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Abstract

In reinforcement learning (RL), the duality between exploitation and exploration has long been an important issue. This paper presents a

new method that controls the balance between exploitation and exploration. Our learning scheme is based on model-based RL, in which the

Bayes inference with forgetting effect estimates the state-transition probability of the environment. The balance parameter, which

corresponds to the randomness in action selection, is controlled based on variation of action results and perception of environmental change.

When applied to maze tasks, our method successfully obtains good controls by adapting to environmental changes. Recently, Usher et al.

[Science 283 (1999) 549] has suggested that noradrenergic neurons in the locus coeruleus may control the exploitation–exploration balance

in a real brain and that the balance may correspond to the level of animal’s selective attention. According to this scenario, we also discuss a

possible implementation in the brain. q 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Reinforcement learning; Exploitation–exploration problem; Neuromodulator; Attention; Partially observable Markov decision process

1. Introduction

Reinforcement learning (RL) (Sutton & Barto, 1998) is a

learning framework in order to adapt to an environment

based on trial and error. This paper discusses an RL scheme

for dynamic environments, i.e. environments that change

with time. Conventional RL schemes are formulated in

terms of Markov decision process (MDP), that is, a

decision-making problem or an optimal control problem in

a stochastic but static environment. Since an optimal control

problem in a dynamic environment can approximately be

formulated as an MDP when RL is faster than the

environmental change, this study also adopts that approxi-

mation. In addition, we also use a formulation of partially

observable Markov decision process (POMDP). A POMDP

assumes that the environment involves unobservable

information, typically, unobservable state variables.

Although RL is a machine learning framework, recent

studies (Schultz, Dayan, & Montague, 1997; Waelti,

Dickinson, & Schultz, 2001) showed that in a real brain a

dopaminergic system including the basal ganglia and the

frontal cortex seems to realize a similar learning scheme.

Doya (2000b) has suggested that parameters used in RL,

which are called ‘meta-parameters’, may correspond to

neuromodulators such as serotonin, noradrenaline and

acetylcholine. Thus, the motivation of our study is not

only on the machine learning but also on the brain learning.

In RL, an agent is provided by the environment with a

scalar reward corresponding to a behavior (action) for each

sensory state. The reward indicates instantaneous goodness

of the action at the state. The objective of the agent is to

maximize the rewards accumulated toward the future, and

the maximization is done by improving its strategy to select

an action for each state. Such a strategy is called a policy.

The estimation and prediction of the accumulated rewards

are important for improving the policy. Therefore, a

standard RL scheme estimates the reward accumulation

which is called the value function.

In order to make a good prediction, it is important to

know the dynamics of the environment, i.e. how the current

state changes by an action. Model-free RL methods like the

actor–critic learning (Barto, Sutton, & Anderson, 1983) and

the Q-learning (Watkins & Dayan, 1992) require no model

of the environmental dynamics; instead, they try to directly

estimate the value function. In contrast, model-based RL

methods (Dayan & Sejnowski, 1996; Dearden, Friedman, &

Andre, 1999; Doya, 2000a; Matsuno, Yamazaki, Matsuda,
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& Ishii, 2001; Moore & Atkeson, 1993; Sutton, 1990) try to

model the environmental dynamics and the value function is

approximated using the model. Especially when the

environment is complicated, e.g. partially observable, a

model-based RL has an advantage, because the environ-

mental model can explicitly deal with the complexity. A

model-based RL learns faster than a model-free alternate.

Our study presents a model-based RL method using the

Bayes inference.

If the agent knows the correct optimal value function

including the correct estimation of the environmental

dynamics, the optimal policy is the one that just selects a

‘greedy’ action that maximizes the value function at each

state. If the estimation and prediction are fairly good,

therefore, a good policy is the one that selects a greedy

action; this is called exploitation. During the process of trial

and error, however, the agent does not know the correct

optimal value function. Especially in a POMDP, an

approximated value function may be apart from the correct

optimal one, due to the uncertain estimation of unobservable

state variables. In such a situation, the greedy action is not

necessarily optimal. In addition, when the environment

changes with time, the value function approximated using

the past experiences will not be optimal. In order to know

the optimal value function, the agent should execute trial

actions, i.e. actions that are not optimal with respect to the

current value function; this is called exploration. Since these

two strategies, exploitation and exploration, cannot be

operated at once, their control has long been an important

issue in the control fields (Fe’ldbaum, 1965).

Methods for exploration can roughly be classified into

two: undirected exploration methods and directed explora-

tion methods (Thrun, 1992). Undirected exploration

methods try to explore the whole state–action space by

assigning positive probabilities to all possible actions. For

example, semi-uniform (e-greedy) exploration and the

Boltzmann exploration (Sutton & Barto, 1998) are

undirected methods.

Directed exploration methods use the statistics obtained

through the past experiences in order to execute efficient

exploration. Kearns and Singh (1998) proposed an explora-

tion algorithm called E 3 algorithm, in which states were

classified into known or unknown states based on the visit

number. At a known state the agent executes directed

exploration under a specific condition, while at an unknown

state the agent mainly executes undirected exploration. R-

max algorithm by Brafman and Tennenholtz (2001) is a

modification of the E 3 algorithm so that the agent executes

directed ‘optimistic’ exploration at an unknown state.

Exploration bonus is one popular technique for directed

exploration. In Sutton’s DYNA system (Sutton, 1990),

exploration bonus is added to the immediate reward based

on the time period that has passed since the state–action pair

was previously experienced. Kaelbling (1993) proposed the

interval estimation algorithm using exploration bonus based

on the upper bound of the confidence interval for the value

function. Moore and Atkeson (1993) also proposed

exploration bonus in their learning algorithm called

prioritized sweeping. In this method, an unfamiliar state is

connected to a fictitious absorbing state with a high value

and the agent is encouraged to visit such unfamiliar states.

In the method by Dayan and Sejnowski (1996), due to the

forgetting effect of the environmental dynamics, the agent

comes to try an action that is not optimal with respect to the

current estimation of the value function.

We discuss in this paper a new control method of the

exploitation–exploration balance. The balance control was

also studied by Thrun (1992). Our method is mainly an

undirected method, in which the balancing parameter is

controlled depending on the current state. Our method also

uses exploration bonus. Usher, Cohen, Servan-Schreiber,

Rajkowski, and Aston-Jones (1999) has suggested that the

exploitation–exploration balance in a real brain may be

controlled by noradrenergic neurons in the locus coeruleus

(LC) and that the balance may correspond to the level of

animal’s selective attention. According to this scenario, we

will discuss a possible implementation in the brain, which

realizes our learning scheme.

Section 2 describes preliminaries to the RL. We propose

in Section 3 a Bayes inference method for identifying the

current environment. We next propose in Section 4 a control

method of the exploitation –exploration balance. An

exploration bonus is also introduced in the same section.

Section 5 shows computer simulation results. Section 6

discusses a possible implementation in the brain, and

Section 7 concludes the paper.

2. Reinforcement learning preliminaries

2.1. Markov decision process

We first consider Markov environments; Pðs0ls; aÞ gives

the probability of reaching state s0 by selecting action a at

state s. If the state-transition probability Pðs0ls; aÞ is known,

the value function for state s, V(s ), should satisfy the

following (optimal) Bellman’s equation:

VðsÞ ¼ max
a

Qðs; aÞ; ð1aÞ

Qðs; aÞ ; rðs; aÞ þ g
X
s0

Pðs0ls; aÞVðs0Þ: ð1bÞ

Qðs; aÞ is often called the action-value function. The reward

function rðs; aÞ defines the immediate reward for a state–

action pair ðs; aÞ: The reward function is assumed to be

deterministic for simplicity, although the extension to

stochastic reward functions is straightforward. 0 # g # 1

is a discount constant. The value function defines the

summation of the discounted rewards accumulated toward

the future. The action-value function Qðs; aÞ represents the

reward accumulation when the agent takes action a at state s

and the optimal actions at the subsequent states.
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A policy is a function that outputs an action for a given

state s; a policy is called optimal when it outputs the action

maximizing Qðs; aÞ: The objective of RL, which is often

termed MDP, is to obtain the optimal policy. When the

state-transition probability Pðs0ls; aÞ is known, this problem

can be solved by a dynamic programming approach. In

many RL problems, however, the state-transition prob-

ability is unknown. Temporal-difference (TD) learning

(Sutton, 1988) tries to approximate the value function

based on the agent’s experiences without directly modeling

the environment; it is a model-free approach. The actor–

critic learning (Barto et al., 1983) and the Q-learning

(Watkins & Dayan, 1992) are model-free TD learning. TD

learning makes use of the so-called TD-error:

d ¼ ðrðs; aÞ þ gVðs0ÞÞ2 VðsÞ: ð2Þ

The second term is the value of state s based on the present

prediction, while the first term is the value of state–action

pair ðs; aÞ using one-ply actual state transition to s0; the TD-

error is the difference between them. TD learning tries to

approximate the value function by decreasing probabilisti-

cally the TD-error based on a stochastic approximation

method (Sutton, 1988). Then, the state-transition probability

is indirectly obtained.

On the other hand, model-based RL (Dayan &

Sejnowski, 1996; Doya, 2000a; Moore & Atkeson, 1993;

Sutton, 1990) tries to directly model the environment by

approximating the state-transition probability Pðs0ls; aÞ

based on experiences of past state transitions. The model-

based RL is suitable for dealing with partially observable

environments and/or dynamic environments. It is also

suitable for multiagents environments (Matsuno et al.,

2001). In the model-based RL, the learning of the value

function and the learning of the environmental model are

conducted concurrently but independently.

2.2. Partially observable Markov decision process

Since the problems considered in our study can be

formulated as POMDPs (Kaelbling, Littman, & Cassandra,

1998), we explain the notion.

A typical POMDP deals with a Markov environment

with unobservable (hidden) state variables. Let s ; ðy; zÞ be

an environmental state, where y and z denote observable and

unobservable state variables, respectively. Due to the

unobservable variables, the environment with respect to

the observable variables does not have a Markov property.

Although standard RL algorithms have often been applied

even to POMDPs by ignoring unobservable variables, such

a ‘naive’ approach is sometimes very slow (Singh, Jaakkola,

& Jordan, 1994). Another way to deal with a POMDP is

called a belief state MDP, in which the (optimal) Bellman’s

equation is given by

VðbÞ ¼ max
a

Qðb; aÞ; ð3aÞ

Qðb; aÞ ; rðb; aÞ þ g
X
b0

Pðb0lb; aÞVðb0Þ: ð3bÞ

The difference from the MDP Bellman’s equations (1a) and

(1b) is that state s is replaced by a belief state b. A belief

state is represented by estimated probability distribution

of states. Since there is no probabilistic factor for the

observable variables, b ¼ ½y; P̂ðzÞ� where P̂ðzÞ is the

estimated probability distribution of the unobservable state

variables. We assume that a state estimator (SE) is able to

estimate a new belief state b0, after the agent experiences a

state transition from the previous belief state b by an action

a and at a new state it observes y0; i.e. SEðb; a; y0Þ ; b0 ¼

½y0; P̂0ðzÞ�: It should be noted that the probability distribution

of the unobservable variables, P̂ðzÞ; may change after the

new observation. In addition, we assume for simplicity that

the reward function does not depend on the unobservable

variables. In this case, Eqs. (3a) and (3b) becomes

Vð½y; P̂ðzÞ�Þ ¼ max
a

Qð½y; P̂ðzÞ�; aÞ; ð4aÞ

Qð½y; P̂ðzÞ�; aÞ ¼ rðy; aÞ þ g
X
y0

Pðy0l½y; P̂ðzÞ�; aÞVð½y0; P̂0ðzÞ�Þ:

ð4bÞ

This study assumes a finite world; both the state and action

spaces are discrete and finite. Even in such a finite world, the

belief state MDPs (4a) and (4b) is hard to solve, because the

belief state value function is defined for the probability

distribution of the unobservable variables and is often

intractable. Therefore, we need an approximation. If an RL

agent is certain of the estimation of the unobservable

variables, ½y; P̂ðzÞ� is equivalent to ½y; ẑ�; where ẑ denotes the

most probable value of z. With this approximation,

Vð½y; ẑ�Þ ¼ max
a

Qð½y; ẑ�; aÞ; ð5aÞ

Qð½y; ẑ�; aÞ ¼ rðy; aÞ þ g
X
y0

Pðy0l½y; P̂ðzÞ�; aÞVð½y0; ẑ0�Þ: ð5bÞ

This approximation may not be appropriate when the RL

agent is not certain of the estimation of the unobservable

variables. Namely, when the uncertainty of the unobserv-

able variables is high, the ‘best’ policy based on the

approximated Bellman’s equations (5a) and (5b) may not

actually be optimal. Considering this problem, we will later

propose an additional mechanism called exploration bonus.

3. Model of environment

For the time being, we assume that there exists one

unobservable multinomial variable z in the environment.

The distribution of the variable, P̂ðzÞ; is estimated by a

Bayes inference.

Fig. 1 shows an example problem. This is a very simple

maze task; the agent is required to get to a goal point (G)

from a start point (S). There may be a barrier denoted by the
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vertical dotted bar but the barrier cannot be seen by the

agent. The existence of the barrier can be ‘perceived’ when

the agent fails to go beyond the barrier. If the existence of

the barrier is regarded as a stochastic event, then it is a

binomial event. The shortest path needs only one step

without the barrier, while it needs three steps with the

barrier. This problem can be formulated in two ways. One is

a stochastic MDP, in which the existence of the barrier is a

stochastic nature of the environment. The other is a

deterministic POMDP, in which the barrier existence is

described by an unobservable variable, and if the agent is

able to observe all the variables including the barrier

existence, the environment is deterministic. We first explain

our method to identify the environment according to the

formulation of a deterministic POMDP. After that, we

discuss according to the formulation of a stochastic MDP.

3.1. Bayes inference of multinomial model

If there are M possible values for the unobservable

variable z, it is represented by an M-dimensional vector;

zi [ {0; 1} ði ¼ 1;…;MÞ and
PM

i¼1 zi ¼ 1: zi ¼ 1 indicates z

takes the ith value. Let parameter g ; ðg1;…; gMÞ define a

probabilistic model of the multinominal model. From its

definition,
PM

i¼1 gi ¼ 1: In the maze example ðM ¼ 2Þ; z1 ¼

1 and z2 ¼ 1 indicate the existence and non-existence of the

barrier, respectively, and g1 and g2 denote the probabilities

of the existence and non-existence, respectively. After

observing T events for the multinomial variable, Z ;
{zðtÞlt ¼ 1;…; T}; the likelihood of the events is given by

PðZlgÞ ¼
YT

t¼1

YM
i¼1

g
ziðtÞ
i ¼ exp T

XM
i¼1

kzilDlog gi

 !
; ð6Þ

where kzilD ; ð1=TÞ
PT

t¼1 ziðtÞ: Eq. (6) indicates that the

likelihood of the multinomial variable has an exponential

form; the sufficient statistics is TkzilD and the natural

parameter is log gi.

A Bayes inference considers the posterior distribution of

the parameter, P(glZ ). A convenient method for the Bayes

inference is that a trial posterior Q(g ) is prepared to

approximate the true posterior P(glZ ) and the following

variational free energy is maximized with respect to the trial

posterior:

FðQÞ ¼
ð

QðgÞlog
PðZlgÞPðgÞ

QðgÞ
dg; ð7Þ

where P(g ) is a prior distribution for parameter g. If the trial

posterior includes the true posterior, as a consequence of the

maximization, the Kullback–Leibler (KL) divergence

between the trial posterior and the true posterior becomes

zero; namely, the two probabilistic distributions are

equivalent to each other. The maximization is easily

achieved by taking the variational condition: dF=dQ ¼ 0:
A detailed explanation is described in Appendix A.

If we assume a natural conjugate posterior distribution

for parameter g, the posterior distribution becomes a

Dirichlet distribution (Heckerman, 1999):

QðglnÞ ¼ exp
XM
i¼1

ni log gi 2FðnÞ

 !
; ð8Þ

where n ; ðn1;…; nMÞ is a hyperparameter1 that specifies

the parameter distribution, and FðnÞ is the normalization

term.

If no a priori knowledge on the prior distribution PðgÞ is

available, it is natural to choose a non-informative prior. In

the maze example, a non-informative prior means that the

agent has no a priori idea about the barrier existence and it

considers Pðg1Þ ¼ Pðg2Þ ¼ 1=2: With a non-informative

prior, the exact Bayes inference is given by

ni ¼ TkzilD; ð9Þ

with Eq. (8). The parameter expectation with respect to the

Dirichlet posterior distribution is given by

�gi ;
ð

giQðglnÞdg ¼
ni þ 1XM

j¼1

nj þ M

: ð10Þ

Using Eq. (9), expectation (10) becomes

�gi ¼
TkzilD þ 1

T þ M
: ð11Þ

In our POMDP formulation (Eqs. (5a) and (5b)), the

estimation of P̂ðzÞ and ẑ is necessary. P̂ðzi ¼ 1Þ is estimated

as �gi ði ¼ 1;…;MÞ; and ẑ is estimated as zk ¼ 1 (signifying

the kth value) such that k ¼ arg maxi �gi: This batch

estimation is appropriate when the environment is static.

In a dynamic environment, however, the estimation should

be done in an on-line manner.

3.2. On-line learning and forgetting

In a dynamic environment, an inference based on

observations in the past may not be correct due to the

environmental change. Therefore, the inference should put

an emphasis on recent observations. Such an inference can

be done by defining a weighted variational free energy

Fig. 1. An example maze with a 2 £ 2 grid. ‘S’ and ‘G’ denote the start

point and the goal point, respectively. The thick dotted line denotes an

invisible bi-directional barrier that exists probabilistically.

1 Note that a hyperparameter is different in its notion from a meta-

parameter.
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(Sato, 2001) as

FðQltÞ ; thðTÞ
XT
t¼1

YT

u¼tþ1

lðuÞ

 !ð
QðgÞlog PðzðtÞlgÞdg

þ
ð

QðgÞlog
PðgÞ

QðgÞ
dg; ð12Þ

where hðTÞ ¼ ½
PT

t¼1 ð
QT

u¼tþ1 lðuÞÞ�
21 is the normalization

term. The time-dependent discount factor lðtÞ ð0 # lðtÞ #

1Þ is scheduled so that it approaches 1 as t increases; e.g.

1 2 lðtÞ , 1=t: Since the weight value for a data point

becomes small as time passes, Eq. (12) puts an emphasis on

recent data. In other words, it introduces ‘forgetting’ effect

on old data. The weighted variational free energy thus

introduces an on-line Bayes inference. In addition, para-

meter t corresponds to the effective data number in the

weighted free energy. If t is smaller than T, the new free

energy (12) respects the prior more than the original free

energy. Namely, parameter t balances the weight of the

likelihood against the prior. Since our Bayes inference uses

a non-informative prior, the decrease of parameter t means

a random inference of the unobservable variable; namely, it

corresponds to further forgetting effect on past perceptions

of the unobservable variable.

Based on the discussion above, we use the following

Bayes inference method instead of the original one given by

Eq. (9):

ni ¼ tkzilðtÞ; ð13aÞ

tnew U
told þ 1 ðafter one perception of variable zÞ

k·told ðafter an episodeÞ

(
;

ð13bÞ

where the sufficient statistics after the tth perception, k zil(t ),

is calculated in an on-line manner (Sato, 2001):

kzilðtÞ ¼ ð1 2 hðtÞÞkzilðt 2 1Þ þ hðtÞziðtÞ; ð14aÞ

hðtÞ ¼ ð1 þ lðtÞ=hðt 2 1ÞÞ21: ð14bÞ

The effective data number t is incremented after a single

perception of the unobservable variable. After an episode,

however, t value for every unobservable variable is

decreased by a discount factor 0 , k # 1 which is the

forgetting coefficient. Here, an ‘episode’ denotes a series of

state transitions, typically from a start state to an end state.

Accordingly, the SE estimates

P̂ðzi ¼ 1Þ ¼ �gi ¼
tkzilþ 1

tþ M
; ð15Þ

where kzil is the current sufficient statistics. ẑ is estimated as

zk ¼ 1 such that k ¼ arg maxi �gi: If the unobservable

variable has often been perceived, the corresponding

effective data number becomes large. In this case, the

inference by Eq. (15) almost becomes that by maximum

likelihood; this is natural because the agent has much and

recent knowledge on the unobservable variable. In contrast,

if variable z has not been perceived lately, the corresponding

effective data number becomes small. The inference

becomes random in this case because the agent has little

recent knowledge on the unobservable variable and it is

natural for the agent to guess that its value may change

during his absence. In the maze example, the agent becomes

uncertain of the barrier existence if the agent has not tried to

go beyond the barrier lately. The agent assumes that the

unobservable variable, i.e. the environment, will change

with time-constant 1=ð1 2 kÞ:
It should be noted that our Bayes formulation can use an

informative prior instead of the non-informative prior.

Dayan and Sejnowski (1996) used an informative prior (the

barrier will disappear with a high probability) in order to

encourage the agent’s exploration (attempting to go beyond

the barrier).

3.3. Inference of state transition

In the example maze task, the probability that the start

state reaches the goal state by an action ‘go east’ is identical

to the probability of the barrier existence. Namely, the

probability of the unobservable variable is equivalent to the

state-transition probability. Therefore, the above-mentioned

Bayes inference of the unobservable variables is naturally

extended to the inference of the state transitions.

Let S and A denote the set of states and the set of actions,

respectively. Pðsilsj; aÞ denotes the probability that state

sj [ S reaches state si [ S by action a [ A: Here, we

consider events with a fixed state–action pair ðsj; aÞ: A

multinomial variable z signifies an occurrence of a single

state-transition event. If there are M possible states that are

reachable from the state–action pair, z is represented by an

M-dimensional vector; if a state transition event to state

si [ S occurs, zi ¼ 1; zk ¼ 0 ðk – iÞ: Parameter gi defines a

probabilistic model of the multinomial model. In the

example maze, when the agent tries to ‘go east’ (a ¼ ‘go

east’) at the start point ðsj ¼ SÞ; the possible new state (si) is

either the goal point or the start point.

Like in the discussion in Section 3.2, the state-transition

probability Pðsilsj; aÞ is estimated as �gi given by Eq. (15),

i.e. P̂ðsilsj; aÞ ¼ �gi: The effective data number t is updated

by

tnew U
told þ 1 ðaction a is selected at state sjÞ

k·told ðafter an episodeÞ

8<
: ; ð16Þ

instead of Eq. (13b). Eq. (15) means that P̂ðsilsj; aÞ

approaches the maximum likelihood estimation kzil, as the

effective data number t increases. When the effective data

number is small, on the other hand, the estimation nearly

becomes 1/M, implying that the transition is regarded as

random for every possible new state. Thus, the estimation

reflects the information amount that the agent has. Note that

t denotes the effective data number of a state–action pair
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ðsj; aÞ; and it should be defined for every state–action pair

individually.

3.4. Model-based reinforcement learning

The discussions above suggest that the inference of the

state transition is equivalent to the inference of the

unobservable variables, at least in the case of the example

maze task.

In this study, we use a model-based RL method, in which

Eq. (5b) is replaced by

Qð½y; ẑ�; aÞ ¼ rðy; aÞ þ g
X
y0

P̂ðy0ly; aÞVð½y0; ẑ0�Þ; ð17Þ

where P̂ðy0ly; aÞ is determined by the method described in

Section 3.3. In a deterministic POMDP, this is equivalent to

that the SE conducts a Bayes inference of the unobservable

variables. In a stochastic MDP, the model-based RL

estimates the model of the stochastic environment based

on a Bayes inference.

This model-based RL method can be applied to more

general problems, like stochastic POMDPs; namely, the

state transition is stochastic and there are unobservable

variables. For example, provided in the maze example that

each action is emitted or not with probability p or 1 2 p,

respectively, and an emitted action is effective (i.e. changes

the agent’s state) if there is no barrier in the moving

direction. This task can be formulated as a stochastic

POMDP.

In the model-based RL method, even in such a case, the

state transition for the observable state variable y, P̂ðy0ly; aÞ;
is estimated by a Bayes inference, regarding the existence of

the unobservable variables as stochastic nature of the

environment. It should be noted that our model-based RL is

not a naive MDP approximation, because the value function

and the action-value function consider the estimation of the

unobservable variables, ẑ:

4. Control of randomness in action selection

Although the objective of RL is to obtain the optimal

policy that maximizes the value function (Eq. (1a) or (5a)), a

simple maximization procedure often results in a semi-

optimal policy and the lack of adaptability to the

environmental change. This section discusses the way to

overcome this problem. Although we assume a finite world,

equations in this section often use integral notations for

description convenience. In this section, ½y; ẑ� is represented

as s.

4.1. Inverse-temperature

We define a stochastic policy p by a conditional

probability PpðalsÞ of action a for state s. From its

definition,
Ð

PpðalsÞda ¼ 1: Using the current action-value

function, which may differ from the really optimal one, the

greedy policy maximizesð
Qðs; aÞPpðalsÞda: ð18Þ

Especially when the state and action spaces are finite, the

greedy policy will assign probability zero to the possible

actions except one or several. Then, it becomes difficult for

the agent to adapt its policy to the environmental change,

and/or to improve the present best (i.e. semi-optimal)

policy. This is one aspect of the exploitation–exploration

problem.

In order to preserve the exploration ability of the policy,

we define the free energy2

JðPpÞ ¼
ð

Qðs; aÞPpðalsÞda 2
1

b

ð
PpðalsÞlog PpðalsÞda:

ð19Þ

The first and second terms in Eq. (19) are called the energy

term and the entropy term, respectively. The coefficient of

the entropy, 1/b, is called the (thermo-dynamical) tempera-

ture. b is then called the inverse-temperature. If the

temperature is large, the randomness of the probability

P p(als ) is large; namely, the policy becomes random and

hence exploration is encouraged. If the temperature is small,

the policy randomness becomes small so that exploitation is

encouraged. Therefore, the inverse-temperature parameter

b controls the balance between exploitation and explora-

tion. Since the way many parameters of the agent are

changed by learning is dependent on the parameter b, b is

called a meta-parameter (Doya, 2000b).

Using the variational method, the maximization of the

free energy J(P p) with respect to the stochastic policy

P p(als ) is achieved by

PpðalsÞ ¼
expðbQðs; aÞÞÐ
expðbQðs; aÞÞda

; ð20Þ

which is called the soft-max policy or the Boltzmann policy

(Sutton & Barto, 1998). When the inverse-temperature

meta-parameter is small, the soft-max policy randomly

selects one of the possible actions. When the inverse-

temperature parameter is large, in contrast, it selects the

greedy action that maximizes the current action-value

function.

4.2. Local control of randomness

A constant inverse-temperature means that the random-

ness induced by the entropy is constant against the energy

term, while the energy term depends on the variation of the

action-value function. For example, if the action-value

function for a certain state s does not vary with respect to

action a, on one hand, the soft-max policy becomes random

2 Although we use the words ‘free energy’ for Eq. (7) or (12), and (19),

their definitions are different from each other.
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even with a large b. If the action-value function signifi-

cantly varies, on the other hand, the soft-max policy likely

selects the greedy action even with a small b. The policy

randomness is thus dependent on the variation of the action-

value function with respect to possible actions.

By considering the variation of the action-value function,

we define a normalized soft-max policy:

PpðalsÞ ¼
expðb0

~Qðs; aÞÞÐ
expðb0

~Qðs; aÞÞda
; ð21aÞ

~Qðs; aÞ ;
Qðs; aÞ2 E½Qðs; aÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E½Qðs; aÞ2�2 ðE½Qðs; aÞ�Þ2
p ; ð21bÞ

where b0 is a new inverse-temperature meta-parameter and

is constant. E[·] denotes the expectation with respect to the

current policy and it is approximated based on actual

experiences using the current policy. Using the normalized

soft-max policy, the action randomness is normalized so

that exploratory actions do not significantly depend on the

variation of their expected results.

The normalized soft-max policies (21a) and (21b) is

equivalent to the original soft-max policy (20) with a new

inverse-temperature:

bðsÞ ¼ b0·blðsÞ ¼
b0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E½Qðs; aÞ2�2 ðE½Qðs; aÞ�Þ2
p : ð22Þ

Note that b(s ) does not depend on action a. Accordingly, in

order to introduce the randomness normalized with respect

to the variation of the action-value function, the inverse-

temperature b becomes dependent on state s. bl(s ) is then

called the local coefficient of the inverse-temperature.

4.3. Global control of randomness

Exploration is important especially when the agent

perceives that the environment has probably changed. If

the agent believes that the environment has not changed, in

contrast, exploitation is more important than exploration.

Therefore, the inverse-temperature should be controlled

based on the perception of the environmental change.

One such control can be done by

bg U
aþ ð1 2 aÞbg ðif ẑ0 ¼ ẑÞ

br ðotherwiseÞ

(
; ð23Þ

where ẑ ðẑ0Þ is the estimation of the unobservable variables

before the action (after the action). 0 , a , 1 is a constant

that determines how fast bg approaches its maximum value

( ¼ 1.0) from its minimum value ( ¼ br). When the

estimation of the unobservable variables does not change

after an actual experience (action), the agent guesses that the

environment represented by the unobservable variables has

not changed. The upper condition in Eq. (23) says that bg

gradually increases in such a case (see Fig. 6). The agent

then prefers exploitation. When the estimation of the

unobservable variables changes after an actual experience,

in contrast, the agent guesses that the environment has

changed. The lower condition in Eq. (23) says that bg is set

to its minimum value in such a case. The agent then prefers

exploration in order to quickly adapt to the new

environment.

If the environment is deterministic like in the maze

example, the following control will work well:

bg U
aþ ð1 2 aÞbg ðif z ¼ ẑÞ

br ðotherwiseÞ

(
: ð24Þ

When an actual perception of the unobservable variables, z,

is different from its expected one ẑ; the agent guesses that

the environment has changed. This control is not appro-

priate for stochastic environments such that the perception

of unobservable variables may differ from their expectation

due to the stochastic nature.

With either of the controls above, inverse-temperature b

in the original soft-max policy (20) is replaced by

bðsÞ ¼ b0·bg·blðsÞ: ð25Þ

bl(s ) considers the variation of the action-value function

and locally controls the randomness, while bg attempts to

perceive the environmental change and globally controls the

randomness. Then, bg is called the global coefficient of the

inverse-temperature.

In the later experiments, we use the second control

method given by Eq. (24).

4.4. Exploration bonus

In RL, the reward function is determined according to the

task that is to be accomplished by the agent. It is usually

independent of the amount of environmental information

that the agent has. For actual animals, however, information

of the environment is very important. Exploration is nothing

but acquiring information from the environment. By

assuming an additional reward term corresponding to the

information that will be acquired from the environment, the

agent is encouraged to take exploratory actions; this is

the idea of our exploration bonus.

The bonus is given in proportional to the entropy of the

posterior distribution of the state-transition, HDðs; aÞ; where

the definition of entropy HD is described in Appendix A (see

Eq. (A9)). Using the bonus, the action-value function used

in the soft-max policy (20) is modified into

rþðs; aÞ ¼ rðs; aÞ þ eHDðs; aÞ; ð26aÞ

Qþðs; aÞ ¼ rþðs; aÞ þ g
X
s0

P̂ðs0ls; aÞVðs0Þ; ð26bÞ

where e is a constant.

A small entropy means that the information acquired

from the environment by taking action a at state s, is

expected to be small with respect to the current estimation

of the environment; in this case, the probability to take the

action is decreased. When the acquired information is
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expected to be large, the probability to take the action is

increased. This results in an encouragement of exploration.

The POMDP formulation provides us with another

interpretation of the exploration bonus. In a POMDP, an

action determined by the approximated Bellman’s equations

(5a) and (5b) may be different from the optimal action in the

belief state MDP. Such a situation occurs especially when

the agent is uncertain of the estimation of the unobservable

variables. As discussed in Section 3.4, the entropy of the

state transitions is similar to the entropy of the unobservable

variables. Therefore, the exploration bonus can be inter-

preted as follows. A small entropy of the state transition

means that an action determined by our model-based RL is

close to the optimal action in the belief state MDP.

Therefore, the action selection should not be disturbed by

the exploration bonus. On the other hand, a large entropy of

the state transition means that an action determined by our

model-based RL may be apart from the optimal action in the

belief state MDP. In such a case, the agent prefers acquiring

a large information so as to be certain of the environment.

Although the exploration bonus modifies the policy, it

does not affect the Bellman’s equations (1a) and (1b) or (5a)

and (5b). Namely, the bonus does not introduce any bias to

the estimation of the value function.

4.5. Reinforcement learning algorithm

Here we summarize the whole RL algorithm for a single

learning episode.

1. Set the agent to a start state.

2. For a specific number of state transitions, the following

steps are conducted.

(a) Let y be the current observable state. Each

unobservable variable ẑ; which is relevant to y,

is estimated as zk ¼ 1 such that k ¼ arg maxi �gi;
where �g is given by Eq. (15).

(b) For every action a possible at y, conduct the

following steps.

(i) For every possible observable state y0 that is

reachable from y by a, the state-transition

probability P̂ðy0ly; aÞ is calculated by Eq.

(15).

(ii) Using s ¼ ½y; ẑ� and P̂ðy0ly; aÞ; obtain Qðs; aÞ

by Eq. (17).

(iii) Using s ¼ ½y; ẑ� and P̂ðy0ly; aÞ; obtain

Qþðs; aÞ by Eqs. (26a) and (26b).

(c) Update V(s ) based on Eq. (5a).3

(d) Obtain b(s ) by Eq. (25).

(e) Calculate PpðalsÞ according to Eq. (20) with the

replacement of Qðs; aÞ by Qþðs; aÞ and the

replacement of b by b(s ).

(f) An action a is selected with probability PpðalsÞ:
Observable state y changes to a new observable

state y00 according to the real dynamics of the

environment.

(g) Update the sufficient statistics corresponding to y00

by Eqs. (14a) and (14b).

(h) According to the upper rule in Eq. (16), increment

the effective data number for the state–action pair

ðs; aÞ:
(i) If y00 is a goal state, exit the loop. Otherwise, y U

y00 and go to step (a).

3. According to the lower rule in Eq. (16), decrease the

effective data number for every state–action pair.

In our RL scheme, the Boltzmann policy with a modified

inverse-temperature realizes undirected exploration, while

the exploration bonus realizes directed but local explora-

tion. It should be noted that our RL scheme does not use

imaginary value-iteration steps based on the current

environmental model,4 although such imaginary steps

were used in DYNA system of Sutton (1990) and Dayan

and Sejnowski (1996).

5. Simulation results

Our RL scheme is applied to two-dimensional maze

tasks.

5.1. Task setting

The first maze has a 16 £ 16 grid (Fig. 2). This task is a

modification of the one used by Dayan and Sejnowski

(1996), which originated from Sutton (1990). At each grid

point, the agent takes one of four actions: a [ {N; S;E;W};
though an action going beyond the maze boundary is not

allowed. The maze boundary is visible. For every action, an

immediate reward 21 is given, i.e. a cost 1 is given. The

agent moves from the start point to the goal point. When the

agent arrives at the goal point, the episode ends. If the agent

cannot get to the goal point within 200 action steps, the

episode also ends. Since the objective of the agent is to

search for the optimal policy maximizing the reward

accumulation, it is required to find out the shortest path

from the start point to the goal point.

There are bi-directional barriers in the maze. If the

agent tries to take an action going beyond a barrier, it

stays at the current grid point and receives a reward 21.

Barriers are invisible; namely, whether a barrier exists or not

can be perceived only by executing an action. Since the

existence of barriers is deterministic but temporally variant,

it is assumed to be a stochastic event. The existence of a

barrier portion is represented by an unobservable probabil-

istic variable. The number of possible values for each

3 A gradual updating method is preferable in a stochastic environment.

4 Although imaginary steps are useful for quickly propagating a local

change of the environment to the whole state space, they need additional

computational time.
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unobservable variable is two; existence or non-existence.

With respect to the state transition, the number of possible

transitions for each state–action pair is also two; moving to

a new grid point by a successful action or staying at the

current grid point due to an unsuccessful action. Therefore,

the Bayes inference estimates a binomial probabilistic

model for every unobservable variable (or state–action

pair). This is the inference of the environmental model.

In order to see the agent’s ability to deal with the

exploitation – exploration problem, the environment

changes with time. In this maze task, the existence of

barriers changes. The series of learning episodes are divided

into three stages, as shown in Fig. 2. At the first stage

(1 , 400 learning episodes), there are vertical barriers and

the shortest paths to the goal go around the northernmost

part of the barriers. The length of the shortest paths is 32.

At the second stage (401 , 800 learning episodes), the

southernmost portion of the barriers is removed. The length

of the shortest paths, which go through the removed barrier

portion, turns to be 26. At the third stage (801 , 1200

learning episodes), new barriers appear to hinder the agent

from going along the barriers. At this stage, the length of the

shortest paths does not change, while the variation of the

shortest paths becomes small; the agent needs to go

straightly south from the start point.

In our RL scheme, if a certain time period has passed

after the last perception of the barrier existence, i.e. failure

to go beyond the barrier, the agent comes to forget the

existence. Due to this effect, the estimation of the value

function is likely to involve the possibility of barrier

disappearance. At the second stage, therefore, the value

function on a grid point along the barriers is larger than that

on a grid point apart from the barriers, even if the distance

to the goal is the same. In order to find out the shortest path

at the third stage, therefore, the agent first needs to go

around the new barriers and to recognize that the actual

shortest path is the one that goes straightly south from the

start point. This is the difficulty of this maze task.

The value function V(s ) is initialized to be 0.0 for every

state. Since the initial value of the value function is smaller

than its real value, possible actions are tried several times at

every state at the early learning stage. Although this

‘optimistic’ initialization is a very simple heuristic method

to encourage the exploration, it is not effective in adapting

to the environmental change.

5.2. Simulation result

Our RL scheme is applied to the maze task above. Fig.

3(a) shows the number of actions during 1200 learning

episodes. At the first stage, the action number significantly

varies, because the estimated value function is distant from

the real one and hence the action randomness is large.

Another reason is the effect of the optimistic initialization.

At the second and third stages, the variation of action

number becomes small because the improvement of the

value function suppresses the action randomness.

Fig. 3(a, lower) shows that the agent successfully finds

out the shortest path, whose length is 32 at the first stage and

26 at the second and third stages. The randomness in its

actions is small so that the average number of actions is

slightly larger than the shortest path length. When the new

barriers appear at the beginning of the third stage, the

number of actions grows considerably. After a short trial-

and-error period, however, the agent successfully finds out

the new shortest path.

The role of the control of the inverse-temperature is

examined by comparing the result with that by a similar

method with a fixed inverse-temperature. Fig. 3(b) and (c)

show the results with the inverse-temperature values fixed at

a large value ðb ¼ 100Þ and a small value ðb ¼ 1:0Þ;
respectively. Even with a fixed inverse-temperature, the

exploration bonus is used. If it is not used, the agent with a

large inverse-temperature cannot adapt to the environmental

change. With a large constant value for the inverse-

temperature, the agent prefers exploitation to exploration.

Fig. 3(b, upper) shows that the averaged action number at

the third stage is larger than that at the second stage. The

agent does not find out the shortest path at the third stage

and it selects the semi-optimal path going around the

Fig. 2. A maze task with a 16 £ 16 grid. ‘S’ and ‘G’ denote the start point and the goal point, respectively. The thick line denotes bi-directional barriers. The

maze boundary is visible, while the barriers are invisible. The objective of the agent is to find out the shortest path from the start point to the goal point.
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northernmost part of the barriers. The ability to adapt to the

environmental change is thus small in this agent. With a

small constant value for the inverse-temperature, in

contrast, the averaged action number stays large throughout

the three stages (Fig. 3(c)).

Fig. 4 shows the average performance for the three

agents. We executed 100 training runs by varying initial

conditions and the ordinate in Fig. 4 denotes the average

number of actions over the 100 runs.

Fig. 5 shows the position distribution of the three agents.

Each sub-figure shows the logarithm of the number of visits

to each grid point. The upper three sub-figures show that the

agent with the inverse-temperature control follows the

shortest path at the three stages. Especially at the third stage,

the path variation in the western part of the barriers is small.

This part is important for following the shortest path. In

contrast, the variation in the eastern part of the barriers is

large. This part is not very important for following the

shortest path. The middle three sub-figures show that the

path variation of the agent with a large constant for the

inverse-temperature is small. This agent cannot find out the

shortest path at the third stage. The lower three sub-figures

show that the path variation of the agent with a small

inverse-temperature is so large that at the third stage it

almost randomly selects a path going around the northern-

most part or the southernmost part of the barriers.

Fig. 6 shows the global coefficient of the inverse-

temperature, bg, during a single training run. When the

agent perceives the environmental change, exploration is

encouraged in order to adapt to the new environment by

making bg a small value. When the RL agent does not

perceive the environmental change, it prefers exploitation

by increasing bg. Fig. 7 shows the reciprocal of the local

coefficient of the inverse-temperature at each grid point, i.e.

1/bl(s ). On the grid points except for those adjacent to the

barriers, the inverse-temperature is large so that the agent

prefers exploitation. On the grid points adjacent to the

barriers, in contrast, the inverse-temperature is small so that

Fig. 3. Number of actions taken by the three agents. (a)–(c) The abscissa denotes the number of learning episodes. The ordinate denotes the number of actions

averaged over 10 episodes in the upper figure, and the number of actions in each episode in the lower figure. The dotted (dash) line denotes the shortest path

length at stage 1 (stages 2 and 3). We conducted experiments many times by varying the random seeds, and these figures are the most typical ones among them.

(a) Learning process of an agent with the control of the inverse-temperature. Parameters are set at k ¼ 0:98; b0 ¼ 10; br ¼ 0:001; a ¼ 0:0005; and e ¼ 3: (b)

Learning process of an agent with a large constant ðb ¼ 100Þ for the inverse-temperature. (c) Learning process of an agent with a small constant ðb ¼ 1:0Þ for

the inverse-temperature.

Fig. 3 (continued )
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the agent prefers exploration; namely, the agent expects the

barriers to disappear.

In our method, the inverse-temperature control and the

exploration bonus cooperatively control the exploitation–

exploration balance. Fig. 8 shows a result for an RL agent

with the inverse-temperature control but without the

exploration bonus. Since the action randomness should be

large in order for this agent to adapt to the environmental

changes, the average steps to the goal becomes larger than

those of an agent with the exploration bonus (see Fig.

4(upper)).

5.3. Zig-zag maze

Our RL scheme is next applied to a more complicated

‘zig-zag’ maze (Fig. 9). This task is also a modification of

the one used by Dayan and Sejnowski (1996). At the first

stage (1 , 500 learning episodes), the shortest path to the

goal is a zig-zag one and its length is 41. At the second

stage (501 , 1000 learning episodes), a barrier portion is

removed so that the shortest path becomes the straight one

whose length is 21. At the third stage (1000 , 1500

learning episodes), the barrier portion appears again but

Fig. 4. Number of actions taken by the three agents. We executed 100 training runs by varying initial conditions and the ordinate denotes the average number of

actions over the 100 runs. (upper) Learning process of an agent with the control of the inverse-temperature. (middle) Learning process of an agent with a large

inverse-temperature. (lower) Learning process of an agent with a small inverse-temperature.
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three other portions are removed, so that the shortest path

passes the easternmost part of the maze and its length is

31.

Fig. 10 shows results by the three learning agents: (a)

with the control of the inverse-temperature; (b) with a large

constant ðb ¼ 100Þ for the inverse-temperature; and (c) with

a small constant ðb ¼ 0:85Þ for the inverse-temperature.

The agent with the control successfully adapts to the

environmental changes, while the agent with a large

constant cannot adapt to the second change of the

environment.

Accordingly, setting the inverse-temperature at a large

value corresponds to respecting exploitation, while

setting it at a small value corresponds to respecting

exploration. With a fixed value, the agent cannot change

the balance between them, although the balance control

is important especially when the environment changes

with time.

6. Exploitation–exploration problem in the brain

6.1. Selective attention

Attention is a cognitive function, whose aim is to focus

the consciousness on one of the targets of sensation,

perception or thought. Attention can be divided into two

operations: one is selective attention and the other is

sustained attention. They can be validated by different

psychological tasks. In a selective attention task, on one

hand, a subject is required to process one of the two or more

stimuli provided simultaneously. In a sustained attention

task, on the other hand, a subject is required to focus on a

specific stimulus for a certain period. Selective attention is

important for selecting information in order to achieve an

objective, whereas sustained attention is important for

maintaining the objective itself.

This section discusses selective attention. Awake human

Fig. 5. Logarithm of the number of visits to each grid point for the three agents. The lighter a grid point is, the more frequently the agent visits the grid point. In

order to see the behavior of the agents after adapting to the current environment, each sub-figure shows the average in the last 100 learning episodes at each of

the three stages. (upper) An agent with the control of the inverse-temperature. (middle) An agent with a large inverse-temperature. (lower) An agent with a

small inverse-temperature.
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brain is confronted with a flood of information, i.e. thoughts,

memories, emotions and innumerable sensory inputs via

various modality channels. Selective attention processes

only appropriate portion among vast amount of information,

and is a necessary ability in order to rapidly execute

appropriate behaviors in a real environment.

Attention is believed to have three major functions:

orientation to stimuli, executive function and maintenance

of an alert state (Posner & Raichle, 1996). The orientation to

stimuli is to orient a part of a body to the direction of a novel

stimulus. The executive function is related to control of

goal-directed behaviors, detection of targets, resolution of

conflicts, suppression of unconscious reaction, and so on.

The executive function is necessary in a novel or highly

competitive situation, and is important especially in a

selective attention task. The maintenance of an alert state

involves the establishment of a vigilant state and the

readiness for a rapid reaction. This function is necessary not

only in a sustained attention task, but also for sustaining the

objective in a selective attention task.

6.2. Locus coeruleus and inverse-temperature

Tonic activities of noradrenergic LC neurons depend on

sleep-awake stages; namely, they are active in an awake

state, less active in a slow-wave sleep state and nearly silent

in a rapid-eye-movement sleep state (Aston-Jones, Chiang,

& Alexinsky, 1991). Therefore, LC neurons have long been

thought to regulate arousality of the brain. However, a

recent study based on multicellular recordings of LC

neurons in monkeys performing a visual discrimination

task has suggested that the LC neurons also have relevance

to selective attention (Aston-Jones, Rajkowski, Kubiak, &

Alexinsky, 1994). Since the response latency of the LC

neurons correlates with the behavioral response time, it is

suggested that the LC activity induced by the target

facilitates the behavioral response to the target.

The LC, which is located by the forth ventricle in the

mid-pontine region of the brain stem, is the major

noradrenergic nucleus in the brain. LC neurons have

widespread projection on the telencephalic cortical structures

Fig. 7. Reciprocal of local coefficient of the inverse-temperature at each grid point, 1/bl(s ), for an agent with the control of the inverse-temperature; the lighter a

grid point is, the higher the temperature is.

Fig. 6. Global coefficient of the inverse-temperature, bg, during a single training run. After 400 and 800 episodes, the environment changes.
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and the cerebellar cortex (Foote, Bloom, & Aston-Jones,

1983).

Spontaneous activities of LC neurons play a role in the

maintenance of the arousal state. Since the brain areas

associated with attentional processing exhibit particularly

dense LC innervations (Morrison & Foote, 1986), the LC is

probably related to selective attention by controlling the

signal-to-noise ratio of the brain processing. In a compu-

tational model by Servan-Schreiber, Printz, and Cohen

(1990) and Usher et al. (1999), noradrenaline sharpens the

response tuning of neurons by increasing the gain of the

sigmoidal transfer function.

A recent study on LC neuron recordings showed that

spontaneous and stimulus-induced discharge patterns are

correlated with behavioral performance (Usher et al., 1999).

Phasic LC discharges, which selectively respond to target

stimuli, are associated with good behavioral performance.

Good performance will be achieved by focusing the

consciousness on the target stimuli. On the other hand, a

higher level of tonic LC discharges is associated with a

higher false alarm error rate, implying a low attentional

level.

Usher et al. (1999) suggested that the phasic and the tonic

discharges seem to correspond to the exploitation operation

and the exploration operation, respectively. Their model

assumed that the two modes in LC neuron discharges are

controlled by the strength of electrotonic couplings among

the LC neurons; namely, the strong and weak couplings

induce phasic and tonic firings, respectively. Therefore, the

coupling strength controls the balance between exploitation

and exploration. The existence of electrotonic couplings in

the LC has been suggested in adult rats (Ishimaru &

Williams, 1996) and the couplings are considered to

regulate activities of LC neurons (Christie, Williams, &

North, 1989).

The idea by Usher et al. is similar to that of our model in

which the exploitation–exploration balance is controlled by

a single parameter, i.e. the inverse-temperature meta-

parameter b. Actually, the sigmoidal transfer function

(Servan-Schreiber et al., 1990) of behavioral neurons in the

Usher’s model is similar to the soft-max policy in our

model, when the number of possible actions is two as in the

visual discrimination task used in Usher et al. (lever release

and hold).

Fig. 9. A ‘zig-zag’ maze task. ‘S’ and ‘G’ denote the start point and the goal point, respectively. The thick line denotes bi-directional barriers. The objective of

the agent is to find out the shortest path from the start point to the goal point.

Fig. 8. Number of actions taken by an agent with the control of the inverse-temperature but without the exploration bonus. We executed 100 training runs by

varying initial conditions and the ordinate denotes the average number of actions over the 100 runs. Parameters are set at k ¼ 0:98; b0 ¼ 1:6; br ¼ 0:001; and

a ¼ 0:0005: In order to make the agent adapt to the environmental changes, b0 is set at a smaller value than in the simulation in Fig. 4.
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Therefore, we assume that the control of the inverse-

temperature is implemented as an activity pattern of LC

neurons.

6.3. Calculation of inverse-temperature

Since projection from anterior cingulate cortex (ACC), in

particular, Brodmann’s area 24 and the rostral part of area

32, to the LC has recently been found (Rajkowski, Lu, Zhu,

Cohen, & Aston-Jones, 2000), it is considered that the ACC

regulates the activities of LC neurons, possibly by

controlling the couplings among them.

The ACC (areas 24 and 32) is located on the medial

surface of the frontal lobe and superior to the corpus

callosum. Since the ACC is activated especially when the

action selection requires a ‘top-down’ supervisory system,

the ACC has been linked to the executive function of

attention (Vogt, Finch, & Olson, 1992). Since the ACC is

not activated in a vigilance task, which is used to validate

sustained attention, the ACC is mainly involved in selective

attention. A neuroanatomical study suggested that the ACC

can be divided into different functional subregions (Picard

& Strick, 1996), implying that the ACC has multiple

functions (Bush et al., 2002). We assume here that both the

local and the global coefficients of the inverse-temperature

are calculated and represented in the ACC.

A recent study on single-cell recordings from monkeys

performing a reward-based decision-making task reported

that cingulate motor area (CMA)5 has relevance to reward-

based behaviors (Shima & Tanji, 1998). A monkey

continued a particular behavior during constant-reward

trials, while the reward decrement led to an active switching

of the behavioral rule. It was found that neurons in the

rostral CMA were saliently activated when a monkey

switched the behavioral rule. Furthermore, the blocking of

this area by muscimol injection induced a failure of smooth

switching or a needless switching. These results suggest that

the CMA plays an important role in behavior selection by

detecting the distinction between an expected reward and an

actual reward. A recent human neuroimaging study using a

similar task also observed ACC activation (Bush et al.,

2002). According to electrophysiological studies measuring

error-related negativity (ERN; Gehring, Goss, Coles,

Fig. 10. Number of actions taken by the three agents. (a)–(c) The abscissa denotes the number of learning episodes. The ordinate denotes the number of actions

averaged over 10 episodes in the upper figure, and the number of actions in each episode in the lower figure. The dotted, dash and dash-dotted lines denote the

shortest path lengths at stages 1, 2 and 3, respectively. (a) Learning process of an agent with the control of the inverse-temperature. Parameters are set at

k ¼ 0:995; b0 ¼ 10; br ¼ 0:0003; a ¼ 0:0003; and e ¼ 8: (b) Learning process of an agent with a large constant ðb ¼ 100Þ for the inverse-temperature. (c)

Learning process of an agent with a small constant ðb ¼ 0:85Þ for the inverse-temperature.

5 The CMA of primates resides in the banks of the cingulate sulcus in the

medial surface of the cerebral hemisphere and overlaps the ACC in humans.
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Meyer, & Donchin, 1993), the ACC is involved in

monitoring of errors. The ERN is a large negative polarity

peak in an event-related potential waveform that occurs

when a subject makes an error in a reaction time task. A

recent imaging study also found that a rostral inferior ACC

region is mainly related to the error detection (Braver,

Barch, Gray, Molfese, & Snyder, 2001). These studies

suggest that the ACC detects the environmental change

using the result of own response, i.e. error or error

prediction, so that changes in behavioral rules are induced.

This control of the behavior selection is consistent with our

control method of the global coefficient of the inverse-

temperature.

On the other hand, several neuroimaging studies

suggested that error-related ACC activities are likely

due to detection of a conflict among incompatible

responses (Botvinick, Nystrom, Fissell, Carter, &

Cohen, 1999; Carter et al., 1998). This is called the

conflict monitoring theory. While performing a visual

discrimination task, i.e. a variation of continuous

performance tests or a flanker task, the ACC exhibited

transient activity increase during incorrect responses.

However, greater ACC activity was also observed

during correct responses in a situation with a high

level of conflict. The ACC was also activated signifi-

cantly in a novel environment. According to a positron

emission tomography (PET) study on motor sequence

learning, the ACC was activated during a learning of

new sequences but not during an automatic execution

after the learning (Jenkins, Brooks, Nixon, Frackowiak,

& Passingham, 1994). A later study indicated that the

ACC was activated more when a subject learned a new

sequence than when the subject simply paid attention

to a prelearned sequence (Jueptner et al., 1997). Thus,

the ACC activities depend on the state of the subject.

They are linked to the variation of possible results, i.e.

the response conflict, and are related to reward-based

learning processes especially in an unfamiliar

environment.

In our RL scheme, the randomness due to the control of

the local coefficient bl(s ) is dependent on the agent’s state,

and it is large when the variation of the action-value

function with respect to the current policy is large. The large

variation of the action-value function is mainly due to the

large variation of the policy, implying that the current state

is unfamiliar or conflicting. Accordingly, the above-

mentioned activities of the ACC seem to be consistent

with our control method for the local coefficient of the

inverse-temperature.

Based on the conflict monitoring theory, Cohen,

Botvinick, and Carter (2000) presented a mechanism on

how the ACC controls cognitive functions. If competing

responses are simultaneously represented in the prefrontal

cortex (PFC), the ACC detects a conflict. Subsequently, the

LC system responds to the conflict detected by the ACC,

and competitively suppresses the irrelevant representation

activated by a distractor. The response conflict is thus

reduced. Namely, this mechanism increases the level of

selective attention when the ACC detects a conflict.

However, the model by Cohen et al. focused on an

exploitation operation and did not consider an active

exploration operation, because they assumed a static

environment, i.e. the task does not change.

Our study assumes dynamic environments, where a

conflict occurs due not only to the forgetting of the

environment but also to the environmental change.

Similarly to the model by Cohen et al., in our method,

the level of selective attention is controlled based on the

conflict detection. However, the control depends on

expectation of resultant value, i.e. prediction of

consequence, of the conflict. If the resultant value will

vary so much, the level of attention is rather decreased

so that active exploratory behaviors are encouraged. As

discussed earlier, the ACC is related to an active change

of policy (Shima & Tanji, 1998), and we suggest that

the system incorporating the ACC and the LC is related

to inducing active exploratory behaviors.

6.4. Evaluation of environment

If the ACC evaluates the variation of the current action-

value function, it should be provided with the evaluation of

the environment. The ACC mainly receives innervations

from the frontal association cortex (or PFC). It is known that

connections of the cingulate cortices with other fronto-

cortical areas are not limited to immediate neighbors, but

also more distant prefrontal regions, particularly those in

dorsolateral PFC (Barbas & Pandya, 1989).

The PFC receives sensory inputs processed by other

association cortices, whereas the other association

cortices directly receive sensory inputs. The major

areas to which the PFC outputs are motor systems such

as the striatum and the motor association cortex. The

PFC is considered to direct various higher-order func-

tions, e.g. decision-making, behavioral inhibition, plan-

ning of behavior, action evaluation, and maintenance of

working memories. Since the PFC function cannot be

explained by a unitary theory, the PFC should be divided

into several functionally different subregions. Here, we

introduce three important subregions: dorsolateral pre-

frontal cortex (DLPF, areas 9 and 46), orbitofrontal

cortex (OFC, area 47/12) and anterior prefrontal cortex

(APF, area 10). We speculate that the functions used in

RL are expressed, maintained and learned within these

brain regions.

6.4.1. DLPF/OFC and value function

Studies on the DLPF have been mainly focused on a

working memory function, i.e. the active maintenance

of necessary information for a certain period of time.

Rao, Rainer, and Miller (1997) recorded activities of

DLPF neurons from monkeys performing a visually
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guided saccade task. First, a sample object was

presented at the center of gaze. After a delay (the

what delay), the sample object and a distractor were

simultaneously presented at two different locations

among four possible locations. After another delay

(the where delay), the monkey was required to make a

saccade to the remembered location where the sample

had appeared. During this task, DLPF neurons showed

sustained activities like the working memory during the

what and/or where delay. In the what delay, on one

hand, the monkey should keep a partial information to

achieve its behavior. In the where delay, on the other

hand, the monkey should keep the action to do. Thus,

DLPF neurons exhibit state-dependent and action-

dependent sustained activities (Hoshi, Shima, & Tanji,

2000).

Recent recording studies have revealed that DLPF

neurons predict the quality and the quantity of the future

reward (Leon & Shadlen, 1999; Watanabe, 1996). DLPF

neurons of monkeys performing a delayed response task

exhibited large activity when a preferred reward was

expected, while the activity was small when a non-preferred

reward was expected (Watanabe, 1996). Among such

reward-dependent neurons, some were independent of the

action to be selected, but the others were dependent on the

action, i.e. which button to press (Watanabe, 1996). A later

study using monkeys performing a memory-guided eye

movement task showed that DLPF neurons exhibited larger

activities when the monkey expected a larger reward (Leon

& Shadlen, 1999). In this experiment, the monkey was

informed in advance the amount of reward received by a

successful completion of the task. The expected quantity of

the reward also affected the success rate and the reaction

time.

These experimental results imply that DLPF neurons are

activated depending on state and/or action, and the activities

represent the estimation of accumulated reward (total future

reward), i.e. the value function or the action-value function

in RL.

According to a recent view, the DLPF constructs

automata, i.e. cascade networks representing transitions of

states, in order to successively achieve a behavioral goal

(Tanji & Hoshi, 2001). A physiological recording study

using monkeys performing a delayed motor task investi-

gated movement-related neuronal activities in the DLPF

(Hoshi et al., 2000). The findings of neurons that were

selectively active in different task phases showed that

integration of movement information and behavioral

planning are executed within an automaton in the DLPF.

Since behavioral planning requires an environmental model,

we assume that environmental models are, at least partly,

expressed in the DLPF.

The OFC has dense connections with basolateral

amygdala (ABL) and ventral tagmental area (VTA) which

are involved in emotion and motivation functions. It is

considered that the OFC is crucially involved in the

motivational control of goal-directed behaviors (Rolls,

1996). For example, monkeys with an OFC damage showed

performance impairment in an object-reversal task; the

monkeys continued to respond to an object which was no

longer rewarded (Meunier, Bachevalier, & Mishkin, 1997).

A lesion study with humans also showed similar results

(Rolls, Hornak, Wade, & McGrath, 1994). In addition, the

OFC seems to have a role in monitoring rewards in order to

select appropriate actions (Elliott, Dolan, & Frith, 2000).

According to a study on neural activities of rats in an

olfactory discrimination task, OFC neurons were activated

selectively during the anticipation of rewarding or aversive

outcomes (Schoenbaum, Chiba, & Gallagher, 1998).

Furthermore, a functional magnetic resonance imaging

(f-MRI) study using an emotion-related visual reversal-

learning task found that the activation magnitude of the

OFC was correlated with the magnitude of received rewards

(O’Doherty, Kringelbach, Rolls, Hornak, & Andrews,

2001). These evidences suggest that the OFC is related to

rapid stimulus–reward association learning, and we assume

that the OFC maintains the evaluation of immediate or

short-term accumulated rewards in order to execute a long-

term planning.

6.4.2. APF and state estimation

Many PFC studies have concentrated on the posterior

regions including the DLPF and the OFC, and there has

been far less consideration to the APF. Using a branching

task, in which the maintenance of a primary task was

necessary while performing a subtask, Koechlin, Corrado,

Pietrini, and Grafman (2000) showed that the APF was

activated when a subject could not predict whether the

forthcoming task would be the primary task or the subtask.

Another imaging study using an explicit categorization task

suggested that a rule change evoked an activation in the

APF (Strange, Henson, Friston, & Dolan, 2001). These

results enable us to make a speculation that the APF is

involved in the prediction of a (significant) change of the

environment. We assume that the estimation of unobserv-

able states (environment) is related to the function of the

APF.

Accordingly, we assume that the reward-based environ-

mental model, i.e. the value function, the action-value

function and the environmental model with the estimation

of unobservable states, used in RL, are maintained in the

PFC.

6.5. Dopaminergic system and novelty bonus

An animal placed in a novel environment is likely to

display exploratory behaviors in order to analyze the new

situation. Exploration of novel stimuli can be rewarding,

and we have introduced in this study an exploration bonus

added to the immediate reward.

Dopaminergic (DA) neurons of the VTA and substantia

nigra have long been engaged on the processing of reward
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stimuli. Recording studies using alert monkeys showed that

DA neurons in the VTA were activated by stimuli

associated with reward prediction and it was suggested

that the neurons represent error in the prediction of future

reward (Schultz et al., 1997). Since DA neurons were also

activated when provided novel and salient stimuli (Schultz,

1998), signals transferred by DA neurons may be modified

by the novelty bonus information.

DA neurons receive massive inputs from amygdala

(Gonzales & Chesselet, 1990) that responds to primary

rewards and reward-predicting stimuli. In addition, the

amygdala responds to relatively novel stimuli (Wilson &

Rolls, 1993) like the VTA. The amygdala is directly

interconnected with the hippocampus that is involved in

memory functions. Recent neuroimaging studies have

shown that the hippocampal region is also critically

involved in novelty detection (Stern et al., 1996; Tulving,

Markowitsch, Craik, Habib, & Houle, 1996), and the

memory system may provide the rewarding system with

the information whether the current stimulus is novel or

not. Therefore, it can be considered that novelty is

added to the primary reward information represented in

the amygdala.

Neurons in the ABL and the VTA directly project to

nucleus accumbens (NAc) in the ventral striatum. The NAc

may control motor systems via the ventral pallidum, and it is

considered that this is a route through which limbic

information is transferred to output systems (Pennartz,

Groenewegen, & Lopez de Silva, 1994). By stimulating the

ABL, animals tend to explore novel objects or situations. In

addition, a local infusion into the NAc of drugs that release

DA increased the magnitude of conditioned reinforcement

in an operant task (Taylor & Robbins, 1986). DA

innervations of the NAc is considered necessary for

exploratory behaviors (Yim & Mogenson, 1989).

Thus, we currently assume that the amygdala associates

the stimuli and its biological value including the novelty, i.e.

the state and its value function (action-value function)

modified by the exploration bonus, and that the system

incorporating the ABL, the VTA and the NAc is related to

producing exploratory behaviors. However, this assumption

would need further discussion in the future.

7. Conclusion

This paper presented a new RL method in which the

balance between exploitation and exploration is con-

trolled. Our RL method is a model-based one in which the

environment is estimated based on a Bayes inference. In

the estimation, the forgetting of the environment

encourages exploration. The exploitation–exploration

balance is controlled by the inverse-temperature meta-

parameter. The control is dependent on the agent’s state;

the dependence is due to the variation of the action-value

function. The control is also dependent on the perception

of the environmental changes. This method is one of the

undirected exploration methods. The exploration bonus is

also used as a directed exploration method. Our RL

method is suitable especially when the environment is

partially observable and dynamic. When applied to maze

tasks, our method exhibited good adaptability to the

environmental changes.

We also discussed a possible implementation in the

brain. According to our assumption, the inverse-

temperature is represented as the activity of the LC

neurons, and the activity is controlled by the ACC. In

order to achieve the control, the PFC maintains and

provides the ACC with the value function, the action-

value function and the environmental model. Accord-

ingly, we consider that the control of randomness in RL

is realized in the PFC–ACC–LC system and that it is

related to selective attention.
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Appendix A

This Appendix section describes a detail of the Bayes

inference method we use.

A Bayes inference considers the posterior distribution of

the parameter. The Bayes theorem states that the posterior

distribution is given by

PðglZÞ ¼
PðZlgÞPðgÞ

PðZÞ
; ðA1Þ

where P(g ) is a prior distribution. PðZÞ ;
Ð

PðZlgÞPðgÞdg is

the normalization factor, which is called the marginal

likelihood.

We prepare a trial posterior Q(g ) in order to approximate

the posterior PðglZÞ: Q(g ) is determined based on the

minimization of the following KL divergence between Q(g )

and the true posterior PðglZÞ:

KLðQlPÞ ;
ð

QðgÞlog
QðgÞ

PðglZÞ
dg

¼ log PðZÞ2
ð

QðgÞlog
PðZlgÞPðgÞ

QðgÞ
dg

; log PðZÞ2 FðQÞ: ðA2Þ

F(Q ) is called the variational free energy. Since P(Z )

does not depend on Q(g ), the minimization of the KL

divergence is equivalent to the maximization of the
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variational free energy F(Q ). The maximization is easily

achieved by taking the variational condition: dF=dQ ¼ 0:
From the condition, the posterior distribution is analyti-

cally obtained as

log QðgÞ ¼ log PðZlgÞ þ log PðgÞ þ const:; ðA3Þ

where the constant term is determined by the distribution

condition
Ð

QðgÞdg ¼ 1:
If we assume a natural conjugate posterior distribution

for parameter g, the posterior distribution becomes a

Dirichlet distribution:

QðglnÞ ¼
Gðn1 þ · · · þ nM þ MÞ

Gðn1 þ 1Þ· · ·GðnM þ 1Þ
g
n1

1 · · ·g
nM

M

; exp
XM
j¼1

nj log gj 2FðnÞ

0
@

1
A; ðA4Þ

where n is a hyperparameter.

FðnÞ ;
XM
j¼1

log Gðnj þ 1Þ2 log G
XM
k¼1

nk þ M

 !
; ðA5Þ

is the normalization term. Gð·Þ is a Gamma function.

If no a priori knowledge on the prior distribution P(g ) is

available, it is natural to choose a non-informative prior. In

the multinomial model, a non-informative prior corresponds

to regarding the log P(g ) term in Eq. (A3) as constant.

Therefore, Eq. (A3) becomes

XM
j¼1

nj log gj 2FðnÞ ¼ T
XM
j¼1

kzjlDlog gj þ const:; ðA6Þ

implying that

nj ¼ TkzjlD; ðA7Þ

which is the exact Bayes solution for the multinomial

model.

The entropy of the posterior distribution is obtained as

follows. First we calculate

ED½log gj� ;
ð

QðglnÞlog gj dg ¼
›FðnÞ

›nj

¼ cðnj þ 1Þ2 c
XM
k¼1

nk þ M

 !
; ðA8Þ

where cðxÞ ; d log GðxÞ=dx is called the digamma function.

Using Eq. (A8), the entropy of the Dirichlet posterior

distribution QðglnÞ is given by

HD ; 2
ð

QðglnÞlog QðglnÞdg ¼ 2
XM
j¼1

njED½log gj� þFðnÞ

¼ 2
XM
j¼1

njcðnj þ 1Þ þ c
XM
k¼1

nk þ M

 !XM
j¼1

nj þFðnÞ:

ðA9Þ
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