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Abstract

The human reader of handwriting is unaware of the amount of back-ground knowledge that is constantly
being used by a massive parallel computer, his brain, to decipher cursive script. Artificial cursive script
recognizers do not have access to a comparable source of knowledge or of comparable computational power
to perform top-down processing. Therefore, in an artificial script recognizer, there is a strong demand for
reliable bottom-up processing. For the recognition of unrestricted script consisting of arbitrary character
sequences, on-line recorded handwriting signals offer a more solid basis than the optically obtained grey-scale
image of a written pen trace, because of the temporal information and the inherent vectorial description of
shape. The enhanced bottom-up processing is based on implementing knowledge of the motor system in the
handwriting recognition system. The bottom-up information will already be sufficient to recognize clearly
written and unambiguous input. However, ambiguous shape sequences, such as m vs n.. or d vs cl, and sloppy
stroke patterns still require top-down processing. The present paper discusses the handwriting recognition
system as being developed at the NICI. The system contains six major modules: (1) On-line digitizing,
pre-processing of the movements and segmentation into strokes. (2) Normalization of global handwriting
parameters. (3) Extraction of motorically invariant, real-valued, feature values per stroke to form a multi-
dimensional feature vector and subsequent feature vector quantization by a self-organizing two-dimensional
Kohonen network. (4) Allograph construction, using a second network of transition probabilities between
cell activation patterns of the Kohonen network. (5) Optional word hypothesization. (6) The system has
to be trained by supervised learning, the user indicating prototypical stroke sequences and their symbolic
interpretation (letter or N-gram naming).

Introduction

There are many advantages if data can be entered into a computer via handwriting rather

than via typing (Teulings, Schomaker & Maarse, 1988). These advantages are acknowledged by

hardware manufacturers who are testing the market with ’electronic paper’ with built-in computer

systems for recognizing elementary pen movements (e.g., Hayes, 1989). Electronic paper consists

of an integrated LC display plus digitizer. Although the user acceptance of this kind of hardware

will depend on the solution of some technical and ergonomical problems that are currently present

(visual parallax, surface texture, stylus wire), it seems relevant to develop on-line handwriting
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recognition systems for unconstrained handwriting. Several commercial systems exist that recognize

on-line handprint, but cursive script recognition has still not been solved satisfactorily (Tappert et

al., 1988). Ideally, a recognition system should be able to recognize both handprint, for accuracy,

and cursive script, for optimal writing speed. However, the major problem in cursive-script

recognition is the segmentation of a word into its constituting allographs prior to recognizing

them, while the allographs have different numbers of strokes (Maier, 1986). Indeed, even for

human readers cursive script is sometimes ambiguous. One advantage of on-line recognition is that

in case the system is not able to disambiguate, the correct output can be provided by the user

interactively. However, the most important advantage of including on-line movement information

is, that it contains more information than the unthinned, quantized images of the optically digitized

pen traces. Consider for instance the final allograph m which may appear in the spatial domain

as a single horizontal curl, but in the time domain still displays the three pen-speed minima. This

kind of extra information is needed to compensate for the large amount of top-down processing

done by the ’understanding’ human reader of handwriting. The enhanced bottom-up processing

is based on implementing knowledge of the motor system in the handwriting recognition system.

Our efforts to introduce handwriting as an acceptable skill in the office environment has resulted

in a multinational consortium (PAPYRUS) aimed at building software and hardware for a simple

electronic note book, allowing the user to enter data into a computer without using a keyboard.

In Teulings et al. (1987) we introduced a modular architecture for the low-level bottom-up

analysis of handwriting in our so-called Virtual Handwriting System (VHS). The present paper

discusses the handwriting recognition system as being developed at the NICI. The system contains

six major modules which are also found in several other recognition systems (e.g., Srihari and

Bozinovic, 1987, for off-line handwriting).

1. On-line recording of handwriting, pre-processing consisting of lowpass filtering and

differentiation and finally, segmentation into intended movement units (’strokes’).

2. Normalization of various motorical degrees of freedom.

3. Computation of feature values (’feature vector’) per stroke which are motor invariants or

salient to the human perceptual system, followed by the quantization of stroke shapes using

a self-organizing Kohonen network.

4. Construction of letter (allographic) hypotheses from sequences of quantized strokes.

5. Construction of word hypotheses from sequences of allographic hypotheses.

6. Supervised learning of the relation between stroke-vector sequences and allographs.

Below, these modules will be discussed in terms of their purpose, the knowledge of the motor

system or the perceptual system used, its realization and its performance.

1. Recording, Pre-processing, and Segmentation

Purpose

The pre-processing stage consists of all operations needed to provide a solid base for further

processing. At this stage the data consist of a continuous signal without any structure. The

first operation is to split the continuous signal into batches that can be processed separately. We

suggest that a word is the easiest batch to be processed. Then for each word, the signal, containing
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noise from different sources (e.g., the digitizing device), is low-pass filtered. Finally the continuous

movement is segmented into basic movement units. Knowledge of the human motor system provides

an empirically and theoretically basis for the segmentation heuristics.

Motor system

The control of the muscles involved in producing the writing movements is of a ballistic nature:

each stroke has only a single velocity maximum (Maarse et al., 1987) and a typical duration between

90 and 150 ms. Shorter-lasting motorical actions are very unlikely to be the result of intentional

muscle contractions. For an appropriate pre-processing it is relevant to understand the frequency

spectrum of handwriting movements. The displacement spectrum contains a large portion of very

low-frequency activity, mainly due to the ramp-like shape of the horizontal displacement. This is not

true for pen movement direction and velocity. The latter signal is estimated by calculating the first

time derivative. The differentiation suppresses the low-frequency components that are present in

the displacement spectrum, and a more informative spectral shape emerges. In Teulings & Maarse

(1984) it has been shown that the velocity amplitude spectrum is virtually flat from 1 to 5 Hz where

it has a small peak and then declines to approach the noise level at about 10 Hz. Therefore, a low-

pass filter with a flat pass band from zero to 10 Hz will remove the high-frequency noise portion of

the signal while leaving the relevant spectral components of the handwriting movement unaltered.

In order to prevent oscillations (Gibbs phenomenon) it has been shown that the transition band

should not be too narrow (e.g., at least 8/3 of the width of the passband). From the bandwidth

of at least 5 Hz follows that the movement can be most parsimoniously represented by about 10

samples per second. Since the endpoints of the strokes appear to be about 100 ms apart, the time

and position of the stroke endpoints as determined by two consecutive minima in the absolute

velocity are a good basis for reconstruction (Plamondon & Maarse, 1989). Points of minimum

velocity correspond with peaks in the curvature (Thomassen and Teulings, 1985).

Realizing that the vertical movements appear to be less irregular than the horizontal

progression, Teulings et al., (1987) suggested to weigh the vertical component higher than the

horizontal component in the calculation of a biased absolute velocity signal (up to factor of 10).

Realization

Handwriting movements are recorded on a CalComp2500 digitizer with a resolution of about

0.1 mm and a sampling frequency of 125 Hz using a pen which contains a solid state transducer to

measure the axial pen pressure synchronously with pen tip position. A pressure threshold serves as

a sensitive pen on/off paper detector. The data were not corrected for non-simultaneous sampling

of x and y (Teulings and Maarse, 1984) nor for variations of pen tilt (Maarse et al., 1988).

Filtering, and time derivation are done using frequency domain fast Fourier transforms. In

stroke segmentation, time points are chosen which are about 100 ms or more apart. This is done

by selecting the lowest absolute velocity minimum within a time window of 50 ms around a given

minimum (Teulings & Maarse, 1984).

Word segmentation is not based on particular information of the motor system but rather on

perceptual cues. It is done by detecting a fixed horizontal displacement while the pen is travelling

above the paper beyond the right or the left boundary of the last pen-down trajectory.

Performance

The performance of this straight-forward pre-processing does not appear to be the main source

of recognition error in the present system.
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2. Normalization

Purpose

A particular problem in handwriting recognition is its extensive variability. A given letter can

be produced in several ways, each having its own typical shape, e.g., lower case a vs upper case A or

the well-known different variants of the t. The shape variants for a given letter are called allographs.

Thus, first there is the between-allograph variability (I): a writer might select different letter shapes

in different conditions or at free will. Second, there is the within-allograph shape variation in which

the topology of the pattern is not distorted (II), the error source being (psycho)motor variability.

Topology can be defined as the number of strokes and their coarsely quantized relative endpoint

positions. Third, there is the within-allograph shape variation which actually does distort the

topology of the pattern, by the fusion of two consecutive strokes into a single ballistic movement

(III) in fast and/or sloppy writing. These three types of variabilities will all be prevalent to some

degree under different conditions. Table 1. gives an impression of the estimated order of these

variabilities depending on context and writer. The context of a given allograph is defined as the

identity of the allographic neighbours and the serial position of the target allograph.

Table 1. The estimated order of the degree of handwriting variability that a script recognition system

has to handle, under different conditions, for all three types (I-III) of variability (1= minimum variability,

4=maximum variability).

Context

Writer Identical Different

Identical 1 2

Different 3 4

The problem of allographic variation (I) can only be solved by presenting to the recognition

system at least one prototype for each allograph, as they act as different symbols and we do

not suppose that an artificial system will be able to generalize totally different allographs of the

same letter. Also, within-allographic variation leading to different topologies (III) is handled by

presenting each variant to the system separately in the training stage. Theoretically, however,

it should be possible to recover a ’clean’ topological representation of a fused allograph by

deconvolution, or by auto-regressive techniques (Kondo, 1989). However, a large part of the

within-allographic variation (II), can be solved in the bottom-up analysis by normalizing the

writing pattern, prior to extracting the features and by choosing relatively invariant features. The

importance of normalization will be discussed here and the choice of invariant features in the next

section.

Motor system

In order to extract the sequence of feature vectors of the handwriting input, several

normalization steps can be performed (See Thomassen et al., 1988, for an overview). The reason

is that a sample of a person’s handwriting contains various global subject-specific parameters, like

slant or width of the allographs (e.g., Maarse et al., 1988). Also, the motor system is able to

transform handwriting deliberately, e.g., changing orientation, size or slant (e.g., Pick & Teulings,

1983). However, these global parameters do not contain any information about the identity of the
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characters. Therefore, the handwriting patterns have to be normalized in terms of orientation,

vertical size, and slant (Thomassen et al., 1988).

It may be anticipated that several alternative normalization procedures can be proposed. We

require the system to try them all and to learn to use the most appropriate ones. As such it

resembles Crossman’s (1959) statistical motor-learning model: a person has a repertoire of several

methods for every action and learns with time which of those is most appropriate.

Realization

Orientation is defined as the direction of the imaginary base line. Vertical size consists of three

components: body height, ascender height and descender height relative to the base line. Slant

is defined as the general direction of the vertical down strokes in handwriting (e.g., Maarse and

Thomassen, 1983). The normalization consists of estimating these parameters and then performing

a normalization by a linear planar transformation towards horizontal orientation and upright.

Various algorithms to estimate the parameters for each normalization step are available and

not every algorithm may be appropriate in all conditions. Averaging these estimates is probably

not the best choice because one estimator (’demon’) may be totally wrong. A sub-optimal choice of

the orientation, for instance, has dramatic effects in the subsequent normalization of size or slant.

The solution we propose is to have the system select the best available, unused estimator using the

estimators’ current confidence and the proven correctness in the past using a Bayesian approach

(Teulings et al., in prep.). This prevents an exponential increase in computational demands with

an increasing number of estimator algorithms (demons).

Performance

The normalization estimators have not yet been evaluated statistically. However, both in

artificial data (using bimodally distributed estimates of different variance) and in handwriting

data (using a prototype system with parallel processes), the system produces stable and optimized

estimates within 30 trials. We observe that the system backtracks immediately to the normalization

level where apparently an inappropriate estimator was chosen first, after which the second best

alternative is evaluated. Even though calculation is reduced by taking the ’best first’ approach, a

multiple estimator scheme requires a lot of computation. However, due to the modularity of the

approach, a solution by means of a network of transputers is very well possible. As we are still

in a stage of testing with only two writers this system was not used currently. Only vertical-size

normalization was performed using one estimator. The effects of vertical size normalization are

relatively small as it is only one of several features. Orientation was standardized by lined paper

on the digitizer and slant can be assumed approximately constant within a writer in a standard

condition (Maarse et al., 1988). However, slant does seem to be influenced by the orientation of

the digitizer if it is located more distally than normal, e.g., to the right of the keyboard in a typical

workstation setting instead of directly in front of the writer. It was observed that the feature

quantization network partially counteracted these slant variations as evidenced by reconstruction

of the handwriting trace.

3. Feature extraction

Purpose

Each stroke of the normalized handwriting pattern must be quantified in terms of a set

of features, a feature vector, that describes the raw coordinates in a more parsimonious way.
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It is important to use features that show a relative invariance across replications and across

different contexts. As a check for the completeness of the feature set the original pattern must

be reconstructable from these features. Finally, in order to facilitate the subsequent classification

and recognition stages the feature vector itself should be quantized into a lower-dimensional

representation space.

Motor system

We employ a set of features which is related to the underlying hypothetical motor commands and

which is complemented by a few visual features. The feature vector comprises 14 features. Only nine

of them are related to the stroke itself whereas five refer to the the previous or the following stroke

and are included to capture between-stroke context effects. The procedure to select appropriate

features is to write a number of identical patterns (e.g., 16) at two speed conditions (normal and at

higher speed, respectively). The invariance of a feature of a particular stroke in those patterns can

be tested by estimating its Signal-to-Noise Ratio (SNR, See Footnote 1) (Teulings et al., 1986). The

advantage is that SNRs of totally different features can be compared and the ones with the highest

SNR can be selected. The preliminary data presented here are based on the central 28 strokes of

the word ’elementary’ produced by one subject. It appears that the SNRs are remarkably constant

between the two speed conditions such that only the averages are presented. In order to assess the

invariance across conditions, the between-condition correlation of the average stroke patterns of a

feature is employed.

The features currently employed are:

(a) The vertical positions of the beginning (Yb) and end of a stroke (Ye) relative to the base line

and the path length of the stroke (S) all scaled to the average body height, also called x-height,

referring to the lower case x. In Teulings et al. (1986) it has been indicated that especially the

relative (vertical) stroke sizes are invariant. The SNRs of Ye or Yb are 4.9, and the SNR of S is 4.7,

which are typical values for spatial characteristics. The between-condition correlations are as high

as 0.99.

(b) The directions φn of the five, straight stroke segments between two subsequent points

corresponding with the time moments

t = t1 + (n/5) ∗ (t2 − t1),

where t1 and t2 are the time moments of beginning and end of the stroke and n = [0, 1, ..., 5],

i.e., (φ1, φ2, φ3, φ4, φ5). Here we explicitly use dynamic movement information. The rationale is

that in equal time intervals the movement direction is changing a relatively constant amount (e.g.,

Thomassen and Teulings, 1984) such that each new stroke segment adds an equal amount of new

information. The two previous and the two following stroke segments (respectively, φb4, φb5, and

φe1, φe2) are included as well in order to capture the stroke’s context. The SNRs of φ1, ...φ5, are,

7.2, 8.7, 6.3, 2.1, and 1.2, respectively, and the between-condition correlations are higher than 0.92.

It can be seen that the directions of the first three stroke segments are highly invariant both within

and between conditions. However, the latter two stroke segments show a relatively low SNR but

they are kept in the feature vector as they are important to reconstruct the stroke shapes.

(c) The size of the enclosed area between the end of the stroke and the subsequent stroke (λe)

is rather a visually salient feature. The SNR of λe is 5.6 and the between-condition correlation is

as high as 0.999.

(d) A pen up indicator (P ), which shows whether the pen is predominantly up or down during

a stroke. It may be noted that strokes above the paper also count as strokes. As this is a rather
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coarse binary signal we refrained from presenting any statistics.

In summary, the selected features show absolutely high SNRs and high between-condition

correlations which indicates that these features contain the basic information, which constrains the

actual movement. As such, these features are attractive to use in a recognition system. Whether

this set of features is also a complete one, can only be demonstrated empirically.

Realization

It is trivial to estimate the feature values per stroke. It is, however, less trivial to quantify

the distance between feature vectors. An elegant method to solve the problem of irregularly

shaped probability distribution functions of the feature vector of classes is vector quantization by

an artificial self-organizing neural network (Kohonen, 1984; Morasso, 1989; Morasso et al., 1990).

This type of network performs, in a non-supervised way, a tesselation of cell units into regions, each

corresponding to a particular prototypical feature vector. The statistical properties of the training

set of feature vectors will determine the emergence of the prototypical feature vector set. We have

used a 20x20 network. Bubble radius and learning constant α decrease linearly with the number

of iterations, from 20 to 1 and from 0.8 to 0.2, respectively. The shape of the connectivity within

a bubble was a monopolar and positive rectangular boxcar. The total set of strokes was presented

100 times to the network. Cells representing a quantized vector were arranged in a hexagonal grid.

The completeness of the reduced data is tested by two reconstruction methods. In the first

method, the writing trace is reconstructed from the sequence of feature vectors. An average

Euclidean distance measure between reconstructed and original pattern is used to express the

accuracy of reconstruction, and thus, the quality of the segmentation procedure as well as the

information value of the selected features. In the second method, each feature vector is presented

to the Kohonen network, and will be substituted by the nearest prototypical feature vector.

The sequence of strokes thus yields a sequence of prototypical feature vectors that can be used

to reconstruct the original trace in a similar way as described above. The accuracy of this

reconstruction yields a second distance measure. It indicates the quality of the feature vector

quantization imposed by the Kohonen network.

Performance

The patterns produced by both reconstruction methods are legible, which is in fact the crucial

criterion rather than a spatial goodness of fit. Furthermore, the reconstructed patterns lack

individual and context-dependent characteristics which stresses that the selected features reduce

the writer dependence as well. For example, slant variations due to imperfect normalization will

be counteracted by the Kohonen network as single strokes are attracted to their closest, general

prototypes.

4. Allograph hypothesization

Purpose

At this stage the writing pattern is represented as a sequence of prototypical strokes. In

earlier experiments, we have used a Viterbi algorithm using a lexicon of allographs. Each

prototypical allograph was represented by its average feature vector (no feature vector quantization

was performed). A Euclidian distance measure was used that was adapted to angular measures

(Teulings et al,, in prep.). The problem with this approach was, that for a given stroke position,

there is a distance measure with each of the M=26 prototypes. Solution space is a matrix of MxN,
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where N is the number of stroke positions. Since the allographs mostly have an unequal number of

strokes, the plain Viterbi algorithm could not be used. Instead an iterative version was developed,

trying to recognize 1-stroke solutions, 2-stroke-solutions, and so on, until the N-stroke solution. The

path cost factor was the modified Euclidean distance, optionally combined with a digram transition

probability, each term having its own weight. The results of this technique were rather poor so

we decided to find a method that yields a smaller solution space, on the basis of quantized feature

vectors. Another approach used was to use 6 feedforward perceptrons, (Nx400)x160x26, trained by

back propagation, one perceptron for each class of N-stroked allographs, N=1,...,6. This approach,

too, yielded too many hypotheses in the MxN matrix. This problem can possibly be alleviated to

some extent by introducing competition among the output layers of different perceptrons. Another

solution is proposed by Skrzypek & Hoffman (1989), who introduce a final judgment perceptron

to combine the output of the N lower layers. The problem is, however, that for the recognition

of varying-length temporal patterns, an optimal neural architecture does not exist, yet. Of the

known architectures, recurrent nets (Jordan, 1985) are hampered by their limited ability to handle

long sequences. Temporal flow nets (Stornetta et al., 1987; Watrous & Shastri, 1987) are currently

being tested in speech recognition.

Motor system

In Teulings et al. (1983) we indicated that complete allographs are probably stored at the

level of long-term motor memory. An interesting question is to what extent the strokes belonging

to one allograph have to be kept together and whether the strokes of different realizations of

the same allograph may be assembled to yield a new allograph. The directions of the stroke

segments introduced before (i.e., φb4, φb5, φ1, ...) show that the correlations between subsequent

stroke segments within one stroke range between 0.69 and 0.90 (mean 0.80) whereas the correlations

between subsequent stroke segments across the separation of two strokes range between 0.47 and

0.53 (mean 0.50). This implies that even in identical contexts, subsequent strokes are relatively

independent. This suggests indeed that allographs are probably built up of different strokes that

may be assembled from other similar allographs.

Realization

Rather than performing a template matching between prototypical allographs and an input

sequence of strokes, the method we developed at this stage is based on the idea of an active

construction of allograph hypotheses. This is done by a neurally inspired algorithm. Once the

writer has labeled allographs interactively, and thus created a data base covering a wide range

of allographs in different contexts, the system collects, for each prototypical stroke, its possible

interpretations. The representation is based on the reasonable assumption that the fundamental

(root) feature of an allograph is its number of strokes. Thus, two allographs are definitely

different if their number of strokes differs. Each stroke interpretation has the general form

Name(Istroke/Nstroke). Thus, a given stroke may be interpreted as representing one element of

the set {a(1/3), d(1/3), o(1/2), c(1/1)}. The construction of an allograph is a left-to-right process,

where the activation level of an allograph hypothesis increases stepwise with each interpretation that

is a continuation of a previously started trace. The advantage over storing prototypical allographs

is evident: after labeling three, 3-stroked sequences, each representing the allograph a, the network

will recognize an a that corresponds to any one of the 27 combinations. The method does not

exclude the use of digrams or trigrams as graphical entities. However, the computational load on

a sequential computer will increase quadratically with an increasing number of interpretations per

8



prototypical stroke, so the use of trigrams is impractical.

Performance

Table 2 presents the recognition results of two types of handwriting. In Section 6. the training

procedures have been reported for each of the two writers. It may be stated that these results have

been achieved on unrestricted cursive script of lower case letters without the use of linguistic post

processing by means of a lexicon. On the other hand, the data are optimistic as in case of alternative

allograph hypotheses (on average about 2 alternatives) the appropriate one was accepted. This was

done under the assumption that only linguistic post-processing will be able to solve these true

ambiguities. For instance, u abd n are sometimes written identically.

Table 2. The recognition rates of allographs and of allograph strokes of five different text samples from two

writers.

Writer Text Words Time Allo- Recog- Strokes Strokes in Recog-
graphs nized allographs nized

# (s) # # % # # # %

A AP87 40 281 236 153 65 668 525 368 70
A FE90 51 224 275 243 88 862 702 657 94
A TEKST 51 89 262 198 76 755 633 542 86
B TEST1 54 221 299 209 70 987 786 544 69
B TEST2 60 234 300 229 76 965 813 608 75

Note the difference between the number of strokes that is actually part of an allograph and the

total number of strokes. Apparently 18.4% of all strokes cannot be attributed to letters because

they are connecting strokes, hesitation fragments, or editing movements. Note that there has been

no post processing in any sense. Figure 1 gives an impression of the processing stages and the

solution space for the word aquarel. Going from bottom to top the solution space (d) is liberally

filled with hypotheses of decreasing length as expressed in number of strokes. Shorter hypotheses

may ’fall down’ in holes that are not filled by hypotheses of greater length.

5. Optional word hypothesization

Purpose

Apart from yielding a list of hypothesized allographs the bottom-up information contains also

information to narrow down the number of possibly written words in a word lexicon. The word in

the list with the minimum distance from a word in the lexicon can be selected. However, if the

bottom-up process is rather certain of a given hypothesized word, then it seems superfluous to use

additional lexical top-down processing.

Motor system and Perceptual system

It is known that when writing redundant character sequences (i.e., words or parts of words that

could be recovered with a lexicon of words) the writer uses less efforts to produce the allographs

neatly.

From human reading research we know that ascenders and descenders (i.e., the contour) are

strong cues to recognize the presented word, similar to the function of consonants in speech

recognition.
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Figure 1: A sample of an on-line recorded word (aquarel) (a), its reconstruction from the sequence
of feature vectors (b), and its reconstruction from the sequence of prototypical feature vectors as
quantized by the Kohonen network (c), the solution space, each ’-’ indicating an allograph stroke
(d), the target classification as provided by the user, each ’*’ indicating strokes that are not part
of an allograph (e). Circles indicate the existence of loops as coded by the loop area feature λe.
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Realization

For the coding of the ascender and descender contour of a word the following coding scheme is

proposed. Contours are assumed to be equal if their pattern of ascenders, descenders, and body-

sized objects correspond. The body-size characters (a, c, e, i,m, n, o, r, s, u, v, w, x, z) are recoded

as o, the descender stroke of (g, j, p, q, y) is recoded as j, the ascender stroke of (b, d, h, k, l, t) is

recoded as l, whereas the (f) is a unique class f because it spans both the ascender and descender

area in cursive script. In this coding, a b is a combination of an ascender object and a body-sized

object, i.e., lo. This coding assumes that the letters as such have been identified. However, if a

repetition of N body-size characters No is coded by x, a compressed coding is formed which is not

based on the number of letters in a word. For instance, the word ’they’ can be coded by lloooj in

letter-dependent code, and by llxj in compressed code. For the time being no special attention is

paid to the allographs with dots (i, j).

Performance

Although the word-hypothesization stage has not yet been integrated it is of interest to mention

its potential performance. Letter-dependent contour coding of a Dutch lexicon of 48000 common

words yielded a collision of 4 word hypotheses on average for a given code pattern, with a worst case

of 398 collisions for the code oooooo. A number of 84.5% of the codes has a number of collisions

less or equal to the average of 4. Modal code pattern length was 9 codes.

Compressed contour coding yielded an average collision of 24 word hypotheses, with a worst

case of 1953 collisions for the code xlx. In this case, a number of 89.3% of the codes has a number

of collisions less or equal to the average of 24. Modal code pattern length was 5 codes.

The consequences of these figures for recognition are the following. First, letter-dependent

coding is practically of no use since it is the letter identification itself which is the objective

in cursive script recognition. Thus, only compressed contour coding is useful. The actual gain

depends on the linguistic frequencies of the words in the different code groups. These frequencies

are currently being analyzed.

6. Supervised learning

Purpose

Before a cursive-script recognition system is ready to work, it has to learn how to segment a

writing pattern in the to-be-recognized allographs. The segmentation into allographs of handprint,

with sufficient distance between individual allographs (e.g., spaced discrete characters, Tappert,

1986), would be relatively straightforward. If the written text is available, the learning module

could just assign each allograph within the context of a word to a character. Although it is a rather

cumbersome task to teach a system each allograph that may occur in a person’s handwriting, it is

currently still the most reliable procedure. The reason is that the allograph boundaries in cursive

script have to be specified somehow (Footnote 2).

Several methods for performing this task in a non-supervised fashion are being developed

(Morasso, 1990, Teulings et al., in prep.). Maier (1986) tried to segment an unknown writing

trace into allographs using a-priori assumptions about the shape of the connection strokes between

allographs. However, such a method produces persistent errors (e.g., segmenting allographs like

cursive b, v, w, u, or y into two parts). Therefore, teaching is presently done interactively by the

user.
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Perceptual system

Although this stage is rather artificial it is still important to make the job as ergonomic as

possible. During supervised learning the experimenter has to tell the system which parts of the

handwriting trace belong to which allograph. It is relatively easy for the perceptual system if the

user has to point only to complete strokes belong to a certain allograph. The initial connection

stroke of the cursive allographs a, c, d, g, i, j,m, n, o, p, q, u, x and y is not included and the initial

connection stroke of the cursive allographs b, e, f, h, k, l, r, s, t, v, w and z is included because it forms

a strong perceptual cue for these allographs.

Realization

The software tool to teach the system the allographs displays a writing pattern with small

circle markers on each stroke. The markers indicating the initial and final strokes of an allograph

and the name of the allograph are successively clicked by using the mouse. Occasionally, N-gram

names have to be entered by means of the keyboard. The naming of N-grams is needed when two

allographs regularly ’melt’ together because of increased writing speed. Typical fused digrams in

Dutch handwriting are or, er, and en in many writers.

Performance

Once the procedure is running smoothly it takes on average 5 s per allograph to teach the system.

After the teaching phase all allographs and their names can be made visible in order to assure that

no mistakes have been made. Two handwritings were trained. The first handwriting (Writer A)

was a neat constant-size handwriting and was trained incrementally up to 1671 prototypes by

exposing the system to characters it could not discriminate or recognize well. The average number

of strokes per allograph was 4.7. The second handwriting (Writer B) was a normal handwriting with

considerable variation of allograph sizes with words. The allographs were trained from an a priori

determined story of 240 words with low word frequencies. The script contained 1366 allographs (a

posteriori), the average number of strokes per allograph being 2.9. The total script was written in

16 minutes.

Conclusion

It seems that the complex software system requires a powerful machine. A system inspired by

the human motor system and the human perceptual system may seem to confine itself artificially.

However, we see that the architecture is a very modular one (vertical modularity) and allows

parallel modules (horizontal modularity). Problems can be very well located in one or two levels

of the system. As such it seems that can be extended and tested relatively easily. The word

hypothesization based on varying-length input sequences containing meaningless objects (e.g.,

connecting strokes) is currently a problem that has been solved only partially. It is to be hoped that

robust artificial neural network models, handling noisy sequential data of unbounded lenght, will

evolve in the future. This capability will be of special importance in languages like, e.g., German

and Dutch, where nouns and prepositions plus nouns may be concatenated to form strings that are

unlikely to be an entry in a standard lexicon.

References

Crossman, E.R.F.W. (1959). A theory of the acquisition of a speed-skill. Ergonomics, 1959, 2,

153-166.

Hayes, F. (1989). True notebook computing arrives. Byte,14 (Dec.), 94-95.

12



Jordan, M.I. (1985). The learning of representations for sequential performance. Phd Thesis.

University of California, San Diego, pp. 1-160.

Kohonen, T. (1984). Self-organisation and associative memory. Berlin: Springer.

Maarse, F.J., Janssen, H.J.J., & Dexel, F. (1988). A special pen for an XY tablet. In F.J. Maarse,

L.J.M. Mulder, W.P.B. Sjouw & A.E. Akkerman (Eds.), Computers in psychology: Methods,

instrumentation, and psychodiagnostics (pp. 133-139). Amsterdam: Swets.

Maarse, F.J., Meulenbroek, R.G.J., Teulings, H.-L., & Thomassen, A.J.W.M. (1987).

Computational measures for ballisticity in handwriting. In R. Plamondon, C.Y. Suen, J.-G.

Deschenes, & G. Poulin (Eds.), Proceedings of the Third International Symposium on Handwriting

and Computer Applications (pp. 16-18). Montreal: Ecole Polytechnique.

Maarse, F.J., Schomaker, L.R.B., & Teulings, H.L., (1988). Automatic identification of writers.

In G.C. van der Veer & G. Mulder (Eds.), Human-Computer Interaction: Psychonomic Aspects

(pp. 353-360). New York: Springer.

Maarse, F.J., & Thomassen, A.J.W.M. (1983). Produced and perceived writing slant: Difference

between up and down strokes. Acta Psychologica, 54, 131-147.

Maier, M. (1986). Separating characters in scripted documents. 8th International Conference on

Pattern recognition (ISBN: 0-8186-0742-4), 1056-1058.

Morasso, P., Kennedy, J., Antonj, E., Di Marco, S., & Dordoni, M. (1990). Self-organisation of

an allograph lexicon. Submitted to International Joint Conference on Neural Networks, Lisbon,

March.

Morasso, P., Neural models of cursive script handwriting (1989). International Joint Conference

on Neural Networks, Washington, DC, June.

Pick, H.L., Jr., & Teulings, H.L. (1983). Geometric transformations of handwriting as a function

of instruction and feedback. Acta Psychologica, 54, 327-340.

Skrzypek, J., & Hoffman, J. (1989). Visual Recognition of Script Characters; neural network

architectures. Technical report UCLA MPL TR 89-10, Computer Science Department University

of California, Los Angeles

Srihari, S.N., & Bozinovic, R.M. (1987). A multi-level perception approach to reading cursive

script. Artificial Intelligence, 33, 217-255.

Stornetta, W.S., Hogg, T., & Huberman, B.A. (1987). A dynamical approach to temporal

pattern processing Proceedings of the IEEE conference on Neural Information Processing Systems,

Denver.

Tappert, C. (1986). An adaptive system for handwriting recognition. In H.S.R. Kao, G.P. van

Galen, & R. Hoosain (Eds.), Graphonomics: Contemporary research in handwriting (pp. 185-

198). Amsterdam: North-Holland.

Tappert, C.C., Suen, C.Y., & Wakahara, T. (1988). On-line handwriting recognition: A survey.

IEEE, 1123-1132.

Teulings, H.L., Schomaker, L.R.B. Gerritsen, J., Drexler, H., & Albers, M. (in prep.). An On-line

handwriting-recognition system based on unreliable modules. In R. Plamondon and G. Leedham

(Eds.), Computer processing of handwriting. Singapore: World Scientific. Presented at the 4th

International Graphonomics Society Conference, Trondheim, July, 1989.

Teulings, H.L., Schomaker, L.R.B., Morasso, P., & Thomassen, A.J.W.M. (1987). Handwriting-

analysis system. In R. Plamondon, C.Y. Suen, J.-G. Deschenes, & G. Poulin (Eds.), Proceedings

of the Third International Symposium on Handwriting and Computer Applications (pp. 181-183).

Montreal: Ecole Polytechnique.

Teulings, H.L., Schomaker, L.R.B., & Maarse, F.J. (1988). Automatic handwriting recognition

13



and the keyboardless personal computer. In F.J. Maarse, L.J.M. Mulder, W.P.B. Sjouw, & A.E.

Akkerman (Eds.), Computers in psychology: Methods, instrumentation, and psychodiagnostics

(pp. 62-66). Amsterdam: Swets & Zeitlinger.

Teulings, H.L., Thomassen, A.J.W.M., & Van Galen, G.P. (1983). Preparation of partly precued

handwriting movements: The size of movement units in writing. Acta Psychologica, 54, 165-177.

Teulings, H.L., Thomassen, A.J.W.M., & Van Galen, G.P. (1986). Invariants in handwriting: The

information contained in a motor program. In H.S.R. Kao, G.P. Van Galen, & R. Hoosain (Eds.),

Graphonomics: Contemporary research in handwriting (pp. 305-315). Amsterdam: North-

Holland.

Teulings, H.L., & Maarse, F.J. (1984). Digital recording and processing of handwriting movements.

Human Movement Science, 3, 193-217.

Thomassen, A.J.W.M., Teulings, H.-L., Schomaker, L.R.B., Morasso, P., & Kennedy, J. (1988).

Towards the implementation of cursive-script understanding in an online handwriting-recognition

system. In Commission of the European Communities: D.G. XIII (Ed.), ESPRIT ’88: Putting

the technology to use. Part 1 (pp. 628-639). Amsterdam: North-Holland.

Thomassen, A.J.W.M., Teulings, H.L., Schomaker, L.R.B., Morasso, P., & Kennedy, J. (1988).

Towards the implementation of cursive-script understanding in an online handwriting-recognition

system. In Commission of the European Communities: D.G. XIII (Ed.), ESPRIT ’88: Putting

the technology to use. Part 1 (pp. 628-639). Amsterdam: North-Holland.

Thomassen, A.J.W.M., & Teulings, H.L. (1985). Time, size, and shape in handwriting: Exploring

spatio-temporal relationships at different levels. In J.A. Michon & J.B. Jackson (Eds.), Time,

mind, and behavior (pp. 253-263). Heidelberg: Springer.

Watrous, R. & Shastri, L. (1987). Learning phonetic features using connectionist networks.

Proceedings of the 1987 IJCAI, Milano, pp. 851-854.

Footnote 1.

In order to derive an estimation of the SNR, each replication’s pattern of stroke data is considered

as the sum of an invariant component (signal) and an uncorrelated, movement-impaired component

(noise). Of course, the signal representing metric data per stroke (e.g., S) may have a small over-all

multiplied parameter and the signal representing directions per stroke (e.g., φ1) may have a small

over-all added parameter. Therefore, it is wise to correct for any overall parameter. The variance

of the pattern equals the variance of the signal plus the variance of the noise. Furthermore, the

variance of the pattern of stroke data averaged over n replications equals the variance of the signal

plus only 1/n times the variance of the noise. From these two equations, the standard deviations

of the signal and the noise can be calculated as well as their ratio, the SNR.

Footnote 2.

The on-line digitized handwriting training and test sets are available on paper and on-line digitized

with x, y and pressure data in a selfexplanatory, documented ASCII format on an MSDOS 3.5”

DS diskette.

About the authors:

Lambert Schomaker has studied muscle control from the psychophysiological point of view and

is currently studying handwriting movement control and artificial neural modeling aspects from

the psychomotor perspective. His main interests are neural network models for movement control,

robotics, and signal processing in movement analysis.

14



Hans-Leo Teulings received his PhD in 1988 on Handwriting-Movement Control at the University of

Nijmegen, The Netherlands. Current interests range from the human representation of handwriting

movements, the recognition aspects, to handwriting impairment in Parkinson patients, and

handwriting-movement training using computers.

Acknowledgment

This research was supported by ESPRIT Project 419, Image and Movement Understanding.

15


