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1. Problem

There exist several good technical solutions for

robotic navigation. However, biological naviga-

tion methods are often very robust and do not

require auxiliary hardware such as GPS or radio-

graphic beacons. Therefore, it remains a chal-

lenge to understand and possibly exploit mech-

anisms known from biological navigation.

Biological navigation
� gradient based (light, polarization, salt, tem-

perature)
� beacon based (homing, goal-directed)
� dead reckoning (time, energy spent, integral

of optic flow)
� landmark based (salient patterns, orientation

flight, Figure 2)
� cognitive maps (rats, Tolman [1])
� Cartesian grids (humans & gofai robotics)

2. Research questions

In the long term, we want to develop biological-

ly plausible ”cognitive” maps. In this study, we

start by asking the following two questions:

1. How can a perceptual map of (a) salient and

(b) relevant landmarks be constructed?

2. If landmarks can be detected during explo-

ration, is there a sufficient amount of informa-

tion to construct a vectorial map of the envi-

ronment by a simple mechanism?

3. Design considerations

What is a landmark?
� a salient and
� relevant perceptual pattern

�
Salient: The robocup field is mainly col-

or coded. Search for an image representa-

tion which captures color shade while remain-

ing a sufficient degree of invariance to lighting

(weather) conditions. Solution: Hue-Satiation

images, setting luminance to a constant value.

�
Relevant: Define a proximity event as a per-

ceptual event that may signal FFF (friend/foe

or food). In monkeys, neurons in the medial-

intraparietal area will respond to stimuli that in-

vade ’egocentric space’ [2]. In our case, we will

use multimodality, i.e., vision and sonar, to take

snapshots at occurrences of proximity detection

by the sonar during field exploration.

4. Experimental setup
� Pioneer IIDX robot; 16 sonar sensors, color CCD camera (Fig. 1)� odometry on linear trajectory segments� XSAM agent-based software platform (cf. [3])� 4x4.60m ’robocup’ style field with yellow and blue goal, green floor,

a round window to the outside world, fluorescent lighting

Figure 1. Pioneer robot. Figure 2. Orientation flight in bees [4]

5. Constructing a map of
perceptual landmarks

Perception:

Figure 3. Resolution reduction and HS transform Figure 4. HSV space Image: 40x30 (WxH) pixels using Hue and Satiation
(HS) only: !#"�$�%'&)(�*�+�+ (Fig. 3 & 4) Proximity: 16 sonar-sensor readings Total bimodal perceptual frame: !,"�$-%.&)(/*�0�1

Exploration Collision avoidance behavior... ...while sampling perceptual frames at 2 Hz

Procedure Run 1: Train a Kohonen self-organized map: Koho-
nen Landmark Map (KLM) on the bimodal perceptual
frames Run 2: Collect & average the dead-reckoned landmark-
to-landmark distances Save the (sparsely filled) 25x25-dim. average-distance
matrix 2 for later analyses

Result 1: Kohonen Landmark Map

Figure 5. KLM of images and sonar readings. Image information over-
rules sonar influence. The blue and yellow goal are found, as well as
the window in the room. Raw data (inserts, right) show an intuitive
collection of nearest neighbours.

A 5x5 Kohonen self-organizing map was considered large
enough. Training sets (half an hour of exploration) typi-
cally contained 500-700 proximity-event samples. Train-
ing parameters: 200 epochs, fast cooling, resulted in a
KLM as depicted in Figure 5.

Result 2: Can the distance matrix be used for

approximate map building?

Example: three given distances yield a triangle

in the 2D plane. Four distances can be mapped

to 2D or 3D. How to project an N-dimensional

distance matrix to, say, two dimensions and

keep the topology?

The position of a point in 2D is a linear trans-

form on its distances 3 $54 to the other points,

which can be solved in a supervised manner if

enough points 687 $:9�;�$=< are known:
>?A@CB 3 $ED#F 687 $:9�;G$8<�H

Theoretically, due to the redundance in the dis-

tance data, an unsupervised estimate of the

2D structure can be obtained, by determining

the Eigenvectors of 3 by principal components

analysis (PCA): I >JLK F M K >J�K where I is the co-

variance matrix and the two orthogonal axes
>J K

with largest M K are used. The resulting represen-

tation is an affine transform of the real 2D space.

Problems: missing data (Figure 6) and landmark

ambiguity.

Figure 6. Landmark-to-landmark
transition density. The distance
matrix will not be complete:
missing-value insertions are
needed for PCA.

6. From distance matrix
to 2D field topology
(artificial data)
In order to test the reliability of PCA-based 2D maps, arti-
ficial data were generated on the basis of a square grid of
5x5 points, spaced NPOQ&.NPRS&T0 apart. Using Monte-Carlo
simulations, distance matrices were computed between
the points in the grid while varying (a) the probability of missing (inter-landmark) dis-

tances and (b) the amount of noise on the dead-reckoned dis-
tances, proper.

Computation

For each distance matrix:

1. fill in missing transitions with Gaussian noise (using
distance mean and variance in total set)

2. apply PCA to the distance matrix

3. compute projection of each landmark distance vector
on the first two PCA dimensions yielding U�VO $XW VR $=Y esti-
mates.

4. the resulting estimated space is an affine transform of
the real space, plus estimation noise

5. correlate the estimated landmark positions U�VO $ W VR $ Y with
the the real point positions UZO $ W R $ Y for landmarks [ in the
square 5x5 grid.

Results (Figure 7) show robustness against noise on the
distance measurements and an acceptable sensitivity for
absent landmark transitions: Up to \]UZ^_[a`�` Y &b+dc * , the cor-
relation between estimated and real positions yields val-
ues of 0.9 or higher.
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Figure 7. Correlation between real and PCA-based 2D grid points as a
function of the probability of missing landmark distances and noise on
the distance measurements. Simulation results from an artificial field
of 5x5 points, regularly spaced "�egfh"�ijflk apart. Very similar results
were obtained for irregular 25-landmark maps. Inset (right): example
of grid solution

7. Reconstruction of robocup
field topology (real data)
Figure 8 shows the results of an independent exploration
run by the robot in the real field.
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Figure 8. Topological landmark representation based on PCA of the
distance matrix (left). Without human intervention, the system has
correctly placed the blue(0,1) and yellow(4,0) goals in opposing loca-
tions. The position of the views on the window in the room, i.e. nodes
[(1,2),(1,3)] at the top, indicate that the y-axis should be flipped. The
map (on the right) represents the whole room, of which the actually
explored field is the large green rectangle, upper right.

8. Conclusion� Collecting visual landmarks at proximity events facilitates the
training of a self-organized, Kohonen Landmark Map� The distance matrix which is based on average dead-reckoned dis-
tances between such landmarks can be used to find an approxi-
mate vectorial map of the environment, using PCA� several neural-network variants for PCA exist (e.g., diabolo MLPs)

� the location information is there, but rather crude (Figure 8)� behaviors which exploit heading and angular information would
be conducive to calibrate the necessary affine 2D transform� cf., turn back and look behavior in bees (Figure 2)
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