DI 3 - Development of a System
Architecture for the Acquisition,
Integration, and Representation of
Multimodal Information

A Report of the ESPRIT PrROJECT 8579 MIAMI
- WP 3 -

March, 1996

Written by
K. Hartung®, S. Miinch®, L. Schomaker?,
T. Guiard-Marigny?, B. Le Goff?,
R. MacLaverty?*, J. Nijtmans®, A. Camurri' I. Defée*, C. Benoit?

('DIST, 2ICP, NICI, *RIIT, *RUB, UKA)

Introduction

Workpart 3 follows the experiments on humans in Workparts 1 and 2 and aims at defin-
ing a generalized architecture for multimodal data acquisition and representation. This
will lead to a common integrated software library which will be employed in the two
demonstrator scenarios in Workpart 4. In chapter 1 the common software infrastructure
for development is described. Partly, we could make use of existing systems (e.g., X11),
but by necessity, also a number of specific MIAMI solutions had to be developed. As al-
ready partly covered in our Report on Workpart 2 [15], the basic software architecture
in MIAMI revolves around an (1) event-driven setup, handled by the script language and
toolkit Tel/Tk, which also handles (2) the case of 2-D widgets in the user interface, (3)
OpenGL for 3-D graphics, and (4) PVM for inter-process control.

At the next, higher, software level, described in chapter 2 and chapter 3, a modular archi-
tecture is introduced. This modular concept, which has been developed through intense
cooperation between partners in MIAMI has thoroughly redefined the implementation as-
pects of the originally envisaged work tasks. The goal of the setup is to make available
in the consortium a number of 'Lego’-brick components with an integrated multimodal
functionality which provides much more than, e.g., a module at the device driver level,
but which are at the same time generic enough to fit in a number of different application
main programs. As such, these modules will prove to be useful in both the Analogical and

the Symbolical demonstrator.

A basic building block, for example, is the realised Meta-Device Driver (MDD). This driver
allows to connect a wide number of human-movement transducers, such as the mouse, the
pen, force joysticks and other relatively low-bandwidth transducers to an application.
Another example is a 2-D gesture recognizer (GESTE) which may receive planar position
coordinates from MDD, in order to classify isolated movement patterns and map them
to a single symbol or action. A third typical building block is ICP-FACFE-ANIM, which
allows for the visualisation of a talking face, based on flat-text input. Furthermore, this
report contains chapters on navigation (chapter 5) and on the ultimate demonstrators
(chapter 7).

Contents

1 Development Tools for Multimodal Systems
1.1 Basic Tools
1.2 Tools Developed within MTAMI

2 Signals & Sampling of Natural Modalities
2.1 Handwriting and Pen Movement
2.2 Audio
2.3 Single-point Movement and Force Control

2.4 Multiple-point Control with the Exoskeleton

3 Representation of Input and Output Channels
3.1 Overview of Modules for Input and Output Channels
3.2 Midi Mapper (HARP-MIDIKER)
3.3 Meta Device Driver (MDD)
3.4 ADCand DAC
3.5 Audio Application Server (AAS)
3.6 Face Animator (ICP-FACE-ANIM)
3.7 Text to bimodal speech (BIMODAL-ICP-TTS)
3.8 Exoskeleton module (EXO)
3.9 Full-body gesture module (HARP-VSCOPE)
3.10 Lip Parameter Analyzer (ICP-LIP-METER)
3.11 Bimodal speech recognizer (BIMODAL-ICP-ASR)

3.12 Conclusions

4 Representation of Object Space

11
13
19
21
24

27
28
29
31
34
38
40
42
45
48
50
52
95

61

ESPRIT BRA 8579 MiawmI 5
4.1 Introduction L 61
4.2 Graphical Representation 62
4.3 Representation of Acoustical Properties 69
4.4 Managing Haptic Features oL 71
4.5 Multimodal Integration 75

5 Navigation 77
5.1 Navigation in Hyperspace and Cognitive Representation 7

6 Some examples of new 'Building Bricks’ in Multimodal Systems 85
6.1 MDD—unified access to different devices 85
6.2 GESTE, a simple classifier for two-dimensional gestures 92
6.3 AAS - An Audio Application Server for multimedia applications 97
6.4 The HARP Multimodal Environment 105

7 The Demonstrators 113
7.1 The Symbolic Demonstrator 113
7.2 The Analogical Demonstrator 115

Bibliography 121

DI 3 - Progress Report

Chapter 1

Development Tools

for Multimodal Systems

At the lowest software infrastructure level, a number of choices had to be made, and
specific MIAMI solutions had to be developed. The goal of these activities, broadly en-
compassing Worktasks 3.1, but also WT. 4.1.1 and WT. 4.2.1, was to ensure a compatible

platform amongst the partners for experimentation with multimodality.

1.1 Basic Tools

Here, the basic tools which are used for most software developments within MIAMI will
be described very briefly. We start with the introduction of the basic window system
(1.1.1) before describing Tel/Tk (1.1.2), a toolkit for programming 2D graphics and user
interfaces. For realizing 3D graphics, more specialized libraries which have become a kind
of standard within the last years have been selected (1.1.3 and 1.1.4). Finally, in order to
realize distributed systems and to provide a basic communication mechanism, we decided
to use the socket-based PVM protocol (1.1.5).

1.1.1 X—the basic window system

The X Window System, also called X or X11, is a network-oriented, hardware-independent
window system for workstations. Its main feature is its distributed client-server architec-

ture which is based on a protocol between the workstation and the application.

The server distributes user input to and accepts output requests from various client pro-

grams through a variety of different interprocess communication channels. Although the

2 MIAMI ESPRIT BRA 8579

most common case is for the client programs to be running on the same machine as the
server, clients can be run transparently from other machines (including machines with dif-
ferent architectures and operating systems) as well. X supports overlapping hierarchical

subwindows and text and graphics operations, on both monochrome and color displays.

In the X Window System Protocol (or X protocol), four different data formats are defined:
Requests are sent from the client to the server, which will return a reply, if necessary. In
addition, the server sends events to the client, usually representing user interactions.

Finally, the server signals errors if they occur.

The interface between the X protocol and any application using X is provided by the Xlib.
In this C library, all functions needed to create and manipulate windows, process events,
etc. are defined. X itself does not provide a widget set (see 1.1.2), but only supports basic

mechanisms to display windows.

Windows are the only visual output medium for the clients. In principle, a window is a
rectangular region of the screen, used to display text or graphics. Windows may over-
lap, include another, etc. They are managed by the server and are stored in a tree-like

structure.

From the client’s point of view, the events generated by the server are the primary source
of input. All user interactions are modeled as events: keystrokes, mouse movements, but-
ton presses, etc. Overall, there exist 33 events, but the following are especially interesting
with respect to the detection of action patterns: MotionNotify (cursor movement), Enter-
Notify (cursor has entered a window), LeaveNotify (cursor has left a window), ButtonPress

(mouse button has been pressed), and ButtonRelease (mouse button has been released).

1.1.2 Tcl/Tk—the GUI toolkit

Tcl and Tk are two software packages which provide a programming system for developing
and using graphical user interface (GUI) applications [20]. Tcl (tool command language) is
a simple scripting language for controlling and extending applications. It provides generic
programming facilities and is embeddable. The Tcl interpreter is a library of C procedures

which can easily be extended and included in application programs.

The most popular extension of Tcl is Tk, a toolkit for the X Window System. It provides a
widget set for building user interfaces written in Tcl, and is also a library of C procedures
with the same advantages as Tcl. Tk’s widget set is directly based on the Xlib. Both
languages can be easily used in combination with other programming languages like C
or Lisp, and they are available on almost any hardware platform and operating system

which supports X.

DI 3 - Progress Report

ESPRIT BRA 8579 MIAMI 3

Tk provides 15 different classes of widgets like toplevels, frames, buttons, menus, etc.
In this context, the event binding mechanism is of special interest'. Besides the default
bindings provided by Tk, the application can install event bindings which can be any
kind of Tel script (i.e., any kind of program!). Even more important, this can be done
in ’foreign’ Tcl/Tk applications as well, because Tk provides the command ’send’ for
“invoking arbitrary Tcl scripts in any other Tk application on the display; these commands
can both retrieve information and also take actions that modify the state of the target

application.”

1.1.3 OpenGL—Ilow-level 3D graphics

The OpenGL graphics system is a software interface to graphics hardware designed by
Silicon Graphic Inc., to allow interactive programs to be created to produce color images

of moving three-dimensional objects [18].

OpenGL is designed as a streamlined, hardware-independent interface to be implemented
on many different hardware platforms. To achieve these qualities, no commands for per-
forming windowing tasks or obtaining user input are included in OpenGL; so a special
library, depending on the windowing system of the hardware used, has to be added to
OpenGL package. Today, OpenGL is available on SGI under IRIX 5.3 , SUN under Solaris,
PC under Win95 or Windows NT.

OpenGL is designed to work efficiently even if the computer that displays the graphics
created isn’'t the computer that runs the graphics program. This might be the case in a
networked computer environment where many computers are connected to one another
by wires capable of carrying digital data. In this situation, the computer on which the
program runs and issues OpenGL drawing commands is called the client, and the computer
that receives those commands and performs the drawing is called the server. The format
for transmitting OpenGL commands (called the protocol) from the client to the server
is always the same, so OpenGL programs can work across a network even if the client
and server are different kinds of computers. If an OpenGL program isn’t running across a
network, then there’s only one computer, and it is both the client and the server (compare
to 1.1.1).

OpenGL doesn’t provide high-level commands for describing models of three-dimensional
objects. With OpenGL, a desired model must be built up from a small set of geometric
primitive: points, lines, and polygons. A sophisticated library that provides these features

could certainly be built on top of OpenGL, in fact, that’s what Openlnventor is.

!The events known to Tcl/Tk are very similar to those supported by the Xlib, see 1.1.1.

DI 3 - Progress Report

4 MIAMI ESPRIT BRA 8579

The major graphics operations performed by OpenGL and necessary to render an image

on the screen are the following:

1. Construct shapes from geometric primitives, thereby creating mathematical descrip-
tions of objects. (OpenGL considers points, lines, polygons, images, and bitmaps to

be primitives.)

2. Arrange the objects in three-dimensional space and select the desired vantage point

for viewing the composed scene.

3. Calculate the color of all the objects. The color might be explicitly assigned by the
application, determined from specified lighting conditions, or obtained by pasting a

texture onto the objects.

4. Convert the mathematical description of objects and their associated color informa-

tion to pixels on the screen. This process is called rasterization.

All these stages will be detailed later in chapter 4 (Representation of Object Space) after

a general introduction to Computer Graphics.

1.1.4 Openlnventor—a 3D graphics library

Openlnventor is an object-oriented toolkit based on OpenGL that provides objects and
methods for creating interactive three-dimensional graphics applications. Available from
Silicon Graphics and written in C+4, Openlnventor provides pre-built objects and a
built-in event model for user interaction, high-level application components for creating
and editing three-dimensional scenes, and the ability to print objects and exchange data

in other graphics formats [29, 30, 31].

OpenlInventor is a set of building blocks that allows to write programs that take advantage
of powerful graphics hardware features with minimal programming effort. The toolkit
provides a library of objects that can be used, modified, and extended to meet new needs.
Inventor objects include database primitives, including shape, property, group, and engine
objects; interactive manipulators, such as the handle box and trackball; and components,

such as the material editor, directional light editor, and examiner viewer.

The Inventor toolkit is—like OpenGL-—independent of the underlying window system. So

a component library is helpful for using Inventor with specific window systems.

Inventor focuses on creating 3D objects. All information about these objects (their shape,

size, coloring, surface texture, location in 3D space) is stored in a scene database. This

DI 3 - Progress Report

ESPRIT BRA 8579 MIAMI 5

information can be used in a variety of ways. The most common one is to display, or

render, an image of the 3D objects on the screen.

Because the Inventor database holds information about the objects as they exist in their
own 3D "world,” not just as a 2D array of pixels drawn on the screen, other operations in
addition to rendering can be performed on the objects. The objects in the scene can be
picked, highlighted, and manipulated as discrete entities. Bounding-box calculations can
be performed on them. They can be printed, searched for, read from a file, and written
to a file. Each of these built-in operations opens up a flexible and powerful arena for the
application programmer. In addition, this programming model is intuitive because it is

based on the physical and mechanical world we live in.

The node is the basic building block used to create three-dimensional scene databases in
Inventor. Each node holds a piece of information, such as a surface material, shape de-
scription, geometric transformation, light, or camera. All 3D shapes, attributes, cameras,

and light sources present in a scene are represented as nodes.

After having constructed a scene graph, a number of operations or actions can be applied
to it, including rendering, picking, searching, computing a bounding box, and writing to
a file. A scene graph can also be read from a file which is very useful for using the same

3D scene in different programs

A detailed description of how to build a 3D scene with Openlnventor will be given in
chapter 4 (Representation of Object Space) after a general introduction to Computer

Graphics.

1.1.5 PVM-—exchanging data via sockets

PVM (parallel virtual machine) is a software system that enables a collection of heteroge-
neous computers to be used as a coherent and flexible concurrent computational resource.
Although primarily designed to support easy and flexible interprocess communication
via sockets in distributed environments, PVM is a software package which supports the
design of applications realized as independent modules running as single processes. In
this case, PVM provides all procedures needed to exchange any kind of data between
these processes, distributed or not [8]. Therefore, it is also the ideal tool for implementing

multimodal and multi-agent systems.

Various processes might be organized ’stand-alone’ or in groups in the virtual machine.
Upon startup, each process is given a unique task identifier (TTD) which is used in all
following communications to address the process. Data can be sent in various formats

(ranging from single bytes to complex strings) either to a single process, to all processes

DI 3 - Progress Report

6 MIAMI ESPRIT BRA 8579

in a specific group, or—via broadcast—to all processes in the virtual machine.

1.2 Tools Developed within MIAMI

The basic tools described in the previous section provide a very good basis for software
development. However, they do not fulfill all the requirements of a multimodal system
and do not support all of the functionality needed. Therefore, we have developed some
general software packages (which are not meant to be exclusively used in MIAMI) instead

of implementing specialized solutions by each partner.

1.2.1 TkPVM-—combining Tcl/Tk and PVM

In order to link different modules which may be written in different languages (Tcl/Tk/C)
and using different libraries (PVM, MDD, OpenGL) it was necessary to start with a new
approach. Each of the modules has its own special functionality which must be used by
other modules:

e Tcl - Simple scripting language for applications

e Tk - 2D graphics library

e PVM - Socket library

MDD -1/0 library
e AAS - audio library
e OpenGL - 3D graphics library

e ... (other components, see the next chapters)

A solution to this diversity problem is the use of parallel processes and a communication
scheme. We have chosen to use PVM for this concept. If PVM is going to be the glue
which links everything together, all modules in MIAMI must have a PVM interface. For
C-based modules, the PVM functions can be called directly. But because Tcl and Tk are
interpreted, functions must be written to allow two-way communication. Therefore, the
following conclusions have been drawn. (a) Applications written in Tcl/Tk must be able

to perform PVM-functions. Examples of such functions are:

e spawning of other processes

DI 3 - Progress Report

ESPRIT BRA 8579 MIAMI 7

e writing to other processes

e getting information about other processes

(b) If another process sends information to a Tecl/Tk application, this application should
be triggered to do some action. This required some modifications to the Tcl event-loop. In
discussion and cooperation with John Ousterhout (the writer of Tcl/Tk) the latest release
(Tcl7.5b3) now contains these modifications. So, the latest version of Tkpvm (1.0b3)
doesn’t require a special MIAMI version of the Tcl interpreter any more. In fact, MIAMI-

originating ideas are embedded in the official release.

The most important functions now available in Tkpvm are:

bind prepare the event-loop in such a way that the next time data is received, an action
is performed. This is the most important feature, because it allows multiple input

sources to be handled ’simultaneously’.
tasks ask information about other tasks
send send data to other tasks
recv receive data from other tasks

spawn start a new task

kill kill a task

All these functions have an equivalent in C. For example the bind command can be used

from C with the following two functions:

Tkpvm_CreateEventHandler() register an event-handler to the Tcl
event-loop that is called as soon as a
specified PVM package arrives

Tkpvm_DeleteEventHandler () remove the event-handler from the Tcl

event-loop.

A WWW home page for Tkpvm has been set up, which always contains the latest infor-
mation: http://www.nici.kun.nl/tkpvm/

The Tkpvm package is made available to the public domain in the Internet Parallel
Computing Archive which is located in the U.K. and has mirror-sites in Australia, France
and Japan. This is a direct product of the MIAMI project, which is already in active use
in many institutes (100 Tkpvm ftp file accesses per day on the NICI ftp server alone).

DI 3 - Progress Report

8 MIAMI ESPRIT BRA 8579

1.2.2 Other extensions to Tcl/Tk

Because Tcl/Tk was originally not designed to work with other input devices, some more
MIAMI-based modifications were needed. These can be categorized into installation fea-

tures and Tcl internals.

Installation of Tcl/Tk

If multiple processes are executing on the same machine, each of them requires a certain
amount of memory. If the number of processes increases, this may slow down the machine
considerably. Therefore a lot of nowaday machines support the use of shared libraries.
Tcl/Tk originally didn’t support it, so we made the necessary adaptations for that. The
latest release (Tcl7.5b3/Tk4.1b3, which is released March 9 1996) includes this support,
which is mainly adapted from the work done for MIAMI.

Tcl event loop

For Tkpvm, a Tcl event loop extension was needed which was not originally supported.
The event-loop should handle PVM events in the same way as it would handle X-events.
The latest releases of Tcl/Tk include enough support for this, so the adaptations that

were made originally are now no longer needed.

Speedup and additional features

When Tk is used to draw on the screen, it is very slow in some situations. The reason
is that after every mouse-move, Tk keeps track of which items are covered by the mouse

pointer. Therefore all items are given an extra option ”-state”, which has 3 possible values:

e normal
e disabled

e hidden

In the disabled state screen objects are displayed but cannot be clicked on. This makes
the screen update much faster, specially if the display contains many lines with many

coordinates.

For synchronization between the Screen and Audio (for example) the delay used in Tk is

disastrous. Normally the screen is only updated when there is some idle time, but there is

DI 3 - Progress Report

ESPRIT BRA 8579 MIAMI 9

no way telling when that will happen. Therefore the ”-updatecommand” option is added

which reports back when the actual screen update takes place.

Tk doesn’t supply any form of dashed lines. The only way to do that is to let each
segment be a separate line. But that costs very much computing power, while the X11-
server already has support for that directly. Therefore the "-dash” option is added to all

screen objects.

The only way to change lines is to replace all coordinates with a complete new set of
coordinates. But for creating pen drawings, often you only have to add a few extra points
to the end of the line. Therefore additional commands have been added to do that. This
also has the effect that not the complete line has to be updated on the screen, just the
part that changed.

A full description of these additional features can be found at:

http://www.nici.kun.nl/"nijtmans/tcl/patch.html

Since the first version of these additions was made public, some other people have con-
tributed more code to it. This patch has become rather popular now, so it is likely that

it will become part of the standard Tk distribution one day.

DI 3 - Progress Report

10

MIAMI

ESPRIT BRA 8579

DI 3 - Progress Report

Chapter 2

Signals & Sampling
of Natural Modalities

This chapter deals with characteristics of the signals and sampling process of natural
modalities and is broadly based on the plans of Worktask 3.1. As described in Chapter 3,

we can make a distinction between:

e Input Signals,
e Parameters In,
e Parameters Out,

e Output Signals.

However, a distinction can be made between two types of input streams to a module in
MIAMI: (a) an input in the form of a channel carrying a signal from a 'natural modality’
(audio, movement, force, video) as captured from the physical world by a transducer,
and (b) input in the form of (coded) signals or parameters, coming from file or from other

modules.

In this chapter we will direct our attention at the characteristics of the signals and the
typical sampling processes of the natural modalities for modules receiving their input from
transducers. We will start with the modality of handwriting and pen movement input as
recorded by a 2D transducer such as a tablet or digitizer. This modality is also used to
introduce a number of concepts on sampling in applications in general. The same order of
sampling aspects will be assessed for a number of other input modalities apart from pen

movement.

11

12 MI1AMI ESPRIT BRA 8579

Parameter
Input Output

Parameter
Input Output

Par ameter
Input Output

Parameter
Input Output

Figure 2.1: A modular multimodal architecture. Modules have Input and Output Signals,
and Input/Output Parameters. Examples of Signal In, Parameter Out are the feature
extractors for speech or handwriting. An example of Parameter In, Signal Out is the
parametrized face. Furthermore we can make a distinction between modules connected
to input transducers (a), modules connected to other modules only (b), and modules

connected to output effectors (c).

DI 3 - Progress Report

ESPRIT BRA 8579 MIAMI 13

2.1 Handwriting and Pen Movement

2.1.1 Transducer characteristics & sampling requirements

Regardless of the technology of pen-tip position sensing used, a number of requirements
for position sensing in pen computing can be defined. The current quality of digitizers is
sufficient for different handwriting applications, such as drawing, writing, signature veri-
fication and normal point and click actions. Problems of noise and of positional error due
to pen-tilt are present but reduced to acceptable levels. It is at the output side (graphical
inking on CRT and LCD) where current technology has its limitations. Table 2.1 shows

the typical characteristics of pen-tip position sensor devices.

Parameter Mn. Mazx. | Typical | Units
Sampling rate 50 | 200 (good) 100 | Hz
Resolution 0.02 (good) 0.1 0.02 | mm
Accuracy — — 0.1 | mm

Table 2.1: Characteristics of pen-tip position sensor devices

Figure 2.2 shows a typical power spectral density function for pen-tip movements in hand-
writing, averaged over 32 writers, 210 words per writer. The word XY pen-tip displacement
time functions were circularized with a cosine transition function and padded with zeros
until 512 samples (i.e., about 5s of writing time), and an FFT was calculated for that
word. The average PSDF over words was calculated by accumulating |F'FT|?. The spec-
trum shows that from the Nyquist sampling theorem point of view, a sampling frequency
of 20 samples/second would be sufficient for reconstruction of the signal. However, it is
much cheaper to use higher sampling rates than to reconstruct the trajectory and display
it in real time. A sampling frequency of 100 samples/second yields about 10 points per
stroke in normal handwriting. Five points per stroke is the (barely) acceptable minimum,

for users of pen computers.

There are different types of sampling requirements, each with a typical demand on the
system resources. There may be input modalities which require continuous sampling for a
prolonged period, or modalities in which the sampling occurs in bursts. Given the current
state of technology, which is based on graphical user interfaces (GUIs) which handle events
at moderate rates (< 100 events/s), it is clear that for high-bandwidth modalities, the

ratio of (Number of samples)/(Number of events) will be much larger than one.

In pen interfaces, we can make a distinction between a number of different input types,

each with a typical time span, as summarized in table 2.2 below:

DI 3 - Progress Report

14 MIAMI ESPRIT BRA 8579

Power Spectral Density
400

300
G(f) o0ol

100

00 25 50 75 100
f [Hz]

Figure 2.2: The typical power spectral density of pen-tip movement in handwriting

Sampling Burst | Interaction category
Duration [s]

<1 gestures and handprint characters
< 10 (cursive) words, signatures

> 10 phrases, drag/drop interaction
Continuous pen-up movement controls a cursor

Table 2.2: Different sampling-burst durations in the use of the pen as an input device

under different application conditions

2.1.2 Sampling priority

Explanation: There is a difference between high-fidelity modalities and modalities with
more lenient requirements. For some modalities, the loss of a single sample is fatal, e. g.
because it is a nuisance for the user (as in audio) or because it deteriorates pattern
recognition functions (as in speech or handwriting recognition). In other modalities, it is
often assumed sufficient that the system follows the input approximately, such as in fast

mouse movements.

In pen input, we can make a distinction between those user activities which are the same
as in the case of the mouse, i.e., pointing, clicking, and drag/drop operations, and pen

movements which represent the exact shape of drawings or handwritten characters.

As a rule, it can be stated that when the pen is 'down’, or on the writing surface, the

priority of the position samples is high and no sample may be lost (Table 2.3). This

DI 3 - Progress Report

ESPRIT BRA 8579 MIAMI 15

ensures that the handwriting and drawing shapes are recorded faithfully. On the other
hand, if the pen is in the air, the priority of the position samples is lower and an occasional
drop-out will go unnoticed. As an example, in the Microsoft Windows for Pen Computing
environment, the pen replaces the mouse in the usual 'mouse-type’ actions which are sent
to the MS Windows event queue. However, if the pen goes ’down’ in a field in a dialog box
where text is written, the system goes into a tight loop, processing the XY coordinates
immediately and presenting them as ink on screen without returning to the main event
loop after each sample. Similarly, in some pen-based Personal Digital Assistants, the XY-
transducer driver immediately displays the ink in a separate bit plane of the graphics
device, and buffers the coordinates for processing by the application in the event loop at

a lower rate.

Input category Priority

pen-down movement (ink) | no sample loss allowed

pen-up movement medium priority

Table 2.3: Different sampling priorities in pen interfacing

2.1.3 Sampling modes

There are a number of different sampling modes available in current digitizers. The im-
portance of these modes became apparent during the last decade, such that there is a
convergence between different brands of digitizers as regards the definition of each mode.

The following modes are typically available:

Continuous sampling (equidistant in time) This mode has two variants:

e ...during both pen-up and pen-down

e ...during pen-down only, with separator records between pen-down streams

Tracking (equidistant in space) Samples are generated when a threshold distance

has been traveled with respect to the previous sample. Also called 'mouse mode’.

Pointing Samples are generated when the user taps with the pen on the surface. No live
cursor control can be implemented, but for some applications this is not necessary:

The user already sees the position pen tip on the surface of a writing pad.

In the latter two modes, time stamps become important for synchronisation and recon-
struction of the time axis. This may be necessary in digital filtering, assuming normal

time functions.

DI 3 - Progress Report

16 MIAMI ESPRIT BRA 8579

2.1.4 Inherent feedback

Explanation: Some input modalities inherently require continuous feedback. Examples
are force feedback joysticks, but also handwriting on ’Electronic Paper’ where the CPU
must perform the computations necessary for the inking process. This is opposed to input
modalities which have a separate and autonomous sampling process. A given application
may require the generation of direct feedback during sampling, but in such a case, the

feedback cannot be considered as 'inherently required’ by the given input modality.

2.1.5 Channels

Table 2.4 gives an overview of signals which may be recorded with currently available

digitizers. Not all commercial systems will provide these given signals.

x,y position (velocity, acceleration, ...)

pen force (“pressure”)

binary pen-up/pen-down switch
analog axial force transducer
z height

0n 0, | angles
Switching | by thresholding of pen force p (above)

or with additional button(s) on the pen

Table 2.4: Parameters controlled by a pen

2.1.6 Synchronization

What are the provisions that can be taken to make sure that this modality is in synchrony
with another relevant modality? In pen computing, the typical solution is to add time

stamps to individual samples or to pen-down and pen-up events.

2.1.7 Data formats

Commercial digitizers are provided with a number of data formats, varying from legible
ASCII to binary formats. A number of companies has succeeded in creating de facto format

standards (Summagraphics, Wacom-IT). As a general rule, the legible ASCII format is not

DI 3 - Progress Report

ESPRIT BRA 8579 MIAMI 17

suitable for the required sampling rates. A single coordinate can be represented by a 16 bit
number, requiring 5 ASCII characters apart from a separator. There is X, Y, and a switch
and/or button signal, requiring 13 or more bytes per sample in legible ASCII. A binary
signal can be contained within 7/8 bytes. Usually, the most significant bit of the first byte
is set to one, whereas it is zero for the later bytes (see Table 2.5. This allows for an easy
synchronization of the data stream. However, it also means that X, Y, switch, pressure
and angle coordinates must be extracted from the byte stream by binary shift operations

and bit masking.

bit | 7 6 d 4 3 2 1 0
byte
111 ? ? ? 7| Sx | X15 | X14
210 | X13 | X12 | X11 | X10 | X9 | X8| XT7
310 X6| X5| X4 | X3 |X2| X1| X0
410 0 0 0 0| Sy | Y15 | Y14
510 [Y13]Y12|Y1l1|Y10|Y9| Y8| Y7
610 Y6| Y5| Y4 | Y3|Y2| Y1| YO
70| Z6| Z5| Z4| Z3 | 72| Z1| 70

Table 2.5: Example of bit assignment in the bytes received over the serial line from a
typical digitizer: Wacom-II format, with pen pressure mode. Note the synchronization bit
(MSB) in byte 1, and the sign bits Sx and Sy. To make things complicated, Z is in two’s

complement.

DI 3 - Progress Report

18

MIAMI

ESPRIT BRA 8579

Examples of simple application file formats are given in Table 2.6. More complex file
formats for scientific use (UNIPEN [10]) and for practical applications (Jot [27]) exist.

a) X
21
43
o4
65
87
70
90
98

Y
324
454
546
432
202
180
250
277

—_ =0 O O - = =

b) X
21
43
54
-1
87
70
90
98

Y T [ms]
324 3402
454 3415
546 3419

-1 -1
202 3803
180 3870
250 3875
277 3890

Table 2.6: Simple examples of a piece of recorded pen movements. Note the presence of

a pen-up stream in the middle of the sequence. a) Continuous time-equidistant sampling

at 100 Hz, b) 'Mouse-mode’ or tracking mode, pen-down streams only, separated by a

pen-up separator record of (-1, -1, -1). In b), samples are necessarily timestamped

2.1.8 Software requirements

A serial line driver which handles the initialization, the start of sampling, the stop of

sampling, the alignment of the input byte stream and conversion to integer values per

channel. Mouse drivers will not suffice mostly, because of their low temporal and spatial

resolution. It is essential to know that the users want an immediate inking response.

DI 3 - Progress Report

ESPRIT BRA 8579 MIAMI 19

2.2 Audio

2.2.1 Transducer characteristics & sampling requirements

Parameter Mn. Maz. Typical | Units
Sampling rate 8 | 48 (good) | 22.05/32 | kHz
Resolution 8 | 16 (good) 16 | bit
Accuracy — — | 27 Nbits | it

Table 2.7: Characteristics of audio sampling devices

Sampling Burst | Interaction category
Duration [s]

<1 isolated voice commands
~ 10 connected-speech sentences
Continuous (video)phone, music recording

Table 2.8: Different sampling-burst durations in the use of audio input under different

application conditions

2.2.2 Sampling priority

The human ear is particularly sensitive to transient disturbances of the audio signal.
Pulses and steps in the audio signal must be avoided always. Thus, the audio signal has
a very high priority, both in input (A/D) and in output (D/A). In fact, for a number of
applications it may be useful to consider the speech sampling clock as the master clock
for other sampling processes. It would be unwieldy to use the high sampling rate itself,
but audio frames of 10 ms can be synchronized nicely with human movement signals such

as from the mouse, joystick or pen.

2.2.3 Sampling modes

(single mode)

2.2.4 Inherent feedback

Sometimes, a recording monitor speaker is needed, but the necessary 'computation’ for
audio feedback does not have to be part of the application and does not necessarily involve
the CPU.

DI 3 - Progress Report

20 MIAMI ESPRIT BRA 8579

2.2.5 Channels

Mono or Stereo. Examples: 1-2 channels on SUN, 2-4 channels on Indigo/Indy.

2.2.6 Synchronization

Question: What are the provisions that can be taken to make sure that this modality is
in synchrony with another relevant modality? On SUN, interrupts are generated at each
point in time when a buffer is filled. This yields approximately 8000 samples resolution. On
SGI Indigo/Indy the number of sampling frame can be used yielding time in nanoseconds

resolution.

2.2.7 Data formats

Raw sampled audio data are usually 8 to 24 bit integer data (PCM 2’s-complement) or
32 float float (range -1 ...1). Stereo data are usually stored as a sequence of left /right pairs
of samples. This data can be transmitted or stored either in this raw format or transformed
to formats, which need less bandwidth. Typical data formats use in speech coding are the
p-law coding and A-law coding. These formats reduce the amount of data by applying
a logarithmic function to the amplitude in order to compress the dynamic range of the
data. On SUN and SGI hardware the conversion to this formats is supported by the audio
hardware. MPEG coding of audio data makes use of psychoacoustical masking effects and
transmits only the audible parts of the signal. Operations like filtering or mixing only

work on raw audio data.

2.2.8 Software requirements

For the recording and playing of raw audio data only a simple driver for the AD/DA
hardware is required. Simple audio compression algorithms are implemented on most
architectures either in hardware or software. More complex coding schemes like MPEG

require additional software modules.

DI 3 - Progress Report

ESPRIT BRA 8579 MIAMI 21

2.3 Single-point Movement and Force Control

If from the user’s point of view a single end effector is used, like the human hand holding
a single controlling device, this is a case of single-point control. The first extension to this
would be bimanual control, as an example. However, the case of single point control applies
to many computer applications, more specifically in the control of cursor movement on
the screen. Because it is highly undesirable that end applications need to know about
all the details of all possible single-point manipulanda (mouse, joystick etc.), a generic
software input device is introduced which handles a single time stream of signals: The
META DEVICE DRIVER (MDD).

The MDD is a C-library created by UKA which provides unified access to several hardware
input devices, some of which also have the capability to generate haptic (feedback) output.
The following description is related to the common denominator of these input devices.

A more detailed description will be presented in section 6.1.

2.3.1 Transducer characteristics & sampling requirements

Parameter Min. | Max. | Typical | Units
Sampling rate — | 100 20 | Hz
Resolution * * 1)1
Accuracy * * 1)1

Table 2.9: Characteristics of the output of the META DEVICE DRIVER

In contrast to other modalities/devices, the resolution and the accuracy are not eas-
ily specified because the MDD covers several different devices with completely different
characteristics for input and output. E. g., the values sent by the device (input) vary sig-
nificantly in their characteristics with respect to the number of dimensions, the range, and
the way the input data is generated. The same is true for those devices which can generate
haptic output. Therefore—and because the MDD is open to new devices which can not be
covered here—we decided not to include the characteristics of each single device in this

section.

For most type of input devices, it is typical that the user has continuous control, and
continuous sampling must take place. However, the sampling is not of very high priority,

and the occasional loss of a sample will mostly go unnoticed by the user.

DI 3 - Progress Report

22 MIAMI ESPRIT BRA 8579

2.3.2 Sampling modes

Continuous (equidistant in time), Tracking (equidistant in space), Pointing, Continuous

during pen-down, pen-up is a separator sample (and optional time stamp).

2.3.3 Inherent feedback

Some of the input devices will take a default position if they are not manipulated by the
user (SpaceMouse, Space- Master, ForceJoystick). The ForceJoystick can also be used in

a force feedback mode which may produce continuous force feedback.

2.3.4 Channels

Table 2.10 gives an overview of signals which can be handled by the MDD. There are 3

to 7 channels possible.

Translational | Rotational Different Haptic
Device axes (¢/d) | axes (¢/d) | button states output?
ForceMouse 2/0 0/0 4 vibration /brake
ForceJoystick 2/0 0/0 8 force/position
CyberMan 2/1 0/3 8 vibration
SpaceMaster 3/0 3/0 2 No
SpaceMouse 3/0 3/0 512 No

Table 2.10: Parameters controlled by different I/O devices (¢ = continuous, d = discrete)

2.3.5 Synchronization

What are the provisions that can be taken to make sure that this modality is in synchrony
with another relevant modality? Although not supported at the moment, time stamps
may be added to the data samples transmitted from the specific device driver to the meta

device driver easily.

DI 3 - Progress Report

ESPRIT BRA 8579 MIAMI 23

2.3.6 Data format

The basic idea of the META DEVICE DRIVER is to provide unified access via a general
interface to various devices. Therefore, the MDD provides functions for reading input
values and sending control commands, and it provides a general data structure managed

by the specific device drivers.

The following structure is intended to store device data, i.e. values send by the device.
As described before, the position, the orientation, and the button state have been imple-
mented. If a device supports less than six degrees of freedom, the unused values will be
set to '0’.

typedef struct {

int tx,ty,tz; translational values
int rx,ry,rz; rotational values
int btnState; button states

} deviceData;

2.3.7 Software requirements

The MDD has been realized as an independent C-library which can be used by many
applications. Its implementation is based on software which is available for free only. In
its current version, the MDD needs a UNIX environment, a C and a C++ compiler, the
communication tool PVM (see 1.1.5), and the GUI toolkit Tcl/Tk (see 1.1.2). It comes
with configure scripts and independent Makefiles and has been tested on SunOS, Solaris,

and Irix.

DI 3 - Progress Report

24 MIAMI ESPRIT BRA 8579

2.4 Multiple-point Control with the Exoskeleton

As a natural extension to single-point control, where a single human end effector pro-
duces signals along a number of dimensions, in multiple-point control the user may also
simultaneously produce signals along a number of dimensions, but now for several end
effectors at the same time. The exoskeleton (EXO) from DIST allows the acquisition of
the angular variables of a multi-joint exoskeleton structure with one or two arms to be
transmitted to a forward kinematic module which can reconstruct position/orientation of

the end-effector of the structure. At each joint, there is a low-friction potentiometer.

2.4.1 Transducer characteristics & Sampling requirements

Parameter Min. | Max. | Typical | Units
Sampling rate 10 50 — | Hz
Resolution — — — | rad
Accuracy — — — | rad

Table 2.11: Characteristics of exoskeleton joint-angle sensor devices

Sampling Burst | Interaction category

Duration

Continuous Whole-body movement

Table 2.12: Sampling time window

2.4.2 Inherent feedback

In many applications the parameters derived from the joint angles will be fed to a feed-
back system, on line. For example: movement leads to acoustical parameter changes, or
movement leads to graphical humanoid movement on screen. As such, this feedback is
not inherent to the device, but the applications are usually highly interactive, requiring

immediate feedback.

DI 3 - Progress Report

ESPRIT BRA 8579 MIAMI 25

2.4.3 Channels

0; | six angles per arm, 1 or 2 arms

Table 2.13: Parameters controlled by the exoskeleton

2.4.4 Data formats

(an internal data format is being used)

2.4.5 Software/Hardware Requirements

Software: Winsocket library
Hardware: PC with A/D converter and multi-channel multiplexer

Real-Time: real-time is necessary. Tests showed a better performance on Win95 than
on Windows NT.

DI 3 - Progress Report

26

MIAMI

ESPRIT BRA 8579

DI 3 - Progress Report

Chapter 3

Representation of Input and
Output Channels

This chapter is about the representation of input and output channels. The natural modal-
ities are audio, video, handwriting and single point movements with feedback. Interdepen-
dencies between modalities are discussed. The description of the different channels leads

to a basic architecture for multimodal /multimedia application.

This chapter starts with a general overview of all input and output modules which are
involved. After introducing a classification scheme each module is presented in a schematic
way. It turns out the modules are dealing with different levels in the processing hierarchy
(from hardware level to high level symbolic processing). The complete architecture for
input and output handling is presented reflecting the different levels in the processing
hierarchy. Where possible examples of bimodal integration are shown. As processing power
is limited it might help to give each of the modalities appropriate priorities to ensure an
effective and plausible interaction with the user. Some aspects for assigning priorities are
discussed. Furthermore mechanisms the synchronization have to provided. The criteria
for synchronization and the techniques, which are implemented in MIAMI are presented.
For a detailed discussion of the implementation of the modules please refer to the software

documentation and to the presentation in chapters 6 and 7.

27

28 MIAMI ESPRIT BRA 8579

3.1 Overview of Modules for Input and Output Chan-

nels

This chapter is based on a formal description of the following modules designed in MIAMI:

HARP-MIDIKER MIDI output handling
MDD Meta Device Diver
AAS Audio Application Server
ICP-FACE-ANIM Face Animation
BIMODAL-ICP-TTS Bimodal Text to Speech System
EXO Filtering Exoskeleton Data
HARP-VSCOPE Real-Time Tracking and Recognition of body gestures
ICP-LIP-METER Extraction of Lip Parameters
BIMODAL-ICP-ASR Bimodal Automatic Speech Recognizer

As introduced in chapter 2, the different modules which are handling the different sensors

or effectors can by described by their:

e Function

e Input signals

e Output signals

e Parameters in (to change the mode of the module)

e Parameters out (to inform other modules about status)

For input and output signals and the parameters the sampling or transmission rates, as
well as the data formats and the contents are presented. Also the way of module inter-
communication (synchronous/asynchronous) and whether the the module is permanently
active or only sending/receiving on request is shown. If possible, the sender or receiver of
the different modules are identified and other modules, which have to be synchronized to

this stream are listed.

In the following sections each module is presented in detail according to the scheme
introduced above.

DI 3 - Progress Report

ESPRIT BRA 8579 MIAMI 29

3.2 Midi Mapper (HARP-MIDIKER)

HARP-MIDIKER allows to map multiple MIDI-inputs on a single MIDI-output device in

real time.

MIDI with time

stamp Standard MIDI

HARP-Midiker

1..10

3.2.1 Requirements

Software: Windows 95
Hardware: ~MPU Roland 401 compatible MIDI interface

Real-Time: necessary

3.2.2 Data channels

Input
Number of channels: 1to 10
Description: a MIDI packet containing the MIDI data
and the time stamp
Type of sending agent: music generating software agents
Format of input data: pairs of unsigned integers
Transmission rate: as requested from the music agent

Synchronous/asynchronous data input: synchronous
Synchronization with other modules: —
continuous/on request: on request

Priority: high

DI 3 - Progress Report

30

MIAMI ESPRIT BRA 8579

Output

Number of channels:
Description:

Receiving agent:
Format of output data:

Transmission rate:

Synchronous/asynchronous data output:

Synchronization with other modules:
Continuous/on request:

Priority:

3.2.3 Control parameter

No control parameter.

1

standard MIDI

Win32 multimedia kernel
standard MIDI data stream
resolution 1 ms
asynchronous

continuous
high

DI 3 - Progress Report

ESPRIT BRA 8579 MIAMI 31

3.3 Meta Device Driver (MDD)

The MDD is a C-library which provides unified access to several input devices, some of
which also have the capability to generate haptic output. A more detailed description will

be presented in section 6.1.

Mapping Scaling

Control * +

(Application)

Haptic output

Displacement Displacement

3.3.1 Requirements

Software: any UNIX-like operating system
Hardware: Implemented and tested on SUN and SGI workstations

Real-Time: More or less possible and necessary for direct manipulation

3.3.2 Data channels
Input

Number of channels: 2

DI 3 - Progress Report

32

MIAMI

ESPRIT BRA 8579

Channel 1

Channel 2

Output

Description:
Type of sending agent:
Format of input data:

Transmission rate:

Synchronous/asynchronous data input:

Synchronization with other modules:
continuous/on request:

Priority:

Description:

Type of sending agent:

Format of input data:

Transmission rate:

Synchronous/asynchronous data input:

Synchronization with other modules:

continuous/on request:

Priority:

Number of channels: 2

Channel

Description:
Receiving agent:
Format of output data:

Transmission rate:

Synchronous/asynchronous data output:

Synchronization with other modules:

Continuous/on request:

Priority:

control commands

application program

— (no common format)
selectable

asynchronous

no

initiated by application program

low

displacement values from an
input device

device driver

6 integers representing dis-
placement values, 1 inte-
ger representing the button
state

depends on specific driver
(10-100 Hz)

asynchronous

handshake between SDD
and MDD

depends on specific driver
high

haptic output functions
device driver

depends on specific driver
unknown, single events only
asynchronous

handshake between SDD
and MDD

on request

high

DI 3 - Progress Report

ESPRIT BRA 8579 MIAMI 33

Channe2 Description: input values for direct
manipulation
Receiving agent: application program
Format of output data: 6 integers representing dis-

placement values, 1 inte-
ger representing the button
state
Transmission rate: not fixed (10-100 Hz)
Synchronous/asynchronous data output: asynchronous
Synchronization with other modules: —
Continuous/on request: continuous
Priority: high

3.3.3 Control parameter

In

Number of parameters: 12 parameters for mapping, 6 parameters for scaling

Mapping Description: mapping a physical axis/degree of free-
dom to a logical axis/degree of freedom
Format: 2 constants (phys, log)
Transmission rate: single events

Will be changed by: application program, options menu

Scaling Description: scaling a logical axis/degree of freedom
Format: constant combination ('mask’), 1 double (scaling factor)
Transmission rate: single events

Will be changed by: application program, options menu

Out

Same as In parameters.

DI 3 - Progress Report

34 MIAMI ESPRIT BRA 8579

3.4 ADC and DAC

ADC (Analog Digital Converter) and DAC (Digital Analog Converter) allow a unified
access to the audio hardware of Sun SPARCstation and SGI Indigo/Indy. Multiple appli-
cations can read and write frame the hardware at the same time. DAC also broadcasts a

synchronization signal to all task, which are members of the “sync”-group.

TID, channel

v

Audio dlz;\ta(left)

"\ left channel
1.4] d’
_ _ DAC to Hardware
Audio data(right) right channel
1.4
Current Frame Number
TID, channel
left channel "\ left channel
from Hardware ADC
right channel right channel

3.4.1 Requirements

Software: SunOS, Sun Solaris2.4, IRIX 5.3, PVM 3
Hardware: ~ SUN SPARC, Indigo, Indy

Real-Time: necessary

DI 3 - Progress Report

ESPRIT BRA 8579 MIAMI 35

3.4.2 Data channels for DAC

Input
Number of channels: minimum 1 (depends on application and
processing power)
Description: audio data
Type of sending agent: any other application
Format of input data: array with 16 bit integer values
Transmission rate: selectable (8 kHz—44.1 kHz, typically 22.05 kHz)

Synchronous/asynchronous data input: synchronous
Synchronization with other modules: ICP-FACE-ANIM

continuous/on request: continuous and on request
Priority: high
Output
Number of channels: 1-2 (on SUN) 1-4 on (Indigo/Indy)
Description: Audio signal
Receiving agent: DAC
Format of output data: Integer (16 bit)
Transmission rate: same as input rate

Synchronous/asynchronous data output: synchronous

Synchronization with other modules: ICP-FACE-ANIM
Continuous/on request: continuous
Priority: high

DI 3 - Progress Report

36 MIAMI ESPRIT BRA 8579

3.4.3 Data channels for ADC

Input
Number of channels: minimum 1
Description: raw audio data
Type of sending agent: hardware driver
Format of input data: array with 16 bit integer values
Transmission rate: selectable (8 kHz—44.1 kHz, typically 22.05 kHz)

Synchronous/asynchronous data input: asynchronous

Synchronization with other modules: —

continuous/on request: continuous and on request
Priority: high
Output
Number of channels: 1-2 (on SUN) 1-4 on (Indigo/Indy)
Description: Audio signal
Receiving agent: DAC
Format of output data: Integer (16 bit)
Transmission rate: same as input rate

Synchronous/asynchronous data output: synchronous

Synchronization with other modules: BIMODAL-ICP-ASR
Continuous/on request: continuous
Priority: high

3.4.4 Control parameter

In

Number of parameters: 1

Description: Connect new sender/receiver

Format: 2 integer, task ID and channel of sender/receiver
Transmission rate: —

Will be changed by: any client

DI 3 - Progress Report

ESPRIT BRA 8579

MIAMI

37

Out

Number of parameters:
Description:
Format:

Transmission rate:

Will change the status or inform:

1

current frame number

long integer 32 bit

25 Hz

ICP-FACE-ANIM, Audioscript

DI 3 - Progress Report

38 MIAMI ESPRIT BRA 8579

3.5 Audio Application Server (AAS)

AAS (Audio Application Server) handles multiple input and output sound streams. The

generation of simple audio signals and the real-time spatialization of sound sources is

performed.
Position Sound level
"\ left channel
Audio data >
AAS
1.4 right channel
-

3.5.1 Requirements

Software: SunOS, Sun Solaris2.4, IRIX 5.3, PVM 3
Hardware: SUN SPARC, Indigo, Indy

Real-Time: necessary

3.5.2 Data channels

Input
Number of channels: minimum 1 (depending on application
and processing power)
Description: audio data
Type of sending agent: any other application
Format of input data: array with 16 bit integer values
Transmission rate: selectable (8 kHz—44.1 kHz, typically 22.05 kHz)

Synchronous/asynchronous data input: synchronous
Synchronization with other modules: ICP-FACE-ANIM
continuous/on request: continuous and on request

Priority: high

DI 3 - Progress Report

ESPRIT BRA 8579

MIAMI

39

Output

Number of channels:
Description:

Receiving agent:
Format of output data:

Transmission rate:

1-2 (on SUN) 1-4 on (Indigo/Indy)
Audio signal

DAC

Integer (16 bit)

same as input rate

Synchronous/asynchronous data output: synchronous

Synchronization with other modules:

Continuous/on request:

Priority:

3.5.3 Control parameter

In

Number of parameters: 2

Parameter 1 Description:
Format:

Transmission rate:

Will be changed by:

Parameter 2 Description:
Format:

Transmission rate:

Will be changed by:

Out

No parameter.

ICP-FACE-ANIM
continuous
high

Position of Sound Source
3 Integer (Elevation, Azimuth and Source ID)
max. 25 Hz

any client

Sound level
2 Integer (Level and Source ID)
max. 25 Hz

any other client

DI 3 - Progress Report

40 MIAMI ESPRIT BRA 8579

3.6 Face Animator (ICP-FACE-ANIM)

Module ICP-FACE-ANIM animates a 3D-face or part of a face on the screen.

Location Kind of Display

Visual Speech

-

FACE_ANIM J

3.6.1 Requirements

Software: IRIX 5.3, OpenGL, pvm, TCL/TK
Hardware: SGI

Real-Time: necessary

3.6.2 Data channels

Input
Number of channels: 1
Description: Visual Speech Parameter
Type of sending agent: BIMODAL-ICP-TTS, ICP-LIP-METER
Format of input data: array of int
Transmission rate: 25 Hz

Synchronous/asynchronous data input: asynchronous
Synchronization with other modules: BIMODAL-ICP-TTS, ICP-LIP-METER
continuous/on request: —

Priority: high

DI 3 - Progress Report

ESPRIT BRA 8579 MIAMI 41

Output
Number of channels: 1
Description: Visual Signal
Receiving agent: Screen
Format of output data: Integer (16 bit)
Transmission rate: 25 Hz

Synchronous/asynchronous data output: —

Synchronization with other modules: DAC

Continuous/on request: continuous

Priority: high
Channel 2

3.6.3 Control parameter
In

Number of parameters: 2

Parameter 1 Description: Location
Format: array of 6 Integer

Transmission rate:
Will be changed by: 6D Mouse, MDD

Parameter 2 Description: kind of display
Format: int

Transmission rate: —

Will be changed by: —

Out

No parameter.

DI 3 - Progress Report

42 MIAMI ESPRIT BRA 8579

3.7 Text to bimodal speech (BIMODAL-ICP-TTS)

BIMODAL-ICP-TTS is a bimodal text to speech system. It converts ASCII text into
audiovisual speech.

Speech rate Articulation

v

Audio Signal
sentence to 4) J -
synthesize

1 Bimodal _ICP_TTS |Visual Speech

Parameter

End of Process Overflow

3.7.1 Requirements

Software: IRIX 5.3, PVM 3
Hardware: SGI

Real-Time: not possible

DI 3 - Progress Report

ESPRIT BRA 8579 Mi1aM1 43
3.7.2 Data channels
Input

Number of channels: 1

Description: sentence to synthesize

Type of sending agent:
Format of input data:

Transmission rate:

ASCIT Text

Synchronous/asynchronous data input: asynchronous

Synchronization with other modules: —

continuous/on request: —

Priority: medium
Output

Number of channels: 2

Channel 1

Channel 2

Description:

Receiving agent:

Format of output data:

Transmission rate:
Synchronous/asynchronous data output:
Synchronization with other modules:
Continuous/on request:

Priority:

Description:

Receiving agent:

Format of output data:

Transmission rate:
Synchronous/asynchronous data output:
Synchronization with other modules:
Continuous/on request:

Priority:

Handwriting Recognition, BIMODAL-ICP-ASR

selectable (10-50 Hz)

Audio signal

Audio server (PAC)
Integer (16 bit)
44.1 kHz
asynchronous
Audio server

continuous

high

Visual Speech Parameter
ICP-FACE-ANIM (animated face)
array of int

25 Hz

asynchronous

ICP-FACE-ANIM

continuous

high

DI 3 - Progress Report

44

MIAMI

ESPRIT BRA 8579

3.7.3 Control parameter

In

Number of parameters: 2

Parameter 1

Parameter 2

Out

Description:
Format:

Transmission rate:

Will be changed by:

Description:
Format:

Transmission rate:

Will be changed by:

Number of parameters: 2

Parameter 1

Parameter 2

Description:
Format:

Transmission rate:

Will change the status or inform:

Description:
Format:

Transmission rate:

Will change the status or inform:

Speech Rate

Integer

Articulation

Integer

End of Process

Integer

Overflow

Integer

ICP-FACE-ANIM, Audio server

Handwriting Recognition

BIMODAL-ICP-ASR

DI 3 - Progress Report

ESPRIT BRA 8579 MIAMI 45

3.8 Exoskeleton module (EXO0)

EXO allows the acquisition of the angular variables of a multi-joint exoskeleton struc-
ture with one or two arms to be transmitted to a forward kinematic module, which can

reconstruct the position or orientation of the end-effector of the structure.

Sampling rate Number of Joints
Number
* of Arms *
é)
sampled Voltage Angles
i EXO -

1..6/12

- _/

DH-parameters

3.8.1 Requirements

Software: Winsocket library
Hardware: PC with A/D converter and multi-channel multiplexer

Real-Time: necessary

DI 3 - Progress Report

46 MIAMI ESPRIT BRA 8579

3.8.2 Data channels
Input

Number of channels:

Description:

Sending agent:

Format of input data:

Transmission rate:
Synchronous/asynchronous data input:
Synchronization with other modules:
continuous/on request:

Priority:

Output

Number of channels:
Description:

Receiving agent:
Format of output data:

Transmission rate:

6 (one arm) or 12 (two arms) all with same data format
Voltage proportional to angles of joints

D/A converter

analog voltage signal

selectable (10-50 Hz)

synchronous

continuous
high

1 or 2, all with same data format
angles of joints

forward kinematic module
6-dimensional vector of reals
selectable (10-50 Hz)

Synchronous/asynchronous data output: synchronous
Synchronization with other modules: —
Continuous/on request: on request
Priority: high

3.8.3 Control parameter

In
Number of parameters: 3
Description: sampling rate (S), number of arms (NA), number of joints (NJ)
Format: 3 integers
Transmission rate: Information is only received during startup
Will be changed by: exoskeleton configuration module

DI 3 - Progress Report

ESPRIT BRA 8579

MIAMI

47

Out

Number of parameters:

Description:
Format:

Transmission rate:

4 x number of joints (NJ)
Denavit-Hartenberg parameters of each joint
4 reals (2 distances + 2 angles)

Information is only sent during startup

Will change the status or inform: forward kinematic module

DI 3 - Progress Report

48 MIAMI ESPRIT BRA 8579

3.9 Full-body gesture module (HARP-VSCOPE)

HARP-Vscope is a real-time tracking and recognition system of full-body gestures via

infrared and ultrasound sensors based on the V-scope hardware.

Sampling Rate

X,y,z Coordinates
n HARP-Vscope

Y

current Sample Index

filtered x,y,z Coordinates

3.9.1 Requirements

Software: Windows 95
Hardware: V-scope

Real-Time: necessary

3.9.2 Data channels

Input
Number of channels: 1 to 8, all with same data format
Description: X, vy, and z coordinates of trajectory points
Type of sending agent: V-scope
Format of input data: triples of unsigned integers
Transmission rate: 10 ms to 80 ms for each channel

Synchronous/asynchronous data input: asynchronous
Synchronization with other modules: —
continuous/on request: continuous

Priority: high

DI 3 - Progress Report

ESPRIT BRA 8579

MIAMI 49

Output

Number of channels:

Description:

Type of receiving agent:

Format of output data:

Transmission rate:

Synchronous/asynchronous data output:

Synchronization with other modules:

Continuous/on request:

Priority:

3.9.3 Control parameter

In

Number of parameters:

Description:
Format:
Transmission rate:

Will be changed by:

Out

Number of parameters:

Description:
Format:

Transmission rate:

Will change the status or inform:

1
sampling rate
integer

low

1 to 8 channels, all with same data format
filtered (x, y, z) coordinates (in meters)

sound output agent; humanoid animation agent
buffer of the last 256 triples for each channel
10 ms to 80 ms for each input channel
synchronous

on request

medium

high level task supervisor

1

current sample index

integer

on demand

client agents

DI 3 - Progress Report

50 MIAMI ESPRIT BRA 8579

3.10 Lip Parameter Analyzer (ICP-LIP-METER)

Module ICP-LIP-METER extracts the lip parameter from a video signal of a human

speaker with lips made up in blue.

Video (PAL)

3.10.1 Requirements

Software:
Hardware: Indy , video card VINO
Real-Time: necessary, possible

3.10.2 Data channels
Input

Number of channels:
Description:

Type of sending agent:
Format of input data:

Transmission rate:

Synchronous/asynchronous data input:

Synchronization with other modules:
continuous/on request:

Priority:

ICP_LIP_METER |Parameter

Visual Speech

Error

[RIX 5.3 , Video Library vl (VINO card), Library gl

1

Video PAL signal
VCR, Camera
selectable 25 frames/sec

asynchronous

high

DI 3 - Progress Report

ESPRIT BRA 8579 Mi1aM1 51
Output
Number of channels: 1

Description:
Receiving agent:
Format of output data:

Transmission rate:

Synchronous/asynchronous data output:

Synchronization with other modules:
Continuous/on request:

Priority:
3.10.3 Control parameter

In

No parameter.

Out

Number of parameters: 1

Description:
Format:

Transmission rate:

Will change the status or inform:

Integer

Visual Speech Parameters
ICP-FACE-ANIM, BIMODAL-ICP-ASR
Array of Integer (16 bit)

25 Hz

bit for measurement errors

BIMODAL-ICP-ASR, ICP-FACE-ANIM

DI 3 - Progress Report

52 MIAMI ESPRIT BRA 8579

3.11 Bimodal speech recognizer (BIMODAL-ICP-ASR)

BIMODAL-ICP-ASR (Automatic Speech Recognizer) audio and video input for bimodal

speech recognition.

AV- weigthing factor

Audio Signal ~ N

o
_ ASCII word
Visual Speech | Bimodal_ICP_ASR -

Paramter >
\ _J

oy

End of Process AV-weigthing factor

3.11.1 Requirements

Software: UNIX, LINUX, HMMICP library
Hardware: —

Real-Time: not already implemented but possible

3.11.2 Data channels
Input

Number of channels: 2

DI 3 - Progress Report

ESPRIT BRA 8579

MIAMI

53

Channel 1

Channel 2

Output

Description:
Type of sending agent:
Format of input data:

Transmission rate:

Synchronous/asynchronous data input:

Synchronization with other modules:
continuous/on request:

Priority:

Description:
Type of sending agent:
Format of input data:

Transmission rate:

Synchronous/asynchronous data input:

Synchronization with other modules:
continuous/on request:

Priority:

Number of channels: 1

Description:

Receiving agent:
Format of output data:

ASCII word
e.g., BIMODAL-ICP-TTS

ASCII

Transmission rate: —

Synchronous/asynchronous data output: —

Synchronization with other modules: —

Continuous/on request: —

Priority:

3.11.3 Control parameter

In

Number of parameters: 1

Description:

Format:

float

Transmission rate: —

Will be changed by:

ICP-LIP-METER

Audio signal
ADC

Integer

8 kHz—44.1 kHz
synchronous
ADC/DAC

continuous

Visual speech parameter
ICPLipMeter

array of float

can be configured (9600 baud on
initialization)

serial asynchronous input
ADC/DAC

medium

Input Audio/Video weighting factor

DI 3 - Progress Report

54 MIAMI ESPRIT BRA 8579

Out Number of parameters: 2

Parameter 1 Description: End of Process
Format: Integer

Transmission rate: —
Will change the status or inform: [CP-FACE-ANIM, Audio

server
Parameter 2 Description: Audio/Video weighting
factor based on output probability
dispersion
Format: float

Transmission rate: —

Will change the status or inform: —

DI 3 - Progress Report

ESPRIT BRA 8579 MIAMI 55

3.12 Conclusions

3.12.1 Hierarchy of modules

For the input and output channels the following four hierarchies are identified.

e External hardware
e Hardware and operating system dependent driver
e Hardware independent driver

e High level processing
They will be explained in more detail in the following paragraphs.

External Hardware refers to the sensors (for input) and the effector (for output).

Hardware and operating system dependent drivers are firmware, like the driver

for the audio or video hardware on a specific architecture.

Hardware independent drivers In some cases partners developed hardware indepen-
dent drivers to allow a unified access through the same interface to different devices
(like the Meta Device Driver) for Mouse, Joystick etc. or the DAC (Digital Analog
Converter Driver) and ADC (Analog Digital Converter Driver) for audio devices) or
to allow extra buffering and filtering of the raw sampled data (e.g. EXO, HARP-
MIDIKER).

High level processing In the class of high level processing two types of modules can
be found. One group consists of simple unimodal modules, which only have one
input and one output modality. The other contains modules, which are connected
to two modalities (audio and video). In the case of the Text-to-Speech system, the
level of the output channels is also different. The module produces raw audio data
and parameter for the face animation. The first channel can be played back without

any further processing, but the second channel needs further processing through the
ICP-FACE-ANIM module.

The diagrams 3.1 and 3.2 show the links between the different modules and their position
in the processing hierarchy. It is obvious from this diagrams that the audio and video
input and output have the closest links. All other channels do not show close links on the

levels which are presented.

DI 3 - Progress Report

110day] ss91801] - € I

“100loxd-[\ VN 913 Ul PodoloAdp oIe S9[NPOU 9I1BMIJOS I9T[}O

[V oIeMULIY oIe 31X} AvIS [IIM SO[POW dYJ, 'S)ouuny) nduj Jo MIIAIA() :T'¢ 9In3I

External Hardware Hardware and Operating
(Input) System specific driver

Exoskeleton

Ultrasound / Infrared HARP-Vscope
Sensors

Mouse, Joystick
Cyberman,
Spacemaster
SpaceMouse

e.g. Mouse Driver

Pen Driver

Video Camera / i i
Analog Video Videodriver (SGI)

Microphone / Audiodriver (SUN)
Analog Audio Audiodriver (SGI)

Hardware independent

driver High Level Processing

LIPMETER

Bimodal
Automatic Speech
recognition

9¢

TINVIN

6,68 vdd LIddSH

110day] ss91801] - € I

“100loxd-[\ V| 913 Tl PodoloAdp 9Ie So[NPOU 9I1BMIJOS I9T}O

[V "oIeMULIY oI® }X9) ARIS [}IM SO[NPOUL JYJ, ‘SJuuUnYy,) ndine jo MIIAIIAQ) :Z'¢ 9In3I

High Level Processing

Hardware independent

driver

AudioApplication

HARP-MIDIKER

OpenGL /
Openlinventor

Hardware and Operating External Hardware
System specific driver (Output)

MIDI Driver MIDI Hardware

Mouse, Joystick

: Cyberman,

e.g. Mouse Driver Spacemaster
SpaceMouse

Videodriver (SGI)
Audiodriver (SUN) Headphone /
Audiodriver (SGI) Loudspeaker

6,68 vdd LIddSH

TINVIN

RS

58 MIAMI ESPRIT BRA 8579

3.12.2 Sampling rate and priorities

The overview of the the different input and output channels can be summarized in the

following way. With regards to the sampling rates, three groups can be identified.

e high sampling rates (> 22 kHz): Audio in/out
e medium sampling rates (50-200 Hz): Pen

e low sampling rates (10-50 Hz): Video in/out, mouse, joystick, haptic feedback, body

gestures

Audio does not only have the highest sampling rate but also the highest priority, because
any lost or delayed sample will be perceived as disturbing noise or decrease the speech
recognition rate of the user and of the automatic recognizer. The MIDI channel also
request for a high priority with relatively high transmission rates. A delayed note will
change the rhythm of a pattern noticeable. The next important channel is the pen input
channel. For correct recognition and for a smooth reproduction of shapes, a high sampling
rate with no breaks is necessary. The pen channel is followed by video input and output.
The preliminary experiments with the animated face (see Deliverable 1, chapter 4) also
showed, that a lost frame during the output does not distort the recognition of audiovisual
speech significantly. The other channels seem to be represented sufficiently by low sampling

rates and are not very sensitive to interrupts.

3.12.3 Interprocess communication

Most of the presented modules are independent tasks, which run on a UNIX multiprocessor
environment. For interprocess communication PVM-messages are used. All used data
formats are supported by PVM. This also allows a fast adaptation to different hardware
platforms. For tasks running under Windows/Windows95/WindowsNT a PVM gateway

is available.

3.12.4 Synchronization

As the audio channel has the highest priority and is active most of the time this channel
will synchronize the other. As the sampling of sound is controlled by a stabilized oscillator
the audio channel also gives stable time base. The unit for the synchronization is called a
frame. The duration of a frame ranges from 25 Hz to 200 Hz depending on the demands

of the application. The audio samples are stored in an intermediate buffer, which has

DI 3 - Progress Report

ESPRIT BRA 8579 MIAMI 59

duration between 5 ms (200 Hz sampling rate for pen) and 40 ms (25 Hz sampling rate for
pen). When the buffer is filled the current frame number is increased and broadcasted to
other channels (via PVM-messages). If the processor is fast enough tight synchronization
with the resolution of one frame is possible. In cases, when the different channels are
requesting more calculation time than available, the modules with less priority will switch
to loose synchronization. If such a module notices, that it is too late to transmit the
requested data in time, it will skip some frames and continue to process the current
frame. For example, if the module for the face animation is too slow to deliver a frame
synchronously to the audio stream, it will skip the parameters of the next frame, which
the text to speech system transmitted and animate the following parameters instead. In
applications where no audio is requested a software based pseudo-clock will count the

frame number and broadcast it.

3.12.5 Problems

The sections above showed that some modalities have very tight restrictions with regards
to sampling rate and interrupts. Experiments with some bimodal applications or even
single audio applications on SUN and SGI platforms demonstrated that they cannot fulfill
the tight conditions under all circumstances. Of course, limited processing power often
causes some problems if audio and graphical applications are active at the same time.
But also with sufficient processing power, the operating system UNIX is not optimal for
multimedia applications. Some daemons residing in the background, periodically start
their work interrupting the handling of input and output channels. In the moment there
are no means to stop these unpredictable interrupts, but maybe further improvements of

the operating system and increasing processing power will help to solve these problems.

3.12.6 Summary

In this chapter we gave an overview of the different input and output channels. The
different levels which are involved in handling input and output have been identified.
Based on the sampling rate and type of transmission priorities have been assigned to the
different tasks (Audio, Pen, Video, tactile, haptic). A model for synchronization of the

different modalities has been proposed and implemented.

DI 3 - Progress Report

60

MIAMI

ESPRIT BRA 8579

DI 3 - Progress Report

Chapter 4

Representation of Object Space

The representation of object space together with the representation of input and output
channels (see chapters 2 and 3) establishes a framework for the development of multimodal
systems. Therefore, the main part of this chapter deals with the internal representation of
objects, including object properties, data storage, and management. Since the represen-
tation of output channels has already been discussed in chapter 3, we here focus on how

visual, acoustical, and haptic Inputs/Outputs are coherently processed in synchrony.

4.1 Introduction

Interactions with real and virtual objects are based mainly on three fundamentals: input
(see chapter 2), output (see chapter 3), and internal representation of object space. As
for the previous two chapters, the visual modality ('Computer Graphics’) is well-known
and a great number of systems and libraries exist for creating, managing, and displaying
objects, e.g., OpenGL and OpenInventor, which have been adopted for the project (see
sections 1.1.3 and 1.1.4). In those last two examples, only visual properties of objects are

supported, whereas acoustical and haptic properties are not.

Therefore, we defined general MIAMI object properties suitable for the synchronization of
the multimodal objects that we have worked on. A presentation of each MIAMI module
has been given in the previous section 3. We will here describe how these modules are
stored on the computer and how they can be combined together to create a "multimodal
object”. The MIAMI approach will be illustrated through four examples worked out in
collaboration. Since these examples will be presented as "demonstrations” at the Bochum
meeting in March, this chapter also aims at serving as a technical description of these

demos.

61

62 MIAMI ESPRIT BRA 8579

We have organized this section according to the following structure. We first present the
general data formats of the MIAMI objects. Detailed description of the graphic, acoustic
and haptic representations are then given. The types of display used to present objects to
the user are presented too. Finally, the multimodal integration of the MIAMI objects are

illustrated in the light of four demonstrations worked out by the MIAMI partners.

4.2 Graphical Representation

One of the major contributions of the MIAMI project has been to agree on and standardize
data formats which allow any object worked out by a MIAMI partner to be integrated in a
multimedia MIAMI environment. Of course, their integration to other multimodal spaces
is not limited to the MIAMI platform since the properties below detailed are mostly based
on standardized or widely used references. The common properties of these objects are
described in this section, depending on the modality they are to be presented through to

the user.

4.2.1 Fundamentals of Computer Graphics

The most salient graphical properties of the MIAMI objects were based on the Graphic
Libraries adopted by the partners to serve as software standard, namely OpenGL and
OpenInventor. Anyway, whatever the graphic library (and the hardware) used, the way

objects are described and stored on the computer is highly similar if not identical.

Defining and storing objects

One of the first problem of Computer Graphics is to store the volume of an object. Since
the whole volume of the object cannot be stored (which is by definition infinite), the

object as to be approximated by a new volume defined by a finite number of data.

One technique, widely use in CAD/CAM applications, is to define an object as a combi-
nation of simple objects. Then, from a set of predefined objects (cube, sphere, cylinder,
cone, ...) and by using a set of boolean operations such as union, intersection and differ-
ence, a complex object can be built and stored in the computer. However, this technique

can only be used for manufactured objects.

Another technique used is to sample the surface of the object and then approximate it
with polygon meshes. An object is then defined by geometrical information (a list of

all the vertices) and by topological information (the way how the different vertices are

DI 3 - Progress Report

ESPRIT BRA 8579 MIAMI 63

connected together). Although this technique is widely used, some objects can need a
smoother approximation of their surface. One solution is to oversample the surface of the

object and then use more vertices. A better technique is to use parametric surfaces.

Parametric surfaces can be simply defined by mathematical formula such as quadric sur-
faces or convolution surfaces. But the ones used most often are interpolation and approxi-
mation surfaces such as Bézier surfaces, B-splines or NURBS. These functions are defined
to pass as close as possible a set of control points. An object is then characterized by a

mesh of control points and a set of parameters that control the surface behavior.

However, whatever the technique used to define an object, for displaying it, the computer

has to sample it into triangle meshes.

Viewing objects

This part will briefly describe the different operations computers have to deal with in
order to transform the 3D representation of an object into the 2D image displayed on a
computer screen. First, the position of the virtual eye as to be chosen in order to define
the origin of the object space. Then, transformations such as rotation, translation, and
scale can be applied to the object in order to place it in the desired position. To obtain the
2D image, the size and the distance from the virtual eye of the visualization window has
to be determined. An appropriate projection can then finally be applied to the object. All
these operations are done in the homogeneous coordinates of three-dimensional projective

geometry by simple products of 4x4 matrix. Figure 4.1 describes these different steps.

Rendering objects

To draw a green sphere, you can not just color each pixel of the sphere in green, otherwise
you will just obtain a green disk. What is important to render the volume of an object
is the color intensity repartition on its surface. This part will then describe the most
currently used illumination model in animation application. In this illumination model,

the color of an object is characterized by three kinds of reflection:

Ambient reflection The ambient reflection corresponds to non-directional source of
light, e. g. the product of multiple reflections of light from the many surfaces present
in the environment. Although objects illuminated by ambient light are more or less
brightly lit in direct proportion to the ambient intensity, they are still uniformly illu-
minated across their surfaces. The amount of ambient light reflected from an objects
surface is determined by a factor (Ka), namely the ambient-reflection coefficient.

This constant, between 0 and 1, varies from one material to another.

DI 3 - Progress Report

64 MIAMI ESPRIT BRA 8579

Coordinate System

Operation
Object coordinates) - -
Geometric transformations
Space change
< P g
Eye coordinates) —
Projection
Viewport transform
| —
Window coordinates
.
Window offset
- —
Screen coordinates
_>
Pixel values

Figure 4.1: Coordinate systems and operations used at different stages of the drawing

process

DI 3 - Progress Report

ESPRIT BRA 8579 MIAMI 65

Diffuse reflection Now consider illuminating an object by a point light source, whose
rays emanate uniformly in all direction from a single point. The object’s brightness
varies from one part to another, depending on the direction of and distance to the
light source. This phenomenon is known as diffuse reflection. For a given surface,
the brightness of a vertex depends only on the angle (i) between the direction (L)
to the light source and the surface normal (N) at this point (see figure 4.2). The
amount of diffuse light reflected from an object’s surface is determined by a factor
(Kd), namely the diffuse-reflection coefficient. This constant, between 0 and 1, varies

from one material to another.

N
— — N
/l\
L
i
M

Ida = Kd.cos(1).Ii

Figure 4.2: Diffuse reflection

Specular reflection Specular reflection can be observed on any shiny surface. Illumi-
nate an apple with a bright white light: The highlight is caused by specular reflection,
whereas the light reflected from the rest of the apple is the result of diffuse reflection.
The specular reflection represents the fact that shiny surfaces reflect light unequally
in different directions. On a perfectly shiny surface, such as a perfect mirror, light is
reflected only in the direction (R) which is the mirrored direction about the normal
(N) of the direction (L) to the light source. Defining (s) as the angle between (R)
and the direction of the viewpoint (V) a popular illumination model for non-perfect
reflectors assumes that maximum specular reflectance occurs when the angle (s) is
zero and falls off sharply as (s) increases (see figure 4.3). This rapid falloff can be
approximated by cos"(s), where n is the material specular exponent. The amount of
specular light reflected from an objects surface is also determined by a factor (Ks),

between 0 and 1, namely the specular-reflection coefficient.

It should be clear that we can shade any surface by calculating the surface normal at each

visible point and applying the illumination model at that point. This brute-force shading

DI 3 - Progress Report

66 MIAMI ESPRIT BRA 8579

Is = Ks.Ii.W(@{) (cos(s)™

Figure 4.3: Specular reflection

model is expensive except for polygon meshes. As a matter of fact, all the vertices of a
same polygon share the same normal. However, in this case all vertices will also have the
same color, resulting in a flat shading that does not produce the variations in shade across

the polygon that should occur in normal situations.

To prevent this effect, a technique named Gouraud Shading can be used. The Gouraud
shading process requires that the normal be known for each vertex of the polygonal mesh.
If the vertex normals are not stored with the mesh and cannot be determined directly
from the actual surface, then we can approximate them by averaging the surface normals
of all polygonal facets sharing each vertex. The next step in Gouraud shading is to find
vertex intensities by using the vertex normals with the illumination model. Finally, each
polygon is shaded by linear interpolation of vertex intensities along each edge and then

between edges along each scan line (see figure 4.4).

Another widely used technique for rendering an object is called texture mapping. This
technique consists of gluing a 2D image onto a 3D object. Actually, a texture can be
applied to a surface in different ways. It can be painted on directly (like a decal placed
on the surface), it can be used to modulate the color the surface would have been painted
otherwise, or it can be used to blend the texture color with the surface color. Texture
mapping is often used to represent large scene with a repeated motif such as a large brick
wall or with a complicated look, such as the ground of a flight simulator: in this case
vegetation pictures are textured on large polygons. This technique is also used to make

polygons appear to be made of natural substances such as skin, wood, or marble.

DI 3 - Progress Report

ESPRIT BRA 8579 MIAMI 67

Normal calculation Color interpolation

Ns M1

N3

A
N1 N2

M3

Figure 4.4: Gouraud shading process

4.2.2 The basic Graphics Library OpenGL

As stated earlier (see 1.1.3), OpenGL does not provide high-level commands for describing
models of three-dimensional objects. With OpenGL, a desired model must be built up
from a small set of geometric primitives [18]. The following parts describe briefly how an

3D object can been drawn.

Defining and storing objects in OpenGL

OpenGL has routines to draw an object in two different manners: by polygon meshes or
by approximation surfaces. In the first case, the vertices of the object have to be stored
in a file as well as the way they have to be connected together in triangles or four-sided
polygons. The normals of the surface at each vertex can also be stored in a file or can
be directly calculated within the program. OpenGL provides low-level routines to draw
triangles or four-sided polygons meshes by connecting all vertices subsequently in the

correct order. During this procedure, the corresponding normals have to be indicated too.

In the second case, the control points mesh as to be stored as well as the control param-

eters. OpenGL provides then routines to draw Bézier surfaces or NURBS.

Viewing objects in OpenGL

In order to view the object, the programmer has to characterize precisely all the trans-
formations described previously: the place and direction of the virtual eye, the transfor-

mations applied to the object, the type of projection, the size and place of the viewport.

DI 3 - Progress Report

68 MIAMI ESPRIT BRA 8579

Low-level routines are used, and a special attention has to be paid in order to be sure

that the object is in the vision field of the eye, otherwise nothing will be drawn.

Rendering objects in OpenGL

OpenGL provides two techniques in order to render an object: Gouraud shading with
a classical illumination model and texture mapping. The shading method requires first
lights to be defined, placed, and characterized (type, color, direction). Then, the different
coefficients described previously (ambient reflection, diffuse reflection, specular reflection,
specular exponent) have to be defined. Other parameters can also characterize an object
such as transparency or light-emission (for an object such as a bulb, for example). The

computer has now necessary information to render the scene.

As texture mapping is concerned, an image as to be provided and the way it has to be

textured onto the object has to be indicated.

4.2.3 The Openlnventor graphics toolkit

Open Inventor is an object-oriented toolkit based on OpenGL that provides objects and
methods for creating interactive three-dimensional graphics applications [29, 30, 31]. As
previously said (see 1.1.4), building a 3D scene with Openlnventor consists of creating a
scene database organized like a tree. All information about the scene (object shape, size,
coloring, surface texture, location in 3D space, camera place) is stored as nodes of the
tree. Then, for the programmer’s point of view, all the different steps described previously
to render a 3D object are treated on the same level. The next sections will describe the
basic nodes used to display 3D objects. In addition, Openlnventor supports the creation

of new types of nodes, e.g. describing acoustical or haptic properties of objects.

Defining and storing objects in Openlnventor

As for OpenGL, an object can be drawn with a polygonal mesh or with an approximation
surface such as NURBS. Predefined geometric objects such as sphere, cube, cylinder, or
cone can also be used in order to construct complex objects. To build a polygonal mesh
object, several nodes have to be gathered, each one corresponding to a single property:
one node for the vertex coordinates, one node for the normal coordinates, and one node
for the type (triangles or four-sided polygons) of mesh and for the connection order. Same

principles are used for NURBS representation.

DI 3 - Progress Report

ESPRIT BRA 8579 MIAMI 69

Viewing objects in OpenIlnventor

To view an object, Openlnventor provides camera nodes that embeds all information
necessary to visualize the scene. Then, a type of camera has to be chosen and all the
parameters are established through internal methods. This technique is a very useful way

for viewing an object and allows very easy camera movements.

Rendering objects in Openlnventor

The rendering part is also quite easy with Openlnventor. A specific light is characterized
by a node which contains all information about its type, place, and color. A material
node is used for object specification defining the different reflection parameters. Nodes for

texture mapping are also provided to enable a very easy use of this rendering technique.

The Openlnventor file format

Openlnventor provides a very useful way to write and to store a complete scene graph in
a file, and to read this file later for using it within a program. An Inventor file format has
been defined in order to exchange complex scene database between processes very easily.

Examples of such file will be described in following sections.

4.3 Representation of Acoustical Properties

Some of the objects used in MIAMI have acoustical properties. The bimodal Text-to-
Speech system generates raw audio data and parameters for the face animation. In the
analogical demonstrator collisions of the robot with a wall might be sonified by a noise
of collision of two materials or the distance of the robot to the wall or the target might
be sonified using a sound with a pitch or timbre change according to the distance. In
the symbolical demonstrator, locations in the information-city might be identified by an
short musical motive when the user is orienting to that place. If somebody want to talk
to the user via the network a sound of “knocking at your door” might be played. These
examples only give a very brief overview of the different acoustical properties each object

has.

The acoustical objects can be classified in the following way:

e continuous streams (e.g. speech)

e non-parametrized single event sounds (e.g. collisions)

DI 3 - Progress Report

70 MIAMI ESPRIT BRA 8579

e parametrized sounds (e.g. single tone, which changes pitch)

e auditory icons (e.g. short motives)
They will be described in more detail in the following paragraphs.

Continuous streams are represented by the frames of audio samples, which are sent.
The sending process sends the data to the audio application server. The exchange
can either be done using PVM-messages or reading/writing from the same file. For
sending data from one task to another both tasks have to know the TID of each

other.

Non-parametrized single event sounds like collision noise are stored as raw audio
data in the memory of the computer, the hard disk (as single file), or as specific MIDI
sound in a sampler. Depending on the method used, the sounds can be addressed by
index-numbers (memory), filenames (hard disk) or MIDI-numbers (MIDI-devices).
In the MIAMI project a sound from a database with collision sounds can be identified

by the filename.

Parametrized sounds can be sampled sounds, which are played back at different sam-
pling rates using special hardware or realized as software or hardware sound genera-
tors. The parameter for the latter case are depending on the specific algorithm used
for sound synthesis. The MIDI-protocol is a standardized method for representing
the acoustical properties of sounds (timbre and event timing). The most important
parameter is pitch. Also the modulation frequency of the amplitude might be useful.
In the MIAMI-project simple waveform generators (sine, rectangle, sawtooth, noise)
are implemented. For all waveforms the frequency can be changed. For sawtooth and

rectangle also the exact shape can be defined (e.g. duty cycle).

Auditory icons can be stored in two ways. A MIDI-sequence stored in a file is sent to a
MIDI-device, when the auditory icon has to played. Alternatively the auditory icons
can be pre-recorded, stored in a file and the raw data can be played back via the
DA-converter. The audio application server supports the playback of files. Each icon

is represented by its filename.

In addition to the properties mentioned above the location of a sound objects can be
controlled. A direction is usually described by the azimuth and elevation relative to the
listener. The sound of each acoustical object which is identified by an integer number

can be filtered in a way that it is perceived in the desired direction. The MIAMI-audio

DI 3 - Progress Report

ESPRIT BRA 8579 MIAMI 71

application server supports simple spatialization of sounds either sent from outside the

server or generated internally.

For all types of sound the loudness of the perceived sound can be set by setting the

amplification of each audio stream. The amplification is represented by a float number.

4.4 Managing Haptic Features

“Whereas synthetic visual and audio images are omnipresent nowadays, oppor-
tunities to reach out and feel non-existent objects possessing texture, shape and

inertia are, to put it mildly, not.” [2]

Haptic features are not widely used in current applications, although they play an impor-
tant role in the 'real world’. Three major reasons for this situation have been identified:

i) haptic devices are either not very powerful or very expensive;
ii) sophisticated methods for the generation of haptic feedback are missing;

iii) haptic features are not needed/useful for most computer applications.

In the following paragraphs, we will take a closer look at these arguments.

Devices

The first argument is supported by the observation that most devices with tactile or force
feedback fall in one of three categories: 1) not available (prototypes only); 2) inadequate
performance; or 3) too expensive. Nearly all devices with haptic output have been either
developed for graphical or robotic applications. Many different design principles have been

investigated, but the optimal solution has not been found yet.

A device which might help to overcome this situation is the PHANToM, probably the most
promising development in this area in the last years [14]. The PHANToM is a 3D input
device which can be operated by the finger tip. Its price is US$ 19,500, which is rather
cheap compared to other devices with similar functionality. It realizes three degrees of
freedom (translational axis) only, but it has many advantages compared to other devices,
like low friction, low mass, and minimized unbalanced weight. Therefore, even stiffness and
textures can be experienced. Hopefully, the increasing number and popularity of Virtual

Reality systems will push the development of haptic devices to a new dimension.

DI 3 - Progress Report

72 MIAMI ESPRIT BRA 8579

Methods

The lack of good methods is related to the lack of good (and widely available) devices.
Usually, for the large number of prototypical devices existing in many laboratories, a
large number of prototypical methods has been developed, whereas general methods are
still missing. Even worse, many devices and methods have been developed for special

applications only, thus they are not useful in other contexts.

Again, the team around Salisbury might show a way out of the dilemma [23]. They have
investigated principle methods for so-called haptic rendering, thereby using and adapting
well-known rendering methods from computer graphics. The first approach has considered
free space movement, contact situations, and methods for modeling an object’s surface.
Although developed for and tested with the PHANToM device, this approach might be

useful for other devices as well:

“While researchers have begun to look at algorithms for generating forces re-
sulting from contact with virtual objects ..., we feel that there is a great need
for a more coherent approach to generating ...these sensations and modeling
interactions with complex objects. Our interest is in developing a framework in
which we may represent shape, surface properties, bulk properties and multiple

object interactions. ...” [23, p. 124]

Applications

Whether haptic feedback is needed or useful in an application depends to some extend
on the application and the available device(s). Until now, it is mainly used in special
applications with interactions in 3D, like telemanipulation, CAD, or virtual reality. These
applications usually need a powerful graphics workstation and special hard- and software,

therefore the price for an input device with haptic feedback does not play a central role.

This is completely different for everyday applications. Even if good devices and methods
would exist, the remaining question would be: “How much money would an average user

spend for this device and method?”

Therefore, in the MIAMI project we decided to follow two different approaches: First, the
FORCEJOYSTICK is used for controlling a mobile robot (?7?). In the second application, the
FORCEMOUSE is used to support user interactions in any Tcl/Tk application by providing
haptic feedback (??). Both devices are relatively cheap and have been developed within
the first year of MIAMI. The different requirements of both scenarios will be described in

more detail in the following paragraphs.

DI 3 - Progress Report

ESPRIT BRA 8579 MIAMI 73

4.4.1 Robot navigation with force feedback

The main intention here is to support the operator during interactive control of the
platform in order to avoid collisions and to simplify the navigation in narrow passages like
doorways. First tests have shown that satisfying results can be achieved only when several
methods will be combined. Therefore, we started to develop a system which calculates a

force feedback vector based on the following inputs:

e a global algorithm calculates boundaries for all the objects in the robot’s environ-

ment, based on the robot’s size and orientation;

e local planners consider the robot’s direction, orientation, velocity, and input of the

operator;

o different rules based on heuristics are applied in different situations, e.g. when the

robot passes a doorway.

In contrast to several developments directed towards autonomous movement and nav-
igation of mobile platforms, our approach has been especially designed for interactive
operations. The focus has been set to the development of an overall concept for robot
navigation with force feedback realized by the methods described above. The FORCE-
JOYSTICK is used to prove the principle idea, although it is by no means a sophisticated
device. The main goal is to support the operator as much as possible, therefore we plan

to integrate other kinds of feedback in later versions of this application, too.

4.4.2 Intelligent support of 2D interactions with haptic feed-
back

Usually, a mouse is used for input activities only, whereas output from the computer is
sent via the monitor and one or two loudspeakers. But why not use the mouse for output,
too? For instance, if it would be possible to predict the next interaction object the user
wants to click on, a mouse with a mechanical brake could stop the cursor movement at
the desired position. This kind of aid is especially attractive for small targets like resize

handles of windows or small buttons.

The specialized FORCEMOUSE developed within the project’s first year has simple (and
cheap) extensions which provide haptic feedback. With this device, we have carried out
some basic experiments. The results revealed that haptic feedback is useful only if it is
supported by an intelligent control mechanism, at least if applied to complex systems

like GUIs. Therefore, we have developed a multi-agent system which analyzes the user’s

DI 3 - Progress Report

74 MIAMI ESPRIT BRA 8579

interactions for some time, generates a user- and application specific model, and uses this
model to predict the next interaction. Finally, this knowledge is used to support the cur-
rent, positioning task by stopping the user’s movement. Although primarily designed in
order to provide ’intelligent’” haptic feedback, the system can be combined with other out-
put modalities as well, due to its modular and flexible architecture. The implementation

is a plug-and-play solution for any application written in Tcl/Tk [17].

The results of the experiments performed in WP2 helped us to identify the drawbacks of
a simple and the requirements of a good controller for the FORCEMOUSE:

Reaction time: In order to present the user a consistent and coherent feedback, the

delay between entering a widget and launching the feedback should be minimized.

Prediction: The best result regarding the reaction time can be achieved when the next

widget is known in advance (a priori). Therefore, a prediction mechanism is needed.

Adaptability: Every application uses different widgets with respect to size, position,
etc., and every user has a different way of interacting with an application. Therefore,
the system should not only model the user’s behavior with respect to a specific GUI
but should also adapt itself, thus increasing its performance and decreasing the error

rate over time.

Independence: Although the statistical models are based on a specific user’s actions
in a specific application, the system itself should be usable in combination with any

Tcl/Tk application without any changes.

Versatility: The system architecture should be modular and flexible in order to support
the integration of other output modalities, too. In addition, the statistical model
might be used for other purposes as well, for instance for recording macro operations

or generalizing action patterns.

The principle idea of our approach is to predict the next user action regarding the usage
of widgets in the graphical user interface, i.e. to predict which widget will be used next.

In other words:

The main task is to predict the next user action in order to launch the haptic

feedback selectively and to adapt this capability over time.

DI 3 - Progress Report

ESPRIT BRA 8579 MIAMI 75

4.5 Multimodal Integration

Multimodal integration can be based on an amodal, a transmodal, or a paramodal repre-
sentation. Amodal representation involves objects defined in terms of internal (physical)
properties which have simultaneous influence on the two (or more) modalities in which
the object is represented, e.g., a vibrating cord, or a model of the vocal tract. Trans-
modal representation applies to objects which intrinsic properties can be converted from
one modality to the other, e.g., moving lips animated from the acoustic speech signal.
Paramodal representation suggests that the object has a set of unimodal intrinsic proper-
ties independent from one another, except for the time relation that control them, e.g., a

jack-pot and its noise.

Most of the multimodal systems belong to the third category. In this case, the main
challenge is to ensure a perfect synchronicity between the modalities so that changes
occur at the same time, whatever the sampling frequency used in each modality may be.
In the following sections, five applications which have been designed to demonstrate the
multimodal integration and the combination of modalities and software packages will be
presented. In addition, you will find descriptions of the basic objects defined for these

applications.

DI 3 - Progress Report

76

MIAMI

ESPRIT BRA 8579

DI 3 - Progress Report

Chapter 5

Navigation

5.1 Navigation in Hyperspace and Cognitive Rep-

resentation

The theme of navigation in information space was identified in an early stage of the
MIAMI project proposal as an essential point of study. Navigation can be described as
a process of movement and orientation, yielding a trajectory that is directed towards a
given goal. However, navigation also appears to be a highly ambiguous concept. What
is the actual space in which is navigated? Is this a graphically isomorphous and three-
dimensional environment? Does the space of the navigation process consist of a two-
dimensional graphical screen contents viewed in a sequence? Or should we, alternatively,
view the navigation in computer use as a process of cognitive movement through a more
abstract information space, pondering on some topics and wandering over others? Thus,
there is a distinction between physical and conceptual navigation. The question within
MIAMI is what happens if the navigation is both physical and more abstract or conceptual
at the same time? As an example, as user may have a fuzzy idea (the conceptual level)
about the type of video movie which would be interesting to view this evening, and is
confronted with a graphical user interface (the physical level) designed to navigate to the
actual best-fitting available material, given the viewer’s goal. To what extent is it helpful

to use graphical artefacts to improve the process of navigation under such circumstances?

In this section we will deal with the subject on how people build up mental representa-
tions of information which they during a hypermedia tour. Thus, we direct our attention
to navigation in an essentially non-geographical environment. The general theme (as ad-
dressed in WT 3.5) is 'navigation in information space’, but we will focus our attention to
the typical use of World-Wide Web browsers. A typical problem is the fact that users are

7

78 MIAMI ESPRIT BRA 8579

'lost in hyperspace’ after only a few ’clicks” on hyperlinks. The human short-term memory
is known to hold about 7+2 items [16, 4]. After a few pages, new information is processed
at the expense of the information collected earlier. What is even more, is the fact that the
current User Goal also requires cognitive space or resources in the short-term memory
(STM). It is very likely that the user loses him /herself in futile browsing, forgetting about

the actual original goal of the information search action.

Typically, humans have tried to solve the problem of limited STM by creating cognitive
artefacts which are persistent and visual, like sketched maps and the graphical symbols
of the alphabet. So, maybe also in 'computer navigation’, we may want to compensate
the low capacity of the STM by using visualisation techniques which make the structure

of a hypermedia document more explicit and which make navigation easier.

One solution to the problem of the visualisation of document structure is introduced by
Shneiderman [26]. He proposes a number of tree visualisation techniques (Tree-Maps). By
making graphical objects in such a tree ’clickable’, the static tree image representation

turns into a dynamic tool. As Balasubramanian [1] points out,

”Graphical browsers help reduce disorientation by providing a two-dimensional
spatial display of the hypertext network. They also help minimize cognitive
overhead by showing a small part of the network. They also provide an idea
about the size of the network which help users estimate the number of nodes

and links in the system.”
There are basically two approaches in visualisation:

1. The actual provider of the hypermedia document creates the graphical representation

of the message structure,

2. An algorithm is used to analyse an ordered list of links, i.e., the recent navigation

history for this user, followed by subsequent automated visualisation.

The problem with the second approach is that it is unclear whether it is at all possible to
infer a meaningful, conceptual (semantical) structure from a temporal link-access order.
Examples of superficial automatic visualisation of the hypertext navigation trail are the
WebMap program by Peter Démel [6]. Another experiment is based on a Perl program
developed by Paul Harrington, using the automatic 2-D layout system for undirected
graphs Neato by Stephen North from AT&T.

The SGI File System Navigator (fsn) demo program (known from the Jurassic Park

movie), is another visualisation solution where the hierarchical directory tree structure

DI 3 - Progress Report

ESPRIT BRA 8579 MIAMI 79

3 mo Emo1yr:~1yr|

Figure 5.1: A screen dump of the three-dimensional file manager program fsn from Silicon
Graphics. The hierarchical structure of the graph is projected in 3D, allowing the user to

fly over’ the file system.

of a file system is visualized in 3D (Figure 5.1). Whether this actually helps the user
to build up a good mental representation remains to be seen, but fsn certainly gives an
interesting perspective on your own well-know directory tree. Files are 3D blocks, and
the file attributes are displayed as color size, and icons (the latter on the "roof” of a
file "building”). However, hypermedia structures are not necessarily hierarchical, which
makes things more complicated. Another example of 3D graph visualisation is by Peter
Young [5]. In this example, the structure concerns the calling tree of a C program, but

theoretically, this 3D approach could be used in visualising WWW neighbourhoods, too.

As Young notes (rephrasing): 'One of the biggest problems when using 3D visualisations
in which the user can roam freely is in the viewpoint control and spatial awareness. On
the one hand, the user must be able to confidently move from point A to point B in
three-dimensional space. On the other hand, they must also be able to determine their
absolute position or orientation if they become lost’. As an example, it is very easy in a

3D graph to overshoot some nodes, suddenly being faced with a blank wall or panorama,

DI 3 - Progress Report

80 MIAMI ESPRIT BRA 8579

Figure 5.2: A three-dimensional graph of a program in C (courtesy Peter Young, Univ. of
Durham/Centre for Software Maintenance, UK).

after which one must turn 180 degrees to see the structure again, now from a new angle.
The conclusion of this is that if we are already confronted with an information-space
navigation problem, the adding of three-dimensional navigation may actually deteriorate

the navigation process.

A second category of graph visualisation is the Venn-diagram. Such a visualisation is only

possible if there is a strict hierarchical structure (Figure 5.3).

The TreeViz idea of Shneiderman belongs to this category. Figure 5.4 gives an example of
TreeViz-type layout, which is effectively a rectangular approach to the typical oval-shaped
Venn diagrams. As can be seen clearly, such approaches will not suffice in the case of a

network topology, such as is required if a hypermedia navigation trail is to be visualised.

A number of small-scale studies has been performed to explore the effects of visualizing the

direct neighbourhood in a hypermedia document by means of a two-dimensional graph.

DI 3 - Progress Report

ESPRIT BRA 8579 MIAMI 81

f,r 1,
L 5 v

:?.
{ o '“\ ""‘-\.

_.- "‘-________,_,f
L S

Figura 2a. Traa structura

Figura 2b. Yenn diagram of same hisrarchy 2z in 28

Figure 5.3: A simple tree and its Venn diagram representation.

5.1.1 Presentation of a 2D graph of the neighbourhood topol-

ogy in hypermedia navigation

Twelve subjects took part in the experiment. Their task was to answer six specific ques-
tions on two hypertexts on two well-known bands ("The Beatles” and ”"The Rolling

Stones”). The following is a summary of findings.

e The visual presentation of a graph strongly reduced the number of erroneous page
selections (118 irrelevant pages clicked without graph, 67 error selections if a graph

is present).

e The total search time is not significantly reduced by the presence of a graph (38s.
without graph, 34s. with graph). Apparently the graph interpretation also takes

considerable time.

e The nodes in the graph were not made ’clickable’. This was done on purpose, to keep
the two conditions more comparable. Many subjects tried to click on the nodes in

the graph and did not devote much attention to the graph after finding out that it

DI 3 - Progress Report

2 MIAMI ESPRIT BRA 8579

Ed TreeViz {(by Humanoid)
Root Record |TIMING-EECORD-13023 offset |5

Function SEARCH-SUESTITUTIONS
Subsystenm 11

Burmning Time 6. 356

ot

Figure 5.4: A TreeViz representation of a tree structure

was not a navigation tool.

These findings support the idea that a visible graph as a navigation tool may be useful,
although the main advantage cannot be expressed in the form of (reduced) navigation
time. Replications of this experiment with other content topics and other types of graph
visualisation mainly corroborated the findings. However, the graphical quality of the graph
seemed important. This is difficult to quantify, but ’visually pleasing graphs’ elicited better
use than duller versions. A problem with the graphs is that they consume a considerable

portion of the screen, which is already mainly occupied by the browser surface itself.

A second study was performed in which the user was forced at regular intervals to maintain
a list of current goals in a text-item window next to the browsing program. In this study, a
realistic, large hypermedia document on astronomy (our solar system) was used. Also here,
the subjects had to answer specific questions concerning the content of the document. At

the moment of clicking a hyperlink, the user was asked regularly (not each time) to fill in

DI 3 - Progress Report

ESPRIT BRA 8579 MIAMI 83

a line of text concerning the current search goal. Although this is admittedly an intrusion
on the normal flow of interaction, the frequency of this ”Goal” dialog was kept low enough
to prevent irritation, and high enough to keep track of the user’s activities. The results

of this experiment are currently being evaluated.

DI 3 - Progress Report

84

MIAMI

ESPRIT BRA 8579

DI 3 - Progress Report

Chapter 6

Some examples of new ’Building

Bricks’ in Multimodal Systems

As a more general description of some of the modules presented in chapter 3 we present a
number of new 'building bricks’ developed in the MIAMI project. They vary from device

oriented to environment oriented:

e MDD - the meta-device driver
e GESTE - a two-dimensional gesture recognizer
e AAS - an audio application server

e HARP - a multimodal environment based on cognitive processing

These are just a selection from the much larger list of components which are currently

under development.

6.1 MDD—unified access to different devices

The META DEVICE DRIVER (MDD) is a C-library which provides unified access to several
input devices, some of which also have the capability to generate haptic output. This
section describes the concept and structure of the MDD. A detailed description of all
functions provided by the library and an explanation how to use the functions in an
application and how to extend the MDD in order to include other devices is available
on-line on the WWW.,

85

86 MIAMI ESPRIT BRA 8579

6.1.1 Idea and Concept

Each device driver for a specific I/O device provides different functions and features,
and the functions use different sets of parameters. Therefore, for every new I/O device
functions to access it have to be included in every application using the device. The basic
idea of the META DEVICE DRIVER is to provide unified access via a general interface to
various devices. Nevertheless, most features of the devices should still be accessible, which

means to find a balance between generality and specificity.

Specific device drivers A device driver connects an 1/O device to an application and
provides a channel to exchange information in one or both directions. Therefore, a commu-
nication protocol with a specific coding of commands and parameters will be established.
Usually, the application sends a command or request and waits for an acknowledgment

or some values (see figure 6.1), but some I/O devices also send their values permanently.

Device driver
Interfface ____________________________________ .

encoding Driver

 Application

functions

decoding

Figure 6.1: Principal structure of a device driver

The obvious advantage of this kind of driver is its specificity: the driver provides access
to one specific device only. Thus, exactly all features of the device are supported and the
performance can be maximized because the communication overhead can be minimized—

the driver is the only layer between the device and the application.

The META DEVICE DRIVER The META DEVICE DRIVER’S job is to provide access to
more than one device via a general interface. It introduces an additional layer between the
specific device drivers (SDDs) and the application. On the one hand, the MDD exploits the
SDDs’ functions for communicating with a specific device. On the other hand, it supports
a small number of general access functions to be used by the application. Therefore, the
data transmitted between the devices and the application has to be converted in a general

format. The principle structure of the MDD is shown in figure 6.2.

The advantage of unified access to several different 1/O devices introduces two problems:

DI 3 - Progress Report

ESPRIT BRA 8579 MIAMI 7

-— Device
-—SDD
3 Connection to SDDs |
S ; 1 3 o
! 9 v ! 9 9
i Mapping
|)) [))
‘ 9 v 1 9 9
Scaling 1
3] 1 3 T
9 0 1 9 9 !
. MDD functionality + o Options
B T - menu
Application

Figure 6.2: Principal structure of the META DEVICE DRIVER

First, some of the specific features of a device might get lost due to the general functions
provided by the MDD. This depends strongly on the respective devices and their drivers.
Second, the additional layer might introduce an additional time delay in the communi-
cation process. Although this is true, the delay is no serious drawback and is for most
applications fully compensated by the advantage of the general, simple, and consistent

interface!.

Architecture of the MDD In order to design a general interface, the specific charac-
teristics of several I/O devices have been analyzed. Regarding the input space, a superset
is easy to construct using an input space with six dimensions: three translational and
three rotational axes are needed to reach any position in 3D space with any orientation.
To simplify the access, these values can either be provided in absolute or relative format.
If a device does not provide six degrees of freedom, the missing axis can be disabled by a

masking process.

The generalization of the output space is significantly more difficult, because the output
capabilities of the devices vary much more. Although in this case only input devices
with output capabilities are considered (i.e., no monitors, no loudspeakers, etc.), the

haptic output is very specific to each device. Therefore, three different functions have

'In fact, the delay is usually only a few milliseconds, whereas the differences in the performance of
the various devices is much larger, ranging from < 10 to ~ 100 ms!

DI 3 - Progress Report

88 MIAMI ESPRIT BRA 8579

been implemented which allow to provide force vectors in 3D space, “gravitation vectors”

in 3D space, and vibrations, resp.

Due to the ability of a META DEVICE DRIVER to communicate with several devices,
so-called logic ports (LPs) have been introduced?. Thus, an application can open multiple
channels in parallel and communicate with more than one device. The motivation was to
provide a way to change the devices “on the fly” and to select the best device at any time
of the interaction process. To emphasize this feature, a composition function has been
realized which combines two LPs into one. In this case, the application receives values

from two devices without noticing a difference.

It is also possible to use the mapping function in order to map one axis to another or to
create a 4D device from two 2D devices on a logical level. The main purpose of mapping
is to map the specific axes of a device to the internal axes of an application, e.g. if the
displayed manipulations on a monitor are not consistent with the manipulations of the
device.

After mapping, the values will be processed by a scaling function. Thus, the input values
of a device can be adapted to the application and the user’s needs, e.g. by increasing
or decreasing the “speed” of one or more axes. By using negative scaling values, the
direction of an axis will be inverted. Both, the mapping and scaling function, can be
called by the application or via a graphical user interface, the so-called options menu. It

will be described in the next section.

All features of the MDD can be used at once simply by linking the MDD library to an

application.

6.1.2 Implementation

The META DEVICE DRIVER has been implemented in C, using PVM (see 1.1.5) for inter
process communication and TkPVM (see 1.2.1) to implement the options menu. The
complete structure of an application using the MDD library is depicted in figure 6.3. The
physical driver which realizes the lowest level of communication are separated processes
which communicate with their specific modules via PVM. The modules are linked to
the MDD, which again is linked to the application, thus providing easy access to several

devices via general functions.

In order to support completely independent modules for the specific device drivers (SDDs),
function calls from the MDD to the SDDs are mapped via a structure which uses pointers

to functions. This concept allows the easy integration of other SDDs by following a simple

2An LP is very similar to a file handle.

DI 3 - Progress Report

ESPRIT BRA 8579 MIAMI 89

Driver modules

[? [?/{[? C]«— Phy;i;:l/ll driver
b Lot e
]_[]_[]—[]_ »| Options
MDD library S| menu

Application LTCI/Tk

Linked object files

Figure 6.3: Structure of an application using the MDD

scheme.

Procedures and commands In the following, the MDD’s interface will be described

briefly.

mdd-connect Establishes a connection to a device. The device is connected to phys-
ical port portName on host hostName, and a logic port number to be used by the

application in further steps is returned.

If the device is ID_COMPOSE, the following two parameters do not specify a port

and a host but two logic port numbers which are composed into one.
mdd _disconnect Cancels the connection.

mdd_get Absolute input data is received in data, considering the degrees of freedom

specified in mask only. The button state is always returned for all buttons.
mdd_getDelta Like mdd_get, but returns relative values in data.

mdd_setForceVector Creates a force vector with strength strength. strength must be a
value in the range of 0 to 100, which means 0-100% of the force that the device can
apply. The direction of the force vector is specified as translations and rotations in

data. If necessary, particular degrees of freedom can be ignored by specifying a mask.

mdd_setForcePoint Applies a gravitational force with strength strength. strength must
be a value in the range of 0 to 100, which means 0-100% of the force that the device
can apply. The center of gravity is specified as translations and rotations in data. If

necessary, particular degrees of freedom can be ignored by specifying a mask.

DI 3 - Progress Report

90 MIAMI ESPRIT BRA 8579

mdd_setVibraton Startsa vibration with a period of period milliseconds and a duration
of duration semi-oscillations. Thus, single impulses can be applied, too. If duration
is -1, the vibration is switched on permanently and must be switched off explicitly

by the application.
mdd_setForceOff Switches off all haptic output.

mdd_setOption Changes the options settings. Several options can be changed with one
call, because the number of arguments to mdd_setOption is not fixed. It is important
to notice that the mapping is applied before the scaling, that is scaling is applied to

logical axes.
mdd_Options Opens the options menu (see below).

mdd_OptionsApply Applies the current values of the options menu to the MDD func-

tions.

mdd_OptionsEnd Closes the options menu. Attention: The values are not applied by

calling this function!

6.1.3 The options menu

The options menu provides a graphical user interface to the MDD’s mapping and scaling
functions. It has been implemented using TkPVM (1.2.1), which means that the graphics
part is realized with Tcl/Tk (1.1.2), and it is connected to the MDD via socket commu-
nication using PVM (1.1.5).

Because the options menu is a mere slave process, it can not apply its current settings
and it can not be closed by the user at the interface level. Instead, the values have to
be fetched by the application which is also responsible for closing the menu. A typical

interaction for changing some settings looks like this (compare to figure 6.4):

1. Open the options menu by calling mdd_Options. The current settings will be used to
initialize the display. The logic port number is displayed in the title of the top-level

window.
2. Adjust the values and the mapping as desired.

3. Call mdd_OptionsApply in order to apply the values to your application. Remember
that these settings are valid for the specified logic port only.

4. Repeat steps 2 and 3 if necessary.

DI 3 - Progress Report

ESPRIT BRA 8579

MIAMI

91

| 5 Oy iy e |

Scaling

TX -[1.00 +| RX -|-15 +]
TY -[1.00 + RY -[20 +
TZ -|-05 +| RZ -[0.0 +

™
TY
TZ
RX
RY
RZ

Mapping

LR
TY
TZ
RX
RY
RZ

Figure 6.4: The options menu

5. To close the menu, call ndd_OptionsEnd. Remember that the values are applied only

if you call mdd_OptionsApply before closing the menu!

DI 3 - Progress Report

92 MIAMI ESPRIT BRA 8579

6.2 GESTE, asimple classifier for two-dimensional ges-

tures

This package or building brick performs a demonstration of basic functions in pen-based
interfacing, which can be easily extended to a multimodal domain. Its function is cen-
tered around classification of the shape of time-bounded trajectories in a plane, such as
handwriting gestures or 2D gestures of non-handwriting origin. Examples are: Mouse,
joystick, finger-tip movement on a touch-sensitive surface or the 2D projection of index

finger gestures in front of a camera).

6.2.1 Application examples

This gesture recognizer can be used to recognize user-defined commands, e.g., in a pen-
computing setup. Apart from typical editing commands, such as gestures for the Insert,
Cut, and Paste commands, which can be found in pen-based operating systems such as
Windows for Pen and PenPoint, we have used gestures for executing a function like the
Give-Other-Words command to a cursive recognizer: A user writes a cursive word which
is misrecognized. A simple user-defined gesture may call up a pop-up list of other word
alternatives, of which one may be clicked by the pen. This immediately replaces the
wrong word with the chosen word, and the writer may continue to write the next word.
Another example is the possibility to pop up a phone book by drawing a stylized telephone
(Exec-Phone-Book), or to dial a number by making a circular spiraling movement (Dial-
Selected-Number). Furthermore, as reported earlier (Report 2 of MTAMI), this recognizer
is suitable for implementing the Goldberg [9] alphabet, with its unistroke alternatives to

the alphabet of isolated hand-print characters in Western handwriting.

6.2.2 How GESTE works

The gesture recognition method is based on a simple template matching scheme (nearest
neighbour) and can be tuned to the user on the basis of the Kohonen LV(Q training
approach. For simplicity, we will assume the pen as the input device and the origin of
the XY-coordinates in the sequel. An essential assumption for the GESTE classifier is
that the user produces a single curved trajectory. The shape of the trajectory must be
sufficiently close to an idealized representation for this class of gestures, and must at the
same time be sufficiently far away from the other gesture classes which are in use in the
system. Also, the gesture trajectory must be clearly bounded in time, and be separable

from the stream of ongoing movement. In fact, we assume a box-car multiplication of a

DI 3 - Progress Report

ESPRIT BRA 8579 MIAMI 93

limited-duration window with the continuous signal of user-induced movement. In the case
of the pen, this is usually realised in the form of an axial switch in the stylus. In the case
of pen input, the user separates the ’'serious’ part of the movement from 'non-relevant’
movement before and after the gesture by putting the pen on the writing surface, and
activating the internal switch. Thus, what actually happens is that the movement is (a)
recorded in the X and Y directions, using a digital approximation of a continuous signal,
and (b) in the force domain (F), using a binary signal (0/1). The force signal thus delivers
the box-car function to select a movement sequence of relevance. In other input devices
than the pen, a similar segmentation must take place. If no third dimension is available
(only X and Y), simple movement lemmas must be defined to identify the time of start
and time of ending of a gesture. A simple convention is the use of a pause in the movement
before and after the gesture. Additional certainty concerning the occurrence of a gesture
in a continuous stream of movement can be derived from the explicit definition of zones in
the user interface surface (or volume) where gestures are allowed. Theoretically, Markov
modeling could have been used to monitor a stream of on-going movements and firing
a symbol when a reliable sequence is detected. In the current simple approach however
we put the segmentation responsibility in the hand of the user. In the case of the pen,
as stated before, this segmentation is rather straightforward. Gestures and Blockprint
are assumed to be single-pendown traces (sometimes called unistrokes). Thus, writing
a capital E with its intermittent pen-up movements is not handled by GESTE unless
a post processor classifies/parses the stream of recognized basic unistrokes (which are
straight lines in the example of the E). A precursor of the GESTE recognizer has been

used successfully in a demonstration program PenBlock.

6.2.3 Assumptions

If movement patterns are well trained, we may assume the presence of what is called a
'motor program’ [3]. There are representations in the brain, which catch some invariant
properties of the pattern. Notably, points of high curvature in the trajectory are assumed
to be important in this respect. The trajectory between two points of high curvature is
called a 'velocity-based (VB) stroke3’. Several replications of the same movement pattern
share enough shape details in common, such that the average time function of several
time-normalized replications of the movement will contain the essential shape, provided
that the movement pattern does not consist of too many strokes [24]. This principle is
known as 'the homothetic assumption’ [28]. In GESTE we assume a (soft) maximum of

six VB strokes. Due to these assumptions, the classification of the gestures works best if

3Not to be confounded with the unistroke, which is a pen-down stream of coordinates

DI 3 - Progress Report

94

MIAMI ESPRIT BRA 8579

the starting and ending points are of low velocity, which is reasonable.

6.2.4 Processing of a 2D gesture

Given an XY trajectory in time, typically sampled with a minimum sampling rate of 100

Hz, the following processing steps are followed.

e The bounding box of the gesture is calculated in the coordinate system of the input

device, for later use in the application, such as relating the gesture to objects on the

interface surface.

We heuristically define five sample points per stroke to be sufficient. With five samples
per VB stroke, handwriting is still very well legible, whereas this quickly deteriorates
for smaller numbers of points. Assuming that the maximum number of VB strokes is
about six, we choose a number of points equal to 30, for a whole gesture. The total
length A of the trajectory is calculated and the trajectory is - spatially equidistant -
resampled, using d = A/30.

The center of gravity O = (u, p1, is calculated. The standard deviation of the radius
r with respect to O of all samples is calculated (0,). Then the X- and Y axis are
uniformly rescaled such that standard deviation of the radius equals one (g, = 1).
This operation leaves the aspect ratio of the gesture intact and is more stable than
normalisation on the basis of the bounding box. We now have for this gesture a
60-dimensional feature vector containing the spatially resampled X and Y with a

normalized scale.

The last step concerns an extension of this gesture feature vector with the run-
ning angle of the trajectory in the form of 30-1=29 pairs of (cos(¢), sin(¢)) val-
ues. These can be calculated as (Ax/d, A,/d) without using trigonometric functions,

where A, = 2, — x;_1, and d is the sampling increment (see above).

We now have obtained a gesture feature vector with 118 real-valued features:

]?: (xo, Yo, -+, T29, Y29, 005(¢1)7 5in(¢1)a e 005(¢29), sin(¢29))

Consequently, we may now search the nearest neighbour to f in a table (f, containing the

prototypes of the gesture classes. For this, GESTEFE uses the simple unweighted Euclidean

distance. A list of gesture hypotheses is returned, in order of increasing distance, i.e, in

order of decreasing likelihood.

DI 3 - Progress Report

ESPRIT BRA 8579 MIAMI 95

6.2.5 Training

The major advantage of the simple approach of GESTE is that a user may define his/her
own gestures, in an on-line fashion. A new gesture class is defined by adding its feature
vector directly as a new entry to the table Gi. Improving the representation of an existing
gesture is done by the Kohonen LVQ scheme, in which the feature vector effectively is a

running average:

9ij(k) = nf; + (1 —n)gij(k — 1)

i.e., the value g;;) of feature j of gesture ¢ at training occasion % is a weighted sum of
feature j of a new gesture sample and the previous value of that feature, g;;(k — 1), on

training occasion k — 1. Here, 7 is the learning rate, which has a typical value of 0.05.

6.2.6 The current state

Currently GESTE is under development. As described in 3, this module receives the XY
coordinates via PVM, and sends the recognition results to the application who needs it.
For this to succeed, GESTE needs the concept of focus, i.e., the application must notify
GESTE which MIAMI PVM module currently has the focus, and needs the results of the

gesture classification.

DI 3 - Progress Report

96 MI1AMI ESPRIT BRA 8579

BNV [M |4

- ~ |GESTE gesture—recogn

File Edit Help |

V
Q
ICHR
{

2

T

e o I

Figure 6.5: A screen dump of the GESTE module with a number of experimental gestures.

DI 3 - Progress Report

ESPRIT BRA 8579 MIAMI 97

6.3 AAS - An Audio Application Server for multi-

media applications

Complex multimedia applications have special requirements for the auditory modality.
Several agents in a multimedia environment might generate sounds or sound events at
the same time. All different audio streams have to be added and sent to the hardware
specific driver for the audio output. Some operating systems like SUNOS do not allow
such applications. If one application has allocated the audio output device, all other
applications have to wait until the current client has finished its audio task. This problem
does not exist for Silicon graphics workstation. Multiple applications may open individual
ports to the driver of the audio device. The signals of the different applications are either
added by software or by designated DSP-hardware. The output parameters like sampling

rate and gain can only be set for the whole audio output, not for each stream individually.

Current libraries and concepts for audio output also do not make any use of simple stereo
mixing techniques or more sophisticated sound spatialization techniques. The human au-
ditory system is able perceive sound sources from any direction around the head. This is
very important in daily life, as it allows to discriminate different concurrently active sound
sources and to direct the attention to one of the sources located at different positions in
space (Cocktail-party effect) (to be used in videoconferencing). The location of a source
also can be used to improve the orientation of the user. A simple example in multimedia
applications might be the mailbox. If an e-mail arrives, current interfaces will play the
sound of a beep over the loudspeaker. The user does not get any information about the
content and the position of this application at the two dimensional screen. The noise of
a letter falling in a mailbox perceived at the position of the graphical mailbox icon will

reduce the time and effort to find the desired information.

Another disadvantage of current audio realizations is, that the audio application has to
run on the host, which is generating the audio output. In portable transparent windows
systems like X-11 the graphical output of any application can be displayed on any other
machine, which has an X-server installed. The X-Windows manager, which handles all
operations like the movement of windows can run on a different machine in the network.
The output of each application is hardware independent. An audio server should add the

same functionality to audio applications as an X-Windows systems does.

For multimedia applications synchronization with other modalities is important. Some of
the current implementation only allow to synchronize different audio streams like sampled
audio data and MIDI streams (on SGI).

The experimental Network Audio System [7] has some of the requirements implemented,

DI 3 - Progress Report

98 MIAMI ESPRIT BRA 8579

but does not use 3D-sound. Synchronization mechanisms are not implemented yet.

The following sections will present the concept and the implementation of the Audio Ap-
plication Server developed for the MTAMI-project. This server meets all the requirements

mentioned above.

6.3.1 Concept

The Audio Application Server consists of three types of modules. The Audio Resource
Manager, the input (ADC) and output server (DAC) and modules, which perform various
signal processing operations. Applications which want to transmit audio data, send a
message to the Audio Manager and request for a port to send their data to. If ports are
available, the manager replies the address of the port to the client and an identification
number, which will be used for referencing this audio stream, if parameters are modified
in the future. Then the manager starts subtasks like the filters for the spatialization. If
an audio output server on the desired host exists, the output channels of the filters are
connected to the input of the output server, otherwise a new server is started first. If
a client wants to change the parameters of the audio stream, e.g. direction, it sends a
message to the manager, consisting of the command (change direction), parameters for

the direction (elevation, azimuth) and the ID

The manager selects the new filter coefficients for the desired directions from the HRIR-
catalogue and sends these coefficients to the filter tasks for this stream. If the application
does not need the audio port any longer, a disconnect command will be sent to the

manager and the tasks of this stream are disconnected from the audio output server and
killed.

6.3.2 Implementation

Audio Resource Manager The Audio Resource Manager is a task starting all tasks
and managing the links between each of this audio tasks. It also administrates the database
with sounds (collisions, earcons, auditory icons) and the database with filter coefficients

for the spatialisation of sounds.

Auditory subtasks There are several auditory subtasks like tasks like sources, sig-
nal processing tasks and output modules. The following tables give an overview of the
implemented subtasks. This tasks allow to modify the properties of each audio stream
independently. The gain of each channel can be changed and simple waveforms are gener-

ated online by software generators. Also sound files can be played. Currently a database

DI 3 - Progress Report

ESPRIT BRA 8579 MIAMI 99

> FIR —
b4
Inputint Node — DAC
v/
/
A >
/s - FIR —
\ / s -
/ / —~
\ / v =t
\ / / /’ //
....... (I S - R
\ /7 ST
i y V ////
' \ / - -
! \ // ////
: v 2T
i /////
! ~
) f
j _ HRTF-Catalogue
Controller -

to/from appliciation

..

-+ — — — > Control Filter-Coefficients

e Audio

Figure 6.6: Structure of the Audio Application Server. Audio data stored in an integer
file are read from the Inputlnt tasks transmitted to the FIR-filter via a Node and sent to
the audio output server DAC

DI 3 - Progress Report

100 MIAMI ESPRIT BRA 8579

with simple auditory icons and another database with collision sounds can be accessed by

the applications.

InputFloat | reading digital audiofile (float data)
InputInt reading digital audiofile (integer data)

InputShort | reading digital audiofile (short integer data)

Table 6.1: Input objects of AAS

Pulse generating a pulse-function
Rectangle | generating a rectangle-function
Sawtooth | generating a sawtooth-function
Sine generating a sine-function

Noise generating white noise

Table 6.2: Generator objects of AAS

adder output is the sum of all input channels

fader cos? -fading on one channel

fir filter (finite impulse response filter) for one channel
nur filter (infinite impulse response filter) for one channel

gaincontrol | sets gain for one channel

multiplier | output is the product of the input channels

node sends the data from the input to multiple receivers

Table 6.3: Signal processing objects of AAS

Communication between subtasks All tasks mentioned above send or receive their
data using pvm_ostream or pvm_istream. These functions are based on the message passing
concept of PVM3. Each process is identified by a unique task identification number (task
ID, TID). The sending process sends data to receiver, referenced by the TID. The receiver
waits for messages of the sender with its TID. The processes may run on any machine
in the PVM3-network. A puvm_ostream sends a package with audio data to a receiving

subtask and pauses until the receiving tasks has started to process the data and sent an

DI 3 - Progress Report

ESPRIT BRA 8579 MIAMI 101

acknowledge signal to the sender. This mechanism prevents to overrun the receiver with
more data, which can be processed in time and allows a good balance of memory and
processing power. Of course 'underruns’ (no data available in the moment) due to problems
of the network or overload of the CPU cannot be handled with such a mechanism. The
length of a package is critical. Small packages allow a low latency of the system, but are
very sensitive to problems during the transportation and cause a high overhead for packing
and unpacking the data. Long packages reduce this overhead and make the system less
sensitive to transportation problems but cause a high latency. Also synchronization with
other modalities is affected, if the sampling or update rate is shorter than the duration
of one package. In the current implementation each packages has a length of 20 or 40 ms,

allowing update rates of 25 or 50 Hz.

o S
() [) D @
P ___] _|l-o Q
) _ 8 [* - = 3
- signal- = Synchronization = signal- =
S ™ . s €] L =
= processing 2 S [T|processing[| 8
c c @ 2
8 S s S
_/ __/ Audio . Q

Figure 6.7: Message passing and inter-task synchronization

Spatialization The spatialization is realized by simulating the linear distortions, which
change an acoustical signal transmitted from any position in space and received by the
eardrum in the ear canal. The most important parameter are the interaural level dif-
ferences, the interaural time differences and spectral changes for each ear signal. These
effects are caused by shadowing and diffraction effects of the human body, the shoul-
der, the head and resonances in the pinna. The head-related impulse responses (HRIR)
or head-related transfer function (HRTF) is one way for representing this characteris-
tics. For the spatialization of a signal, each incoming sample has to be convolved with
the impulse response of the desired direction. For a sampling rate of 44.1 kHz usually a
filter-length of 60 to 70 coefficients is necessary. This demands for a a lot of computa-
tional power, which can be quantified by the convolution rate (CR). (Convolution rate =
sample ratexnumber of output channelsxsize of filter). Reducing the sampling rate to

22.05 kHz also allows to downsample the head-related impulse response by the factor 2.

DI 3 - Progress Report

102 MIAMI ESPRIT BRA 8579

This leads to reduced CR, which is a quarter of the CR for 44.1 kHz. A further reduction
of the number of coefficients might be achieved, if psychoacoustical properties are used to

design more efficient filters [11].

Input and Output Server The main part of the audio input and output server is a
hardware independent function. This part handles the communication with other audio
modules and the addition of the audio data from different sources. Each time a package
is received, the data are converted to the correct format (usually 16-bit Integer). For
stereo output the data of the left and right channel are stored in interleaved order in a
single buffer. The data are copied to the buffer of the hardware driver and the process is
paused. The hardware reads the samples from this buffer and sends them to the digital-
analog converter. If the number of samples, which have to read from the buffer reaches
a 'low water mark’, an interrupt is sent to wake up the server process and to start the
reception of data and a refill of the the buffer again. For stereo input the interleaved data
are separated and transmitted on different paths. The server calls low level functions to
initialize the audio hardware, setting gain, sampling rate and the number of channels and
to send or receive data from the hardware. These low level function call the hardware
dependent functions. This approach allows to design the library for the intermediate level
separately and adapt the server for any other architecture with little effort and risks, as

the code for the server does not contain any hardware specific commands.

Synchronization Multimedia application also demand for the synchronization of mul-
tiple modalities. As audio has the highest sampling rate and the highest priority, the audio
hardware will synchronize the other modalities. All tasks which have to be synchronized
have to become a member of a PVM3-group (sync-group). Always when a package in the
audio output server is processed, the current frame number is incremented. This frame

number is then broadcasted to all other tasks of the sync-group.

6.3.3 Summary

The Audio Application Server (AAS) provides mechanisms and methods for transferring
audio data between applications and multimedia terminals in networks. The routing is
done automatically. Various outputs from different machines can be sent to the same out-
put. Simple 3D-sound spatialization techniques are implemented. Distributed processing
of complex audio signal processing chains can be performed using the processing power of
the network instead of special DSP-hardware. AAS also takes advantage of multiprocessor

platforms as independent task are exchanging data. Direct audio input from one machine

DI 3 - Progress Report

ESPRIT BRA 8579 MIAMI 103

can be easily connected to audio output of another host. The Audio Application Server is
designed for synchronizing other modalities with a resolution of 25 or 50 Hz. Application
for the AAS range from videoconferencing (multiple inputs, each speaker at a different
position in ’auditive’ space) to the auditive presentation of non acoustical information

by the means of earcons and auditory icons.

DI 3 - Progress Report

104

MI1AMI ESPRIT BRA 8579

OutputFloat
OutputShort

writing digital audiofile (float data)
writing digital audiofile (short integer data)

Table 6.4: Output objects of AAS

DI 3 - Progress Report

ESPRIT BRA 8579 MIAMI 105

6.4 The HARP Multimodal Environment

HARP is a multimodal environment designed for music, art, and entertainment appli-
cations which has been successfully applied in a number of real applications (Camurri
1996). The overall system architecture, sketched in Figure 6.4, is a distributed network
of agents. The system is similar in some aspects to Cypher [22], TouringMachines [13],
M [21], and NetNeg (Goldman et al. 1995). From a cognitive viewpoint, the system is
structured in a long-term memory (LTM), the permanent, ”encyclopedic” storage of gen-
eral knowledge, and in a short-term memory (STM), the actual ”"context” regarding the
state of the affairs of the world and the problems currently faced. Both LTM and STM
are composed by symbolic and subsymbolic components, to face the different structure
and nature of the domain knowledge. Following the scheme depicted in Figure 6.4a, we

can make a distinction between the following basic building blocks that constitute the
HARP architecture:

e Input Mapping: A group of agents able to receive signals from sensors and map
them into perceptual spaces (e.g., a self-organizing map which classifies movement

trajectories or sound signals).

e Output Mapping: A group of agents that manages the results coming from the cog-
nitive processing agents, typically high-level parameters (e.g., the space of the ”emo-
tional” parameters for controlling the expression of an artificial face or the high-level

timbral spaces of a section of a composition).

e Cognitive Processing: Two kinds of activity cooperate: (i) Subsymbolic agents per-
form subsymbolic planning and reasoning; (ii) Symbolic reasoning, which can only

perform symbolic inference and planning in the symbolic database.

e Symbolic Database: it is a high-level, symbolic representation of the domain space(s)
(e.g., music composition and performance spaces, movement and gesture spaces).
It consists of (i) a symbolic knowledge representation language to serve as an in-
terlingua for agents, and (ii) includes the ontology defining the terms used in the
communication among agents (the symbolic LTM). It also includes a STM where
relevant events, situations, objects, and related features are added during a work
session. Agents are responsible to update such short-term DB, and can be triggered

according to particular events occurred.

Another viewpoint of the HARP agents architecture is shown in Figure 6.4b, where the

distinction between the two types of agents in HARP (experts and icons) is put into

DI 3 - Progress Report

106 MIAMI ESPRIT BRA 8579

evidence. As described in more detail in the next sections, experts are active, autonomous,
skilled in a sub-set of the domain; icons are passive, providing to experts the access to
(models of) the external world. The Symbolic Language The symbolic language allows to
represent and manipulate the symbolic LTM and STM. The symbolic LTM consists of

two components:

1. a terminological component appropriate for defining terms and for describing con-
cepts and the taxonomic relationships between them. An inheritance semantic net-
work formalism (Woods and Schmolze 1992) has been extended to represent and
reason on time, actions and plans, and encompasses the possibility of using first-

order axioms to extend its expressiveness.

2. an assertional component to represent factual long-term knowledge on the domain,
based on first order logic. For example, the opening phrase of a well-known piece,
say, Beethoven’s fifth, is an assertional constant which can be considered part of
the LTM. The assertional component can include factual generalizations expressed
as first-order axioms (e.g. by means of quantified implications): for example, in the

museal or theatrical scenario ”all the moving objects on stage are humans”.

DI 3 - Progress Report

ESPRIT BRA 8579 MIAMI 107

DI 3 - Progress Report

108 MIAMI ESPRIT BRA 8579

The symbolic STM contains information concerning the specific events represented in its
subsymbolic counterpart (e.g. sensory input). In other words, the STM symbolic compo-
nent represents a single context of the actions represented in the subsymbolic component:
it is a one-to-one symbolic representation of the entities and of the events in the subsym-
bolic component. The Ontology The symbolic level includes an ontology, i.e. the basic
dictionary of the terms known and used by agents. Here, the concepts and axioms are
introduced, which describe the basic ontological assumptions in our system. We do not
assume the ontology we developed to be definitive or complete: it can be updated and
modified according to possible new requirements of the domain. The concepts action and
situation subsume all concepts that represent entities characterized by a duration or by
a temporal location. Actions are the emerging representation in the symbolic database of
expert agents; situations represent states of the world in which there are no significant
changes, and are the emerging representation in the symbolic database of icon agents
(see Figure 6.4b). The sub-concepts compound_situation and compound_action describe
situations and actions which can be decomposed in terms of sub-parts, which are, in turn,
situations and action, respectively. Roughly, this corresponds to agent societies in our
model. An action produces some kind of change in the world: for this concept, the roles
initial_situation, intermediate_situation and final_situation are defined. For each action,
the filler of initial_situation is the state of the domain before the action is performed, while
the filler of final_situation corresponds to the state of the domain after the action is per-
formed. The fillers of intermediate_situation correspond to significant situations holding
true during the performance of actions. While a generic action is, in general, simulative
or a mere execution (evolutionary), a purposeful_action is an action characterized by a
goal to be reached. The main difference between evolutionary and purposeful actions is
mirrored by their inner agent structure: in the former case they are simple simulations
or executions, in the latter case they can be characterized by planning capabilities to
achieve the goal. The ontology here described has been further specialized for the devel-
oped system applications, with respect to gesture classification and music representation.
Gesture taxonomies like those reviewed in [19][25] could be included in this ontology as

sub-taxonomies starting from the concept situation.

6.4.1 The Subsymbolic Components

The STM symbolic knowledge base (KB) is linked one-to-one to the STM subsymbolic
representation, which can either be connected to the world itself by sensors/actuators or
to a mental model of the world. The LTM and STM subsymbolic components consist of a

network of cooperative agents in the sense of (Steels 1994). In the subsymbolic level, agents

DI 3 - Progress Report

ESPRIT BRA 8579 MIAMI 109

are concurrent applications in an object- oriented environment, each linked to terms in

the symbolic components (see the HARP overall architecture sketched in Figure 6.4Db).

6.4.2 HARP Agents: Experts, Icons, and Symbolic Agents

In HARP we distinguish between expert agents, icon agents, and symbolic agents (see
Figure 6.4). An expert agent is skilled in a sub-set of the domain, in a given task, and is
therefore capable to perform its task with a certain degree of autonomy and robustness.
Icon agents embed representations of the external world or of mental models: therefore,
icons provide sensors and effectors to experts. Icons encompass two aspects: firstly, dia-
grammatic or pictorial descriptions of situations (Chandrasekaran et al. 1993). These can
be geometrical metaphors of a different domain: for example, several contemporary music
notations used by composers (e.g. Kagel, Bussotti, Berio, Ligeti) are based on such kind
of metaphors. The second aspect covered by icons is that they act as dynamic systems, as
metaphors for reasoning on actions and plans. Landscapes of energy and models based on
force fields are simple cases considered in this paper. We can see this kind of representation
as an enrichment of the previous one, since it includes dynamics, force, and time coordi-
nates within diagrammatic representations. Different experts that can perform navigation
algorithms on N-dimensional maps have been defined in the subsymbolic component of
the LTM. Force fields can be built by learning processes, as in the case of Leman’s TCAD
attractor dynamics system (Leman 1994) based on artificial neural networks. Expert and

icon agents are formed by the following parts (Figure 6.4b):

a body (the subsymbolic internal component of the agent, embedding its skill or the

icon’s internal representation);

e a (typically fast) communication channel for exchanging subsymbolic data among

agents;

e pre- and post- codes, that embed all the communication between the agent and the

symbolic database;

e a symbolic entity in the ontology in the symbolic database representing itself (the
agent): an expert corresponds to a concept derived by action, an icon to a concept
derived by situation. An agent is capable to signal possible intermediate situations
occurred during its execution: this information can be used to cause the (de)activation

of other agents.

A new instance of an agent can be generated by a new assertion of its symbolic entity in

the database. The definitions of agents are resident in the LTM. To activate agents, they

DI 3 - Progress Report

110 MIAMI ESPRIT BRA 8579

must firstly be instantiated in the subsymbolic STM. Therefore, subsymbolic activity can
only be carried out in the STM, i.e. in a completed context. The context can include
the sonological level of music objects, as acquired by a model of the auditory system,
instances of the transformation processes on such objects possibly depending on human
movement/dance patterns. In a theatrical, ”generalized choreography” model, the con-
text can also include the agent internal representation and the three-dimensional world,
possibly acquired by consulting its sensory input. Symbolic experts can operate solely on
the symbolic database, i.e., perform internal cognitive processing. Symbolic icons play the
role of recognizers: their task is to recognize particular world situations in the form they
emerge in the symbolic database, and which may cause the (de)activation of some subsym-
bolic agents. HARP agents are supervised by the context manager, a module which takes
care of activating/stopping agents and manages the symbolic-subsymbolic communica-
tion. Recognizers are scheduled according two main types of events: (i) the symbolic clock
(low rate, see figure 1b), (ii) an event signaled by an expert. If any recognizer instantiates
a new situation assertion, then the pre- codes will be executed to verify possible new firing
of agents. Agents can cooperate in groups or societies to reach a common task: societies
therefore act as a single compound entity, and this is reflected in the symbolic level, where
societies are linked to a unique term (compound_action and compound situation). For ex-
ample, the agent acting as a Cicerone in a museum is formed in its turn by a number of
agents for navigation, observation of the environment, multimodal user interaction. Both
the Cicerone agent and all its sub-agents have symbolic counterparts. The generation and
activation of a network of agents produces an execution, which consists of measurements
and actions in the real environment, e.g., the external world, music and gesture spaces, a

virtual computer-animated world, etc.
Symbolic vs. Subsymbolic Reasoning

The activity of experts and icons can be interpreted as a reasoning mechanism comple-
mentary to typical symbolic deductive systems: for example, navigation in a force field
can substitute decision processes which would otherwise be difficult to model symbolically
(e.g. with axioms or rules). The symbolic reasoning differs from subsymbolic reasoning
in several aspects: (i) time granularity: subsymbolic reasoning is expected to react in
real-time, since it has to follow and manipulate the flow of signals which usually require
strict time constraints. Symbolic reasoning is usually expected to intervene at a much
higher time granularity (seconds vs. milliseconds). For example, during the tracking of
human movement, we might have a set of agents for input signal classification based on
self-organizing networks. When a gesture is recognized then this is a "significant” instant
for the symbolic level, a new instance of that gesture is added in the symbolic database,

and this might cause the activation of symbolic agents which, for example, might try to

DI 3 - Progress Report

ESPRIT BRA 8579 MIAMI 111

better classify that gesture, i.e., understand more deeply its meaning according to the
current context and the historical data; (ii) the symbolic reasoning is carried out in both
LTM and STM. In contrast, subsymbolic reasoning can only happen in a fully instantiated
context, i.e., in the STM.

The context manager supervises and schedules the communication between agents: ex-
perts and icons are instantiated and connected to each other by the context manager,
according to the specific context and the particular action/plan to be performed. The
context manager defines and updates a set of input and output communication links for
each expert and icon in the current context, complying with constraints in the symbolic
memory (e.g. the topology of the semantic network and the current STM contents). The
subsymbolic memory is therefore built and kept aligned with the symbolic memory during
execution. Significantly, the context manager is able to manage and control the execution
of hierarchical actions, i.e., actions recursively expanded into subactions by means of part
of (or aggregate) relations, connected to input/output situations in hierarchies (in terms

of both IS-A and part-of links). This corresponds to agent societies.

These basic HARP mechanisms are further explained in other chapters in the framework
of the real world applications HARP/Vscope, HARP /DanceWeb, Theatrica/Museal Ma-
chine, and SoundCage. Implementation Issues HARP is written in C++ (Microsoft Visual)
and Quintus Prolog, and run under Windows 95 and NT. Expert and icon agents commu-
nicate locally via OLE Automation. A Unix/Windows sockets library has been developed
to connect agents running on remote Unix or Windows workstations. The Gateway mod-
ule allows the communication with PVM agents. HARP applications can be developed
and tested incrementally: for example, experts and icons can be developed and tested as
stand-alone Windows applications: a few code constraints on their I/O must be followed
to allow the HARP Agent Wizard module to automatically transform them into specific
experts and icons integrated in a HARP KB. A work in progress regards the transforma-
tion of HARP into a software library, so that users can freely utilize the services of HARP

from their applications.

DI 3 - Progress Report

112 MIAMI ESPRIT BRA 8579

DI 3 - Progress Report

Chapter 7
The Demonstrators

This chapter describes the current status of the work done on the implementation of
both demonstrators in the MIAMI project: the symbolic demonstrator and the analogical
demonstrator. Both demonstrators address the two major types of human-computer inter-
action, i.e., the handling of discrete, symbolical information, vs the handling of continuous

'physical’ signals.

7.1 The Symbolic Demonstrator

This text describes the decisions made so far regarding the symbolic demonstrator of WP
4. At first, the contents of the Technical Annex will be outlined for your convenience,

which shows the original design of this demonstrator:

WT 4.1.1

Objective
The adaptation of the general system architecture developed in WP 3 to the one used in

symbolic demonstrator.

Approach

e Design of a graphics module for ”Information City”
e Design of an information module for "Information City”

e Design of an output interface for navigation support and guidance

WT 4.1.2 Hardware adaptation

113

114

MIAMI ESPRIT BRA 8579

Objective

The adaptation of the hardware used by each partner in its domain for the symbolic

demonstrator.

Approach

e Specification of minimum hardware requirements
e Provision of common software tools

e Ensuring for compatibility

WT 4.1.3 Software adaptation

Objective
To adapt and extend software used by each partner in WP 3 for symbolic demonstrator.

Approach

e Integration of specific software modules into one demonstrator
e Demonstrating of a prototype multimodal navigation through an ”Information City”

Deliverable 5 Symbolic Demonstrator

Technical description The Symbolic Demonstrator has been chosen to show the benefits
of multimodal integration in the context of information search and selection. The complete
scenario consists of a ”"Information City” metaphore in which the user can navigate and
interact with the system. The City metaphore maps information resources into a well-
known city space with libraries, cinemas, casinos, etc. Due to the limitations in the available
hardware when the trial implementation was done, the current implementation is restricted
to the jackpot machine model around which one can navigate and perform selection of
specific items with reasonable interaction speed. This is about the biggest model with
which such interaction is possible currently. The extension to full model will be provided at

later stage since more powerful hardware is now available. The demonstration will illustrate:

e Speed of the model operation

e Navigation and information selection

The exact form of the demonstration, an integrated installation of software and hardware,

can only be described in more detail after the second year.

Form of presentation Demonstration of “Efficient Interaction and Manipulation Through
Information Space Using Multimodality, Geometry and Time” to the Commission and the

Public at a Workshop in combination with a review meeting

DI 3 - Progress Report

ESPRIT BRA 8579 MIAMI 115

The demonstrator which will finally be presented will differ in the more complete imple-
mentation since suitable hardware will now become available.
7.1.1 Main features of the symbolic demonstrator

e The demonstrator will mainly consist of the Information City model

e It will include sound, visual and various input device modules

7.1.2 Contribution of the partners

Software and hardware which is already available or will be available in the near future

will be used in this demonstrator:

‘ Partner/TMM ‘ Input ‘ Output General

RIIT (11) partial (available) and full | integration module TkPVM

model (not yet available)

NICT (6) pen software (not yet | — TkPVM

available)

DIST (6) — sound generation concepts for a
multiagent
architecture

ICP (4) audio components talking /animated lips/face | —

RUB (3.5) — audio stream support PVM streams
& support

Table 7.1: The partners’ contribution to the analogical demonstrator (TMM = Total Man
Month)

7.2 The Analogical Demonstrator

In this section, we will describe the basic concepts and features of the analogical demon-
strator of WP 4. At first, the contents of the technical annex will be repeated for your
convenience. Then, the control concept, the system architecture, and the different opera-
tion modes of the multimodal robot control station will be described. Finally, the partners’

contributions to the analogical demonstrator will be presented.

DI 3 - Progress Report

116 MIAMI ESPRIT BRA 8579

7.2.1 Technical description

WT 4.2.1 Adaptation of architecture

Objective

The adaptation of the general system architecture developed in WP 3 to a concrete one

which can be used as a basis for the implementation of the analogical demonstrator.
Approach
e Designing the man-machine interface for a teleoperation station using several input
and output channels

e Selecting the hardware for input and output of data and actions, taking into consid-

eration the results of the experiments of WP 2
e Developing data models, structures, and types for the implementation of the demon-

strator

WT 4.2.2 Hardware adaptation

Objective

The adaptation of the hardware used by each partner in their respective domains and used

during WP 3 in this project to the analogical demonstrator.

Approach

o Integration of several hardware modules used for the bimodal experiments in WP 2
e Integration of different hardware modules used in the respective domains of each part-

ner

WT 4.2.3 Software adaptation

Objective

The adaptation of the software used by each partner in their respective domains and the

software developed during WP 3 in this project to the analogical demonstrator.

Approach

e Integration of several software modules and libraries into one demonstration system

e Realization of a prototype to demonstrate the advantages of a multimodal approach

in teleoperation systems

DI 3 - Progress Report

ESPRIT BRA 8579 MIAMI 117

Deliverable 6 Analogical Demonstrator

Technical description The Analogical Demonstrator has been chosen to show the ben-
efits of multimodal integration in the context of object interaction and manipulation. The
scenario consists of a teleoperation station in which the advantages of using more than one
mode for the interaction with the system can be seen very clearly. The demonstration will

cover among other things:

e Manipulation of virtual and real objects: multimodal expression and sound/music

output in a virtual humanoid

e Telemanipulation and mobile robot guidance: development of a vocabulary of basic
movements executable by a mobile robot, its integration with sound/music and facial

outputs, and its use in a real context

The exact form of the demonstration, an integrated installation of software and hardware,

can only be described in more detail after the second year.

Form of presentation Demonstration of “Efficient Interaction and Manipulation Through
Information Space Using Multimodality, Geometry and Time” to the Commission and the

Public at a Workshop in combination with a review meeting

For practical reasons, the demonstrator which will finally be presented will slightly differ
from this description. The final setup will partly be build of integrated parts which are
already available (see 6) or will be available in the near future in order to achieve the final

goal of an integrated demonstrator.

7.2.2 Multimodal robot control

The control of a mobile vehicle (or robot) with advanced multimodal methods and so-
phisticated I/O devices is both, very attractive and useful. Take, e.g., the mobile plat-
form PRIAMOS which is currently under development at the University of Karlsruhe. It
is equipped with a multisensor system including 24 ultrasonic sensors, an active vision

system (IKASTOR), structured light, and a laser scanner.

Control concept

Its control concept follows the “shared autonomy” approach (see [12]), i.e. the robot
receives its programs and data from a supervisory station and carries out its tasks au-
tonomously. If an unforeseen event occurs, the robot asks the human operator for assis-

tance. In addition, the operator can take over control at any time. Supervision of the

DI 3 - Progress Report

118 MIAMI ESPRIT BRA 8579

robot’s tasks is performed with the sensory data sent to the operator and a simulation

model which runs in parallel to or some time ahead of the real execution.

System architecture

These two components—a (teleoperated) mobile robot and a multimodal supervisory
and control station—will be the "heart’ of the analogical demonstrator. For supervision
and control of the mobile robot as well as the vision system, several different input de-
vices/modalities which can be switched “on the fly” will be supported by using the META
DEVICE DRIVER for data input (see 6.1). In order to provide sufficient feedback, sev-
eral different output modalities will be supported by the system, e. g. force feedback with
the FORCEJOYSTICK, acoustical feedback generated through the AUDIO APPLICATION
SERVER (see 3.5), and a talking face for direct communication to the operator (ICP-
FACE-ANIM, see 3.6).

The overall architecture for the supervision/control system will be developed based on
the scheme depicted in fig. 7.1. It will have an input and an output layer, and several
components will be realized as independent modules communicating via PVM, thus real-
izing some kind of multi agent architecture. This will make the cooperation between and

the integration of the different modules supporting different modalities much easier.

Input Mapping Cognition/Processing Output Mapping
e R
= Ny i) =
Z z
§ — () - . §
+— +—
-] -
2 /%) E
= 5
O
. Y,

Figure 7.1: MultiAgent architecture (schematically)

Operation modes

In the final version of the analogical demonstrator, three different operation “modes” will

be available:

DI 3 - Progress Report

ESPRIT BRA 8579 MIAMI 119

Teleoperation mode Teleoperation of a mobile robot (as described above).

Error mode A mode in which intensive interaction is needed due to the robot’s limited

capabilities in unforeseen situations.

Simulation mode As no real manipulator is available on the mobile robot, a simulation
with a combination of the mobile robot and a manipulator on-board can be used to

demonstrate more features and especially interactions with other objects.

7.2.3 Partners’ contribution

Software and hardware which is already available or will be available in the near future
will be used in this demonstrator. In the following, the contribution of each partner with

respect to the input modalities, output modalities, and general stuff is listed.

UKA (14 man month)

Input 6D mouse, FORCEMOUSE, FORCEJOYSTICK, other input devices, ul-

trasonic sensors, vision system, laser scanner

Output Simulation of two mobile robots (PRIAMOS and MORTIMER) in Open-

Inventor (see 1.1.4), shutter glasses

General MDD (see 6.1), PR1AMOS, MORTIMER, IKKASTOR

NICI (6 man month)

Input Pen, GESTE (see 6.2)
Output —
General TkPVM (see 1.2.1)

DIST (5 man month)

Input Exoskeleton
Output Manipulator simulation (in OpenInventor)

General Concepts for a multiagent architecture, EXO (see 3.8)

DI 3 - Progress Report

120 MIAMI ESPRIT BRA 8579

ICP (4 man month)

Input Lip reading, speech recognition
Output [CP-FACE-ANIM (see 3.6)

General —

RUB (3.5 man month)

Input Head tracker, microphone
Output “sound” (earcons, sonification, spatialization), loudspeaker, headphones

General AAS (see 3.5), pvm_streams

DI 3 - Progress Report

Bibliography

[1] V. Balasubramanian. State of the art review on hypermedia issues and applica-
tions. Worldwide web document, Graduate School of Management, Rutgers Univer-
sity, Newark, New Jersey, 1994.

[2] M. Bevan. Force-feedback technology. VR NEWS - Virtual Reality Worldwide,
4(6):23-29, July 1995.

[3] E. Bizzi. Central and peripheral mechanisms in motor control. In G. Stelmach
and J. Requin, editors, Advances in psychology 1: Tutorials in motor behavior, pages
131-143. Amsterdam: North Holland, 1980.

[4] D. E. Broadbent. The magic number seven after fifteen years. In A. Kennedy and
A. Wilkes, editors, Studies in long term memory, pages 3—18. London: Wiley, 1975.

[5] E. Burd, P. Chan, I. Duncan, M. Munro, and P. Young. Improving visual represen-
tations of code (submitted). In International Conference on Software Maintenance,
ICSM 96, 1996.

(6] P. Domel. Webmap - a graphical hypertext navigation tool. In Proceedings of the
2nd International WWW Conference, Fall 94, Chicago, USA., 1994.

[7] J. Fulton and G. Renda. The network audio system. Www:
http://hospex.icm.edu.pl/pub/X11/contrib/audio/nas/ Network Computing Devices
Inc., 1994.

8] A. Geist et al. PVM: Parallel Virtual Machine—A User’s Guide and Tutorial for
Networked Parallel Computing. The MIT Press, Cambridge, London, 1994. Also
available via anonymous ftp from netlib2.cs.utk.edu as pvm3/book/pvm-book.ps; or
via WWW at http://www.netlib.org. /pvm3/book/pvm-book.html.

9] D. Goldberg and C. Richardson. Touch-Typing with a Stylus. In InterCHI 93
Conference Proceedings, pages 80-87, Amsterdam, 1993.

121

122 MIAMI ESPRIT BRA 8579

[10] I. Guyon, L. Schomaker, R. Plamondon, M. Liberman, and S. Janet. The unipen
project of data exchange and recognizer benchmarks. In Proceedings of the 12th
ICPR, pages 29-33, Jerusalem, Oct. 1994.

[11] K. Hartung and A. Raab. Efficient modeling of head-related transfer functions. In
Forum Acusticum - Proceedings, ACUSTICA united with acta acustica, Volume 82,

Supplement 1, page 88, Stuttgart Germany, April 1996. European Acoustics Associ-
ation (EEIG), S. Hirzel Verlag.

[12] G. Hirzinger. Multisensory Shared Autonomy and Tele-Sensor-Programming — Key
Issues in Space Robotics. Journ. on Robotics and Autonomous Systems, 11:141-162,
1993.

[13] I.A.Ferguson. Touringmachines: Autonomous agents with attitudes. IEEE Computer,
25(5), 1992.

[14] T. H. Massie and J. K. Salisbury. The PHANToM Haptic Interface: a Device for
Probing Virtual Objects. In Proc. of the ASME Winter Annual Meeting, Symp. on
Haptic Interfaces for Virtual Environment and Teleoperator Systems, Chicago, 1994.

[15] MIAMI. DI 2 - Progress Report. Internal report, ESPRIT PROJECT 8579 MIAMI,
Apr. 1995.

[16] G. A. Miller. The magical number seven, plus or minus two: Some limits on our
capacity to process information. Psychological Review, 63:81-97, 1956.

[17] S. Miinch and M. Stangenberg. Intelligent control for haptic displays. In Proc. of the
Eurographics '96 (to appear), Poitiers, France, Aug. 1996. INRIA.

[18] J. Neider, T. Davis, and M. Woo. Open GL Programming Guide, Release 1. Addison-
Wesley Publishing Company, 1993.

[19] L. Nigay and J. Coutaz. A Design Space for Multimodal Systems: Concurrent Pro-
cessing and Data Fusion. In INTERCHI’93 Conf. Proc., pages 172-178, Amsterdam,
Apr. 1993. ACM, Addison-Wesley.

[20] J. K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley Publishing Company,
1994.

[21] D. Riecken, editor. Special Issue on Intelligent Agents, volume 37(7) of Communica-
tions of the ACM. 1994.

[22] R. Rowe. Interactive music systems. The MIT Press, Cambridge, MA, 1993.

DI 3 - Progress Report

ESPRIT BRA 8579 MIAMI 123

[23] K. Salisbury et al. Haptic rendering: Programming touch interaction with virtual
objects. In Proc. of the Symp. on Interactive 3D Graphics, pages 123-130, Monterey,
CA, Apr. 1995. ACM.

[24] L. Schomaker and A. Thomassen. On the use and limitations of averaging handwriting
signals. In . R. H. H.S.R. Kao, G.P. van Galen, editor, Graphonomics: Contemporary
research in handwriting, pages 225-238. North-Holland, Amsterdam, 1986.

[25] L. R. B. Schomaker et al. A Taxonomy of Multimodal Interaction in the Human
Information Processing System. Internal report, ESPRIT PROJECT 8579 MIAMI,
Feb. 1995.

[26] B. Shneiderman. Designing the User Interface. Addison-Wesley, New York, 1992.

[27] Slate, Lotus, GO, Microsoft, Apple, G. Magic, et al. The Jot 1.0 Stan-
dard. Software Publishers Association, 1993. Tel: +1-202-452-1600 ext 336,
ftp://hplose.hpl.hp.com/pub/WWW /jot.html.

[28] P. Viviani and V. Terzuolo. Space-time invariance in learned motor skills. In G. Stel-
mach and J. Requin, editors, Advances in psychology 1: Tutorials in motor behavior,
pages 525-533. North Holland, Amsterdam, 1980.

[29] J. Wernecke. The Inventor C++ Reference Manual, Release 2. Addison-Wesley
Publishing Company, 1994.

[30] J. Wernecke. The Inventor Mentor, Programming Object-Oriented 3D Graphics with
Open Inventor, Release 2. Addison-Wesley Publishing Company, 1994.

[31] J. Wernecke. The Inventor Toolmaker, Release 2. Addison-Wesley Publishing Com-
pany, 1994.

DI 3 - Progress Report

