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Overview

 From data to explanation: competing theories

 Neural representations

 Anticipation and attention: phenomena  
  requiring representation 

 Conclusions
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War of worlds/words

 behavorism & associationism 
                  Stim Resp
 traditional symbolistic cognitive science
                  Act = Cogn(Perc)
 ecological approaches
                  Act  Perc
 the brain-imaging revolution
                  Act = Brain(Perc)
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Cognitive theories vs(?) 
Non-linear dynamic systems theories

 Grey Walter (1948) 
   Emergent behavior in Turtle bots

 JJ Gibson (1960-1970)
   Ecological perception & action

 Scott Kelso (198x) 
     Action-Perception as a pattern formation process

 Rodney Brooks (1991)
   Intelligence without representation
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Grey Walter (194x): behavioral complexity 
through simple perception/action mechanisms

“Elsie the artificial
tortoise”

-light sensor
-thermionic valve
-simple steering

-Nonlinearity, e.g.:
go towards faint light,
avoid bright light
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Grey Walter (194x): 
turtle dance

two electromechanical turtles, 
each with a non-linear light 
sensor and a light source over 
its shell, produce a strange 
movement,   
“like the mating behavior of 
animals”

Charging station with weak light

Turtle A 
with 
lamp

Turtle B 
with 
lamp

Attraction

Repulsion

start A start B
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Grey Walter, Wiener et al. 40’s/50’s…

even in the early days there is a 
strong sense of friction between
“behavioral complexity through a few simple rules” 
           and
“brain complexity through many simple neurons”
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 Perception/Action: seamless integration into the 
world. Example: ego motion and optic flow

JJ Gibson 70’s, Scott Kelso, 80’s
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 Perception/Action: seamless integration into the 
world. Example: ego motion and optic flow

JJ Gibson 70’s, Scott Kelso, 80’s

Approach Approach
obstacle

Approach
hole

Curvilinear 
heading
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 Perception/Action: seamless integration into 
the world

JJ Gibson 70’s, Scott Kelso, 80’s

organism      world
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 Perception/Action: seamless integration into 
the world

JJ Gibson 70’s, Scott Kelso, 80’s

organism      world

mass, spring & friction:
what causes the motion?

S(t)

t 

Like in:

m

k
ß

mx”t + βx’t + kxt = c
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Physics

S(t)

t m

k
ß

mx”t + βx’t + kxt = c
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Cybernetics

S(t)

t gain, ∆t

set level actuate

sense
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Informatics

S(t)

t 

while (true) {
      S := sense(state);
      if ( S < set_level ) {

           actuate(s + gain * ( set_level - S));
      }
      sleep(dt);
}
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Physics… but in a wholistic sense

S(t)

t m

k
ß

mx”t + βx’t + kxt = c

cf. Example by van Gelder, Watt’s governor:
no representation, still behavior
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 Cognitive Science & AI:
     Perception  Cognition  Action

 … does not seem to work that well in robotics

 Brooks: GOFAI needs representations & 
logic, but that does not help me in creating 
robots with believable intelligent behaviors

(Elephants don’t play chess, Brooks, 1990)

meanwhile, in AI



 

17

School of 
Behavioral and

Cognitive 
Neuroscience

  behavior-based robotics
  Artificial Life

  representation avoiders

late 1990’s
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Traditional paradigm

CognitionPerception Motor control
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Epistemological Overspecialisation

Cognition:
decision making

learning
language

Visual Perception

Auditory Perception

Tactile Perceptie

Olfaction

cognitive science
artificial intelligence
(psycho)linguistics
exp. psychology

exp. psychology
movement science

AI, robotics

Locomotion

Object manipulation

Speech

Handwriting



How Visual Perception is viewed



a common paradigm in experimental psychology 
   AND in computer vision!
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Situated & Embodied systems: Close the Loop!

CognitionPerception Movement

WORLD

AGENT

sensorssensors effectorseffectors



 

23

School of 
Behavioral and

Cognitive 
Neuroscience

Input/Output are codependent
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Input/Output are codependent
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  behavior-based robotics
  Artificial Life

  representation avoiders

          beware! 

late 1990’s
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Representation in neural systems

 Antirepresentationalists may throw away the 
baby with the bath water

 Representations are abundant in neural 
systems

 In order to apply simple rules, one may need 
complex representations!
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Neural representations

 Topological: vision, hearing, tactile sensing

 Quantity coding: firing rate and recruitment

 Distributed representations

 Timing, vetoing, synchronisation,coherence



cochlea ~= G(f)

x,y  log(r), phi



(Fig: neuromuscular research center)

“Quantity” =  #units active            (coarse control)
                     & their firing rate      (fine control)



v(t)

(Hill, 2001)

phidipus princeps



(Hill, 2001)



(Forster & Forster, 1999)
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Properties of the spider jump

 Determination of prey velocity on the basis of 
optic flow

 Preparation of the muscle contraction 
amplitude, direction and timing,

   in advance
 Jump
 Flight (almost no trajectory corrections possible!)
 Catch or miss



flight

Spider jump

t1

t2
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The spider jump …

 is not purely reactive (i.e. non Brooksian)
 the jump is planned in a pro-active manner
 towards a position where there is 

    no visual percept of the prey
 estimating a future time of arrival

  there must be a represented estimate 

   of a predicted state in the future
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System models: stateless, reactive

 A = F(P)
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Reactive, with perceptual memory

 A = F(P[ t0,t]  )
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reactive with perceptual and action memory

 A = F(P[ t0,t] ,A[ t0,t-∆t] )
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proactive, with perceptual and action memory 
and prediction window for perception and action

 A = F(P[ t0,t]  ,A [ t0,t-∆t]

              ,P[ t,t+dt] ,A [ t,t+dt] )
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proactive, with perceptual and action memory 
and prediction window for perception and action

 A = F(P[ t0,t]  ,A [ t0,t-∆t]

              ,P[ t,t+dt] ,A [ t,t+dt] )

Prediction of the future perceptual
and motor state is essential when
there is any form of time delay
within or outside the agent.
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System models

 A = F(P)

 A = F(P[ t0,t] )

 A = F(P[ t0,t] ,A [ t0,t-∆t] ,)

 A = F(P[ t0,t] ,A[ t0,t-∆t] ,P[ t,…] ,A[ t,…] )

cf: frontal and 
prefrontal
cortex in 
primates
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Example: The non-linear IIR

y(t+∆t) = F    ( ∑τ wτ x(t-τ), ∑τ  vτ  y(t-τ))

IIR = infinite impulse response
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Example: The multipurpose non-linear IIR

y(t+∆t) = F    ( ∑τ wτ x(t-τ), ∑τ  vτ  y(t-τ))

“the next action is a non-linear function
of (1) the weighted sum of things x seen until now
and (2) the weighted sum of things y done until now”
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Example: The multipurpose non-linear IIR

y(t+∆t) = F    ( ∑τ ατ x(t-τ), ∑τ  βτ  y(t-τ))

“the next action is a non-linear function
of (1) the weighted sum of things x seen until now
and (2) the weighted sum of things y done until now”

(it can be used for modeling a plethora of processes in
physics, engineering and biology)



 

45

School of 
Behavioral and

Cognitive 
Neuroscience

Conclusion (1)

 Behavior may be determined by simple rules
 but the complexity of the brain is apparent (?)

 Some may want to do away with representation
 but neural representation is the essence of 

cognitive neuroscience
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Conclusion (2)

 Even “simple” animals may need to estimate

   the state of the world in the future

   this can only be realized if a persistent 
representation of the relevant facets of that 
world is available for prediction
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