen 
speelt niet alleen een belangrijke rol bij het onthouden van feiten, of bij het leren van nieuwe 
vaardigheden, maar ook bij heel veel dagelijkse bezigheden. Voor bijvoorbeeld het lezen van dit 
proefschrift, of voor het voeren van een gesprek is het belangrijk om de betekenis van woorden 
te herkennen. In feite is dat een vorm van herinneren. Andere voorbeelden van zaken waarbij 
geheugen een rol speelt zijn het herkennen van objecten – waarbij je je de naam of de functie 
van het object moet herinneren (Figuur 1) – of het benoemen van eigenschappen van objecten, 
bijvoorbeeld de kleur, waarbij je je de naam van de kleur van het object moet herinneren.

    Binnen de cognitieve psychologie wordt onderzoek gedaan naar de werking van het 
geheugen. De cognitieve psychologie onderzoekt hoe cognitie (“het denken”) je gedrag 
bepaalt. Geheugen is een belangrijk aspect van cognitie. Om te onderzoeken welke aspecten 
van cognitie op welke manier je gedrag beïnvloeden, worden meestal experimenten gedaan. 
Hiermee wordt onderzocht waarom de deelnemers aan die experimenten zich gedragen zoals 
ze zich gedragen. Deelnemers wordt dan gevraagd om zo snel maar ook zo correct mogelijk te 
reageren op een stimulus, bijvoorbeeld een afbeelding. Analyses van de snelheid van reageren 
en het foutenpatroon kunnen ons veel leren over de onderliggende mechanismes die het 
gedrag van mensen bepalen. 
    Dergelijke experimenten leiden in veel gevallen tot nieuwe theorieën. Omdat de theorieën 
in de cognitieve psychologie steeds complexer worden, worden tegenwoordig vaak cognitieve 
modellen ontwikkeld. Een cognitief model is een computersimulatie van die aspecten van 
menselijke intelligentie die een rol spelen bij het uitvoeren van het experiment. Als het model 
klopt, kan het hetzelfde gedrag produceren als de menselijke deelnemers aan het experiment. 
Het voordeel van zo’n computerprogramma is dat je er precieze voorspellingen voor gedrag 
mee kunt doen. Aan de ene kant dwingt dat je om je theorie heel precies te formuleren (want 
anders krijg je incorrecte voorspellingen), aan de andere kant kun je die voorspellingen ook 
weer toetsen met experimentele studies. Daarnaast is een voordeel van cognitieve modellen 
dat ze ook gebruikt kunnen worden in toepassingen waarbij het van belang is dat de computer 
de mens assisteert. Een cognitief model van een gebruiker van een computerprogramma 
kan precieze voorspellingen doen voor het gedrag van die gebruiker. Als het gedrag van een 
gebruiker van een computerprogramma bekend is, dan kan dat programma beter inspelen op 
de wensen van de gebruiker, en dus beter assisteren. 
    In deel 1 van dit proefschrift heb ik vooral het eerste aspect van cognitieve modellen 
benut. In dit deel beschrijf ik een aantal studies waarmee ik heb onderzocht hoe het geheugen 
werkt door cognitieve modellen te ontwikkelen die geheugenprocessen beschrijven. In deel 
2 van het proefschrift komt het tweede aspect aan bod. In dit deel beschrijf ik een aantal 
toepassingen waarin computermodellen van geheugen een belangrijke rol spelen.

Figuur 1. Een voorbeeld waarbij je geheugen nodig hebt: “Wat voor dier is dit?”
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Deel 1: hoe werkt het geheugen op de milliseconde?

    In deel 1 van dit proefschrift heb ik onderzocht hoe het proces van herinneren precies in 
zijn werk gaat. Eerder onderzoek beschrijft het wel of niet herinneren van een feit als het 
gevolg van hoe vaak en wanneer je dat feit eerder gezien hebt. Volgens deze “rationele 
theorieën” is het doel van geheugen om dat feit te vinden wat de hoogste kans heeft relevant 
te zijn in de huidige context. Dus als ik je vraag om zo snel mogelijk een dier te noemen, zullen 
de meeste mensen gewoonlijk eerder “Paard” dan “Zebra” zeggen. Dit komt omdat je normaal 
gesproken vaker paarden hebt gezien en dan zebra’s. Welke dierennaam het eerste bij je 
opkomt is echter contextafhankelijk. Omdat je op de vorige pagina een plaatje van een zebra 
hebt gezien en dit een hele recente ervaring is, is de kans dat je nu “Zebra” zegt ook groter. Eén 
implementatie van dit idee is geïntegreerd in de cognitieve architectuur ACT-R (Adaptive 
Control of Thought – Rational). ACT-R probeert verschillende aspecten van cognitie met elkaar 
in verband te brengen. Dat wil zeggen dat ACT-R-verklaringen van gedrag de nadruk leggen op 
de interactie van verschillende kernprincipes van cognitie, zoals langetermijn geheugen, 
perceptie, planning en timing. De mogelijkheden tot interactie van deze principes bepalen in 
grote mate hoe mensen zich gedragen. In ACT-R worden feiten – dingen die uit je langetermijn 
geheugen gehaald kunnen worden – weergegeven door middel van een activatiewaarde, die 
aangeeft hoe relevant dat feit op dit moment is (Figuur 2). Een recent feit is over het algemeen 
relevanter dan een feit dat je lang niet nodig hebt gehad, en een feit dat je veel nodig hebt is 
ook relevanter. Rationele theorieën (en ook ACT-R) geven een goede verklaring waarom je je 
bepaalde zaken makkelijker kunt herinneren dan andere. Maar deze theorieën hebben geen 
verklaring voor hoe je je iets herinnert.
    Naast de rationele theorieën waarin het herinneren wordt beschouwd als een manier om 
de potentieel meest relevante feiten te vinden, bestaan er ook theorieën waarin het herinneren 
wordt beschreven als een proces. Deze theorieën worden wel “sequential sampling” modellen 
genoemd. Sequential sampling stelt dat er tijdens het ophalen van een bepaald feit een 
competitie is tussen verschillende feiten, die allemaal in meer of mindere mate waarschijnlijk 
zijn. Voor elke mogelijkheid wordt continu bewijs verzameld dat dat de meest relevante 
herinnering is, totdat voor één van de mogelijkheden veel meer bewijs is verzameld dan voor 
de andere. Het herinneren van de naam van het dier in Figuur 1 zou je kunnen zien als een 
competitie tussen “Zebra” en “Paard” (en misschien nog wel meer mogelijkheden). Er is 

Figuur 2. De ACT-R activatie van een feit in 
langetermijn geheugen. De verticale lijnen 
geven de momenten aan waarop dit feit 
gebruikt wordt.
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bewijs voor de “Paard”-mogelijkheid, omdat het afgebeelde dier vier benen heeft, en hoeven, 
en manen. De “Zebra”-mogelijkheid is echter waarschijnlijker, omdat het dier ook nog strepen 
heeft. De meeste mensen zullen dus “Zebra” zeggen in antwoord op de vraag “Wat is dit voor 
dier?”, omdat er meer bewijs is voor “Zebra” dan voor “Paard”. De sequential sampling theorie 
neemt aan dat de bewijslast sequentieel (dat wil zeggen stapje voor stapje) toeneemt, wat het 
proces van het ophalen van een feit uit je geheugen beschrijft.

    De belangrijkste bijdrage van dit proefschrift is een specificatie van het langetermijn 
geheugen model in ACT-R. Door dat uit te breiden met een sequential sampling model kunnen 
we meer gedrag verklaren binnen één theorie (ACT-R) dan vroeger. Wij laten bijvoorbeeld 
zien dat het zogenaamde Stroop-effect (genoemd naar een experiment dat de Amerikaan 
John Ridley Stroop in 1935 heeft uitgevoerd) met deze theorie verklaard kan worden. Het 
Stroop-effect is de bevinding dat het heel moeilijk is om de kleur van een woord te noemen, 
als dat woord een kleur beschrijft (bijvoorbeeld, het woord “groen” in rode letters). Om het 
juiste antwoord (“rood”) te kunnen geven, moet je de naam van de kleur van het woord uit 
je geheugen ophalen. Voor zowel rood als groen wordt echter bewijs verzameld, omdat het 
allebei kleuren zijn. Daarom ben je dus langzamer en maak je meer fouten wanneer je de kleur 
van kleurwoorden wilt zeggen, dan wanneer je de kleur van andere woorden wilt zeggen.
    Het Stroop-effect is een voorbeeld van een experiment waarbij de competitie tussen 
verschillende feiten in het geheugen (in dit geval kleuren) zorgt voor meer fouten en langzamer 
antwoorden. Hetzelfde principe geldt ook als je gevraagd wordt een afbeelding te benoemen 
waar een woord doorheen geschreven staat (een zogenaamde PWI-taak, voor Plaatje-Woord 
Interferentie). Een afbeelding van een olifant is bijvoorbeeld moeilijker te herkennen wanneer 
het woord “giraf” erdoorheen geschreven staat, dan wanneer een woord dat niets met 
olifanten te maken heeft erdoorheen geschreven staat (bijvoorbeeld “boek”, Figuur 3).

    In deze taak blijkt dat de reactietijden afhangen van het interval tussen het aanbieden 
van het woord en het aanbieden van de afbeelding. De reactietijden zijn het grootst als een 
gerelateerd woord (“giraf”) door een afbeelding geschreven wordt, 100ms nádat de afbeelding 
getoond wordt. Deze moeilijk te verklaren observatie past binnen onze theorie, als we er 
vanuit gaan dat woorden sneller gelezen worden dan afbeeldingen benoemt worden. Vanwege 
dit verschil in verwerkingssnelheid kan het woordverwerkingsproces nog tijd goedmaken, 
waardoor het grootste effect optreedt als het woord na de afbeelding wordt aangeboden.
    Een andere belangrijke observatie is dat als mensen tegelijkertijd met een Stroop of 
PWI-taak een tweede taak moeten uitvoeren, een ander effect in de PWI-taak optreedt dan 
in de Stroop-taak. Hieruit werd in de literatuur geconcludeerd dat PWI en Stroop effecten 
veroorzaakt werden door verschillende mechanismen. Onze theorie laat zien dat er geen 
fundamenteel verschil is tussen de PWI-taak en de Stroop-taak. Wij verklaren de verschillen 

Figuur 3. Een voorbeeld van een 
stimulus waarbij er competitie is 
tussen verschillende eigenschappen 
van de stimulus. A. Wel competitie; B. 
Geen of minder competitie.
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door te kijken naar de verschillen tussen kleuren en afbeeldingen. Als we aannemen dat kleuren 
sneller worden herkend dan afbeeldingen, kunnen we de verschillen tussen de Stroop-taak en 
de PWI-taak verklaren zonder dat we uit hoeven te gaan van verschillende mechanismen.
    Naast de hier besproken voorbeelden, hebben we onze theorie ook nog toegepast op 
lexicale decisie experimenten en subliminale perceptie om de validiteit te verstevigen. Tijdens 
lexicale decisie experimenten wordt proefpersonen gevraagd om van een letterstring (BALC 
of BALK) te zeggen of het een correct Nederlands woord vormt of niet. Je kunt het gedrag 
in deze taak beschrijven door aan te nemen dat hiervoor geheugen nodig is. Een cognitief 
model dat wij voor deze taak ontwikkeld hebben voorspelt correcte reactietijden voor een 
aantal fenomenen die je bij lexicale decisie waar kunt nemen. In een subliminale perceptie 
experiment wordt de stimulus zo kort aangeboden dat de proefpersoon zich niet bewust is 
van de waarneming. Toch kan de proefpersoon dan nog boven kansniveau zeggen wat hij of 
zij heeft waargenomen. Ook dit kan gemodelleerd worden met onze theorie. Gezamenlijk 
dragen de cognitieve modellen die worden besproken in deel 1 van dit proefschrift bij aan de 
betrouwbaarheid van de geheugentheorie die in dit proefschrift ontwikkeld is.

Deel 2: geheugenmodellen in de praktijk

    Naast meer begrip over de werking van het geheugen levert een cognitief model van 
geheugen nog iets anders op: Je kunt het model gebruiken om te voorspellen welke begrippen 
mensen in een bepaalde situatie waarschijnlijk zullen gebruiken. Een computerprogramma 
dat dat weet, kan daar op in spelen. Met behulp van cognitieve modellen zou je bijvoorbeeld 
kunnen voorspellen welke informatie mensen op internet willen opzoeken. Een zoekmachine 
zoals Google zou dan al suggesties voor nieuwe zoektermen kunnen doen, op basis van het 
huidige zoekgedrag. In deel 2 van dit proefschrift wordt dit idee geïllustreerd aan de hand van 
twee voorbeelden, de Publicatie Assistent en de Virtuele Museumgids. 
    Uit eerder onderzoek is gebleken dat het gebruik van woorden behoorlijk goed voorspeld 
kan worden door te kijken wanneer en hoe vaak een bepaald woord al eerder gebruikt is. Hoe 
vaker je een woord gebruikt hebt, hoe groter de kans op hergebruik, maar hoe langer geleden 
je het woord gebruikt hebt, hoe kleiner de kans op hergebruik. Daarnaast speelt de context 
waarin je je bevindt en waarin je die woorden eerder gebruikt hebt ook een rol. 
    Op basis van deze drie eigenschappen hebben wij een computerprogramma ontwikkeld 
dat gebruikersprofielen voor museumbezoekers opstelt. De Virtuele Museumgids bouwt een 
profiel van een museumbezoeker aan de hand van beschrijvingen (woorden) van kunstwerken 
die de bezoeker gezien heeft en de interesse die de bezoeker heeft getoond voor die 
kunstwerken.
    De interesse van de bezoeker hebben we onder andere gemeten door naar de 
oogbewegingen van de bezoeker te kijken. De aanname was dat museumbezoekers vooral 
kijken naar de dingen die ze interessant vinden. Gegeven dat deze aanname klopt, kunnen 
we dan het gebruikersprofiel verbeteren door de gemeten oogbewegingen op te nemen in 
het model? Ondanks dat we wel aanwijzingen hebben gevonden dat museumbezoekers 
voornamelijk kijken naar delen van schilderijen waarin ze geïnteresseerd zijn, en zich niet 
laten “sturen” door het verhaal dat de museumgids houdt bij een schilderij, bleek het nog niet 
eenvoudig om dit principe ook echt te gebruiken in een Virtuele Museumgids applicatie.
    Naast het gebruikersprofiel van de bezoeker, heeft de Virtuele Museumgids ook een 
geheugen voor alle kunstwerken die er in het museum zijn, met de samenhang daartussen. De 
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Virtuele Museumgids combineert zijn kennis van de museumcollectie met het gebruikersprofiel 
van de bezoeker, om een zinvolle suggestie te doen welk kunstwerk bezichtigd moet worden. 
Het volgende voorbeeld illustreert dit principe. Stel de museumbezoeker geeft aan dat hij 
of zij “De Nachtwacht” van Rembrandt erg mooi vindt. De Virtuele Museumgids berekent 
vervolgens welk kunstwerk daar het meest mee te maken heeft. Dit kan bijvoorbeeld “De 
anatomische les” van Rembrandt zijn. Als de bezoeker nu aangeeft dat hij of zij dit niet zo mooi 
vindt, dan probeert de Virtuele Museumgids een kunstwerk te vinden dat veel samenhang 
vertoont met “De Nachtwacht”, maar weinig met “De anatomische les”. Een voorbeeld is “Het 
korporaalschap van kapitein Albert Bas en luitenant Lucas Conijn”, geschilderd door Govert 
Flink. Dit werk beeld ook een schutterscompagnie af, net als De Nachtwacht, maar is niet door 
Rembrandt geschilderd (Figuur 4).
    Een belangrijke eigenschap van kunst die helaas niet goed door het cognitieve model kon 
worden meegenomen bij het inschatten van interesses, is dat kunst vaak mooi of interessant 
wordt gevonden vanwege een bepaald kleurgebruik, of een bepaalde stijl of techniek. Doordat 
deze aspecten niet makkelijk te kwantificeren zijn, hebben we een tweede toepassing, de 
Publicatie Assistent, ontwikkeld waarbij dergelijke affectieve aspecten een kleinere of geen 
rol spelen.
    Voor de Publicatie Assistent hebben we gebruikt gemaakt van een vergelijkbaar idee 
als voor de gebruikersprofielen in de Virtuele Museumgids. Deze museumgids-profielen 
voorspellen welke woorden een museumbezoeker interessant vindt. De profielen in de 
Publicatie Assistent voorspellen welke woorden een wetenschapper waarschijnlijk belangrijk 
acht of interessant vindt. Het belang van elk woord voor een bepaalde wetenschapper wordt 
ingeschat op basis van hoe vaak hij of zij dat woord gebruikt heeft, wanneer, en in welke 
context. De aanname achter de Publicatie Assistent is dat deze drie eigenschappen voorspellen 
of iemand een bepaald woord belangrijk vindt (Figuur 5). 

Figuur 4. A: De Nachtwacht; B: De anatomische les; C: Het korporaalschap van kapitein Albert Bas en luitenant Lucas Conijn.

Figuur 5. Een “tag-cloud” waarbij de grootte van de begrippen aangeeft wat 
de wetenschappelijke interesse van de auteur hierin is. De grootte is bepaald 
op basis van het gebruik van deze begrippen in wetenschappelijke publicaties 
van de auteur.
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    De profielen kunnen gebruikt worden om relevante wetenschappelijke literatuur te 
vinden. Deze kunnen gebruikt worden om te kijken of de belangrijke woorden ook voorkomen 
in nieuwe publicaties van andere wetenschappers. Als de voor een bepaalde wetenschapper 
belangrijke woorden in een publicatie voorkomen, dan is dat waarschijnlijk een interessant 
artikel om te lezen. We hebben de Publicatie Assistent vergeleken met andere systemen die 
ook literatuursuggesties kunnen doen. Daaruit bleek dat onze geheugengebaseerde methode 
goed de keuzes van individuele onderzoekers voorspelt. Daarnaast laat onze studie ook zien 
dat er veel variatie zit in de selectiecriteria die verschillende mensen gebruiken om hun keuzes 
op te baseren. Een nieuwe uitdaging is om deze individuele verschillen ook in het cognitieve 
model op te kunnen nemen.

Conclusies

    De nieuwe cognitieve modellen die besproken worden in dit proefschrift schetsen een 
beeld van cognitie waarin geheugen een cruciale rol speelt. Zonder herinnering van eerder 
opgedane feitenkennis kunnen mensen niet functioneren. De theorie in dit proefschrift 
beschrijft het proces van ophalen van feiten als een sequential sampling proces waarbij 
continu de waarschijnlijkheid wordt geschat dat een bepaald feit relevant is. Daarnaast zorgt 
het mechanisme achter herinneren er echter ook voor dat in speciale gevallen het proces 
juist moeizamer gaat. Zoals bij het Stroop-effect, waarbij de betekenis van de letters van een 
woord (“rood”) de kleur (groen) juist moeilijker te herinneren maken. Met name wordt in dit 
proefschrift ook de interactie tussen geheugenprocessen en andere aspecten van cognitie 
benadrukt. De verschillende experimenten en cognitieve modellen laten zien dat deze 
interactie cruciaal is voor om een compleet beeld te krijgen van het gedrag van mensen.
    Begrip van de werking van het geheugen betekent niet alleen meer begrip van de werking 
van cognitie. Het betekent ook dat we betere computerprogramma’s kunnen ontwikkelen die 
gebruik maken van de kennis die we hebben opgedaan over de mechanismes achter het ophalen 
van feitenkennis uit je geheugen. Een eerste aanzet daartoe wordt gegeven in dit proefschrift. 
De toepassingen die ontwikkeld zijn, laten zien dat het gebruik van cognitieve modellen in 
computerprogramma’s waarbij een persoonlijke selectie uit informatie gemaakt moet worden 
zinvol is, en een belangrijke toevoeging kan zijn aan reeds bestaande technologie.
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