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Abstract

This paper describes a semi-automated procedure for the verification of a large
human-labeled data set containing online handwriting. A number of classifiers trained
on the UNIPEN “trainset” is employed for detecting anomalies in the labels of the
UNIPEN *“devset”. Multiple classifiers with different feature sets are used to increase
the robustness of the automated procedure and to ensure that the number of false
accepts is kept to a minimum. The rejected samples are manually categorized into
four classes: (i) recoverable segmentation errors, (ii) incorrect (recoverable) labels, (iii)
well-segmented but ambiguous cases and (iv) unrecoverable segments that should be
removed. As a result of the verification procedure, a well-labeled data set is currently
being generated, which will be made available to the handwriting recognition commu-
nity at the IWFHRY conference.

1 Introduction

In a large collaborative effort, a wide number of research institutes and industry have gen-
erated the UNIPEN standard and database [2]. Originally hosted by NIST, the data was
divided into two distributions, dubbed the trainset and dewvset. Since 1999, the International
UNIPEN Foundation (iUF) hosts the data, with the goal to safeguard the distribution of
the trainset and to promote the use of online handwriting in research and applications.
In the last years, dozens of researchers have used the trainset and described experimental
performance results. Many researchers have reported well established research with proper
recognition rates, but all applied some particular configuration of the data. In most cases the
data were divided, using some specific procedure, into three subsets for training, testing and
validation. Therefore, although the same source of data was used, recognition results can
not really be compared as different decomposition techniques were employed. Furthermore,
in most reported cases, a particular set of badly segmented or wrongly labeled data was
removed or changed, which makes the comparison of results even more difficult.

For some time now, it has been the goal of the iUF to organize a benchmark on the
remaining data set, the devset. Although the devset is available to some of the original
contributors to UNIPEN, it has not officially been released to a broad audience yet. It is the
goal of our current paper to describe the procedure for verifying the devset, i.e. validating
and correcting the data. This procedure should ensure the quality of a proper new benchmark
data set, to be made available to the global handwriting recognition community.

The original UNIPEN devset is organized in 9 sets, as listed in Table 1. It is known
that labeling and segmentation errors are present in both UNIPEN sets. An estimate
of the number of errors in the trainset is given in [3]. It was reported that approxi-
mately 4% of the samples are errors. Other reported errors in both sets are described



in, e.g., [1, 7], reporting about segmentation errors, and in [4] and [5], reporting about
segments that were obviously too wide or too narrow. In a recent effort made by Rat-
zlaff [5], scripts were generated that divide the data into configurable train and evalua-
tion sets. The scripts used for decomposing the data were recently made available through
http://www.alphaworks.ibm.com/tech/comparehwr. Assuming that users have the data,
these scripts now provide the possibility to generate uniform subsets and thus create the
opportunity to report on UNIPEN benchmarks that are comparable between researchers.
However, a number of segmentation errors still remains in the data and moreover, the scripts
do not check on labeling errors.

set nfiles # description

la 508 8598 isolated digits

1b 1087 16414  isolated upper case

lc 1672 37506  isolated lower case

1d 973 9898 isolated symbols (punctuations etc.)

2144 72416  isolated characters,mixed case

1267 44416  isolated characters in the context of words or texts

2072 46353  isolated cursive or mixed-style words (without digits and symbols)
2143 52700 isolated words, any style, full character set

3592 11059  text: (minimally two words of) free text, full character set

o~ O W N

total 15458 299360

Table 1: UNIPEN devset organization. Sets 4 and 5 (isolated printed words) are empty in both
the trainset and devset.

The focus of this paper is to report on the quality of the UNIPEN data by examining the
observed and detected errors in detail. To this end, a semi-automated procedure is described
that distinguishes between a number of sample categories. The first step of this process is
automated. A number of classifiers are combined to increase the confidence in cases where
samples may be accepted. In the second step, the rejected samples are manually verified.
As a result of this procedure, the following classes of samples are produced, where all but
the first category require human supervision:

1. Correct segments, containing samples that are accepted with sufficient confidence by
the procedure. This category is not further inspected in the procedure. In the next
section it is explained how it is ensured that the amount of errors that slip through
the automated selection process can be minimized.

2. Segmentation errors, containing samples that are badly segmented. In UNIPEN, seg-
mentations are specified through a so-called delineation, which marks the beginning
and end of a sample (also called segment). Segmentation errors are caused by wrong
delineations. In some cases these errors can be recovered, which is explained in Sec-
tion 3.

3. Labeling errors, containing samples with wrong labels. Such errors may be caused by
the writer producing the samples or by the human labeler, who may have interpreted



the handwriting incorrectly. There is a fuzzy line between obvious labeling errors and
cases where the label cannot be determined because of sloppy handwriting, or because
the shape of a sample is ambiguous.

4. Ambiguous samples, containing shapes that can be interpreted in at least two ways.
Most often, such shapes cannot be interpreted without context.

5. Unfamiliar samples, containing allographs that are unfamiliar to a classifier or human
expert. Such samples typically are encountered in multi-lingual databases or databases
with writers from different origin, as is the case in UNIPEN.

Figure 1 displays some examples from the latter four categories. The first row depicts
samples with a proper label, but that have a poor quality, because of sloppy handwriting. In
UNIPEN, such samples would be labeled as having a BAD quality. Rows 2,3,4 in Figure 1
depict problems of actual mislabeling, erroneous segmentation and interpretation ambiguity,

respectively.

/ AT
1 k t
S 5 o
4 e b

S— ¥ a
S X
) B
h

R

AN D‘(\} mp mg}

?
§
3
;

m((\ b‘(\_) m\w w%\)

a
5
Figure 1: Problematic cases in UNIPEN data.

There is a particular note to be made on the first and last categories, containing samples
with inferior quality or which are ambiguous. There are examples of other, well-segmented
and labeled data sets that are used for training and testing handwriting recognizers, yielding
high recognition rates. Although it is valid to report such results in literature, it also leads to
systems that fail in real-life conditions. Rather than removing such bad samples, we opt for
leaving them in the database and label the quality as BAD, or as a more suitable category
like INFERIOR or AMBIGUOUS. The latter two qualifications are not contained in the
current UNIPEN definition, however.

The verification procedure that is described in this paper has been completed for the first
three character sets (1a,1b,1c) and is currently being applied on the remaining sets. Results
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for these character sets are presented here and the preliminary set up of the verification
procedure for word and text segments is discussed as well. In the next section, Section 2,
the automated verification procedure for accepting or rejecting samples is discussed. Any
samples that are rejected must be visually inspected. This process is described in Section 3.
The procedure for verifying word and text segments is described in Section 4.

2 The automated verification procedure

The requirements for the verification procedure are straightforward: The first requirement
is that the number of accepted samples (the yield) should be maximized. This reduces the
laborious amount of manual verification and correction. The second requirement is that the
amount of errors should be kept to a minimum. It is our goal to reduce the amount of errors
in the data significantly below 1%. In the verification procedure, two parameters rule the
yield and error quantities: (i) the quality and amount of the classifiers and (ii) the way in
which the output hypotheses from multiple classifiers are combined for accepting or rejecting
a sample.

2.1 Quality of the accepted samples

Given a division of samples in two categories: the accepted and rejected samples, a test can
be performed to assess (with a certain significance «) whether the number of errors that
may be expected in the accepted samples is below a certain fraction €. The test says that if
no errors are observed in a randomly drawn subset of N accepted cases, it is valid to assume
that the error fraction is below € with confidence 1 — a.. Let the probability of drawing an
erroneous sample 7 from this pool be ¢;, which equals € for all samples if samples are drawn
with replacement. In this case, the total probability of detecting no errors in the subset is
defined as:

o= [IM1-a) =1-9"

So, in order to be certain with a probability o that only a fraction of € errors occur in
the data, it has to be verified that N randomly drawn samples contain no errors, with:

N = "log(a) (1)

An event is usually considered as statistically significant, if the probability of the event
occurring randomly is smaller than 5% (or a stricter 1%). Here, the event is “no errors in the
subset of N samples”. It is our goal to ensure with significance o = 0.01 that maximally 1%
of the accepted samples are errors and therefore, we must visually verify that no errors occur
in N = 459 samples. Note that neither o nor € can reach 0% with this test. Also note that
this test does not use any information on how the accepted set was constructed. This would
require an intricate knowledge of the behavior of the classifiers and their interdependency,
which is beyond the scope of this research.

2.2 Quality and amount of classifiers employed

In this subsection, the quality and yield of the employed individual classifiers for charac-
ter verification are discussed. Four different classifiers are used, trained on data from the
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UNIPEN trainset. The trainset and devset comprise distinct samples, but do not distinguish
between writers. This makes classifiers trained on the first set very suitable for recognizing
the latter set, as it may be expected that samples from the training set do not differ to
a large extent. Different feature schemes are being employed, describing spatial-temporal
(trajectory, running angle, angular velocity) characteristics and spatial (bitmap) character-
istics. All four classifiers were trained on the la, 1b and 1c sets of the UNIPEN trainset,
from which 36130 digits, 65483 isolated upper case, and 157264 isolated lower case segments
where extracted. A multi-layered perceptron (MLP) using these features, a knn classifier
(k=5) with the same features, the DTW (dynamic time warping) algorithm described in [8],
and the allograph matcher as described in [9] were used for classifying the three sets 1la,
1b and 1c from the devset. The knn classifier matches each of the devset samples to the
training samples from the corresponding set. Although it uses the same feature vector as
the MLP, the completely different knn, DTW, and MLP algorithms ensure an distinct view
on the data.

set la: digits | set 1b: upper case | set lc: lower case
Classifier | dev  errors | dev errors dev  errors
MLP(0) 94.3 3 87.5 2 87.1 1
MLP(.7) 90.6 2 86.4 1 4.7 1
MLP(.8) 84.4 1 76.4 1 66.4 1
MLP(.9) | 60.3 mnone |55.1 none 51.0 none
DTW(1) |858 3 92.9 none 81.9 none
DTW(2) 91.6 1 835 1 785 1
DTW(3) 88.3 1 7.2 2 715 1
DTW(4) |83.1 none |66.6 1 61.3 none
DTW(5) | 729 mnone |49.4 none 45.1 none

Table 2: Yield (percentage) and correctness of the MLP and DTW algorithms. Similar yields and
amount of errors are produced by the other two classifiers for the thresholds 1...5.

All four classifiers can use an individual threshold for deciding to accept or reject samples.
Each classifier only accepts samples if two conditions hold: (i) the threshold is passed and
(ii) the output of each classifier corresponds to the label of the original devset. All other
cases are rejected. Table 2 depicts the typical yield for two classifiers, given a certain
threshold, for the devset. In case of the multi-layered perceptron, M LP(t) corresponds
to the percentage of accepted samples where the activation of the best output unit passes
t. In case of the latter three classifiers, respectively K NN (k), DTW (k) and HCLUS (k)
represent the percentage of accepted samples for which the k& closest neighbors are correct.
For each individual classifier, a randomly drawn set of N reference samples was selected to
be visually inspected. The column ”errors” indicates the number of errors detected in the
accepted samples from a particular classifier, for a given threshold.

2.3 Increasing the yield while passing the test

As can be observed in Table 2, in very strict settings each classifier is able to pass the test.
However, this is at the cost of rejecting a large amount of samples. Therefore, a number of
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different combination schemes were evaluated that increase the yield, while still passing the
test. The assumption is that when a particular number of classifiers accept a sample (i.e.
mutually agree on the outcome, which equals the label), this can be considered as a success.
All classifiers are treated equal in this procedure. Below, different yields for respectively one,
two, three, or four classifiers that agree on each sample in the devset are listed. Numbers
that are marked with a ’(y)’ did pass the test.

nc yield la yield 1b yield 1c
4 90.5(y) 59.3(y)  57.5(y)
3 91.4(y)| 83.4(y) 81.1(y)
2
1

95.6 9L.1(y)| [89.8(y)
98.2 96.1 95.2

Table 3: Yield and results on passing the tests for cases where nc classifiers must agree.

When comparing these results to Table 2, it can be observed that the yield is much higher
in the case of combining classifiers than when using individual (strict) threshold values. At
the same time, even with combinations of only two out of four classifiers, all tests (except
in the case of digits) are passed. This is an excellent example of using multiple classifiers
for increasing the robustness of pattern recognition. Rather than increasing the decision
threshold, the different views on the data ensure that only samples are accepted when two
or more distinct observations agree.

The 1a, 1b and 1c sets from the devset were automatically divided in two categories
(accepted and rejected) by using the marked combinations from Table 3. After this first step
of the procedure, respectively 7858 (1a), 14952 (1b) and 33671 (1c) samples are accepted,
where it is assumed that these samples contain less than 1% errors, i.e. samples that should
have been rejected.

2.4 Verification of the procedure

In order to verify the correctness of the procedure, a major effort was performed by manually
verifying all processed segments from the 1a, 1b and 1c sets. For each data set, the original
data were split into multiple files, each file containing the data for only a single label type.
So, for example, the digits set (1a) was split into ten files, one for each of the digits 0-9.
The data were then displayed 100 at a time in a 10x10 grid. This allows for rapid review of
the data for verification purposes. It also provides a context for reviewing a single writers
work as a group, and for viewing and comparing several writing styles at the same time.
This sorted and multiple view context is especially helpful to discern between labeling errors,
sloppy instances of a particular allograph, and for discovering unusual allographs or writing
styles that might otherwise be evaluated as bad or mislabeled. The data are then evaluated
and appropriately assigned.

This manual verification process was performed independently of the manual labeling
process described in the next section. Based on the completely verified data set, it is pos-
sible to assess the correctness of the assumption made in Equation 1. This assessment was
performed by comparing the set of samples that were judged as erroneous by the manual



verification process, to the set of samples that were automatically accepted by the proce-
dure described above. As a result of this comparison, no samples that were accepted for la
appeared to have errors. Only 0.061% falsely accepted samples from the 1b set appeared to
have slipped through and for the 1c set, this number was less than 0.064%. These numbers
indicate that although statistically, the number of automatically accepted samples contain
less than 1% errors, the real (validated) estimates are much better.

3 The manual labeling process

All samples that were rejected in the previous process are candidates for errors. Although
the majority of these samples are probably correct (as only 4% errors were expected [3] and
about 10% of the samples are rejected), they must be verified through human supervision.
Here, three main categories of interactive operations have to be performed: (i) marking false
rejects, i.e. samples that were rejected by the ensemble but that were judged as correctly
labeled after visual inspection, (ii) correcting wrong labels, i.e. samples that were correctly
rejected and should definitely be labeled differently, and (iii) correcting wrong segmentations,
i.e. samples that could not be accepted because they were badly segmented. Please note
that as indicated in the introduction, labels and segmentations in any of these categories
may be distinguished in various levels of quality (sloppiness) and confidence (depending on
ambiguity or familiarity of the allographs).

For each collection (1a, 1b, and 1c) of the UNIPEN devset, the appropriate ensemble of
classifiers was used to filter out samples that could not be recognized with sufficient confi-
dence. These samples were alphabetically sorted and displayed via the UNIPEN displayer
upview. Upview is a program for fast visualization of large amounts of UNIPEN data. Simi-
lar to the viewer described in Section 2.4, upview depicts segments in a matrix organization.
Specific routines for processing particular samples can be engaged by clicking on the corre-
sponding segment. If one of the three kinds of interactive operations mentioned above should
be applied to a segment, the human verifier can click on the segment by using either the
left, middle or right button of his mouse. Correcting falsely rejected samples (the majority
of cases) can be performed very efficiently in this manner. As samples were depicted in
alphabetical order, anomalies can be detected fast.

Correcting false rejects Upon manually overriding the rejected samples, two options were
made available to the supervisor. The first option marks the segment as correctly labeled,
but with a proper quality. In the second option, the segment is still marked as correctly
labeled, but the quality is labeled bad. The latter option is typically in place for the samples
depicted in the first row of Figure 1.

Correcting wrong labels Similar to the cases where rejected samples had to be accepted,
labeling errors can be distinguished in two categories: wrong labels with bad quality and
wrong labels with good quality.

Marking segmentation errors As an example of a segmentation error that can be visually
detected, consider the sample below, which represents a wrongly segmented character. Such
segmentation errors are marked as recoverable and are stored for a later correction process.
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Figure 2: Wrongly segmented character and UNIPEN manipulator for recovering the correct

segmentation.

Handling undecidable errors The former three cases can be identified through careful
examination of the depicted segments using Upview. However, as depicted in Figure 1, some
cases cannot be determined as they either contain segmentation errors or ambiguous shapes.
These cases are marked as undecidable and are stored for further processing, for which the
tools depicted in Fig 2 are employed.

Two human handwriting experts performed the manual labeling process described above.
As the results depicted in Table 4 show, it appears that many samples provide causes for
uncertainty. The main reason for this uncertainty is that judging the quality of a handwriting
sample is a subjective process. Judgments on quality (i.e., when is a sample too sloppy or not,
allograph familiarity (is the label correct, is the shape ambiguous?), and even segmentation
errors are examples of subjective decisions.

set la set 1b set, 1c
category both A B both A B both A B
1 Label OK, qual. OK 348 27 160 | 507 163 67 | 1962 664 266
2 Label OK, qual. bad 46 204 18 |42 60 180 | 291 240 680
3 Label wrong, qual. OK | 6 4 7 20 36 15 |78 296 23
4 Label wrong, qual. bad | 0 5) 5) 7 14 11 |11 12 160
5 Segmentation error 95 3 43 | 554 48 49 | 258 8 90
6 Undecidable 0 2 12 | 8 3 2 4 11 12

Table 4: Manual categorization of rejected samples by two handwriting experts A’ and "B’. The
columns labeled “A” and “B” indicate judgments made by a single expert. Columns marked “both”
list the number of cases in which both experts agree.

Estimating a lower bound on the number of correctly accepted samples in the original
la, 1b and 1c sets can be performed by adding the number of overruled samples on which
both experts agree (categories 1 and 2 in Table 4) to the number of samples accepted in
the automated verification step described in Section 2. As the latter is guaranteed to have



maximally 1% errors, it can be deduced that the maximum percentage of errors in the
original sets is respectively 3.0 (1a), 4.5 (1b) and 3.2 (1c).

The sixth category (undecidable) as well as all cases where both experts do not agree are
stored for subsequent processing, either using more context (e.g. considering the surrounding
coordinate trajectories) or discussing these cases with further experts. However, as may be
concluded at this point, there is a considerable amount of samples for which judging between
labels or quality is ambiguous. It will be examined whether a more elaborate distinction in,
e.g. INFERIOR (shape, segmentation) or AMBIGUOUS (shape, label) is required.

4 Verifying words

The procedure described above was tested on three character sets. The same procedure
is now being used for verifying the other character sets 1d, 2 and 3. In order to semi-
automatically verify the word and text categories 6, 7 and 8, a more elaborate procedure
is required. Although we have not completed the word and text verification procedure, the
approach that is currently being implemented is described briefly below.

In word recognition of unknown trajectories containing (X,Y,Z) coordinates, an approach
that is often followed is to find proper character segmentation points and to generate a
character hypothesis lattice of possible word outcomes. The hypothesis space can become
very large, but is restricted by the size of the lexicon, which is used to prune irrelevant
character paths from the lattice. In the case of word wverification, the lexicon contains only
one word. In the word verification procedure, the word recognizer will first try to find the
character paths that match the word label. If this does not succeed, the word will be rejected.
If it does succeed, one or more character paths will be contained in the lattice. In the second
stage, the trajectories of subsequent characters in a path will be verified as described in the
character verification procedure. If all characters in a path are accepted, the word can be
accepted. If one of the characters in a path cannot be accepted with sufficient confidence,
the word must be rejected.

We have performed experiments with this approach, by using the velocity-based segmen-
tation algorithm described in [6]. The method works quite well, but is restricted to fluent
handwriting. Unfortunately, not all words in the UNIPEN database confirm to the required
temporal characteristics that are needed to perform segmentation on points of minimal ve-
locity. In particular, some data are acquired through mice or tablets with a low temporal
resolution. Therefore, our current efforts are targeted on implementing other segmentation
schemes, like those based on points of maximum curvature or Y-extrema. The current word
verifier has a yield of 91% with very low error rates. However, these numbers have to be
sustained in further experiments.

5 Conclusions

This paper presents a procedure for detecting and solving errors present in the UNIPEN
devset. The procedure is currently being applied to all character sets from the database.
The goal of this work is (i) to remove unrecoverable labeling and segmentation errors, (ii)
to correct labels and segmentations for cases where this is possible, and (iii) to review the
quality of UNIPEN segments.



It is shown that by using classifier combination schemes, a large portion of the data
samples can be automatically checked, while keeping the remaining error margin well within
a respectable 1% range. The samples that are rejected by the classifier combination have
been checked manually, resulting in a number of ambiguous cases that need to be further
investigated.

It has been debated that in particular the ambiguous cases or cases with bad quality
present problems for handwriting classifiers and that rather than removing these samples
from the database, a more elaborate qualification scheme is required.

Our current efforts are targeted on finalizing the verification process for the remaining
categories and further processing samples that have not been decided upon.
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