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Introduction
It was at the beginning of my graduate time, when, during a guest lecture at the 
University of Chemnitz, Frank Ritter talked about his favorite scientific articles. 
One of them was Allen Newell’s 20 questions paper (1973). Newell had argued that 
psychology focuses too much on isolated, experimental phenomena and simplifying 
dichotomies, rather than working towards a precise and unified theory of cognition. If 
I would have read this paper in more detail then, and truly understood what Newell 
meant, working on my dissertation might have gone more smoothly. But I did not 
do that. Rather, I began working in “good psychological tradition”. I had studied my 
theories, I knew how to set up experiments and do an ANOVA, and I thought that 
was sufficient to investigate cognition. 

The starting point of my dissertation was the idea that automatic memory processes 
are an important aspect underlying decision making. Specifically I was interested 
in the role of memory activation in diagnostic reasoning. Diagnostic reasoning is 
the reasoning from observed data to explanations and involves the generation and 
evaluation of hypotheses that represent potential explanations. I wanted to know why, 
when confronted with a number of medical symptoms, possible diagnoses seem to pop 
up almost effortlessly in a physician’s head. And, why, when being in a certain context, 
one cannot help but interpret new information in the light of this context. My idea 
was that these phenomena were largely due to automatic memory processes, which 
make information that is associated to the current context (e.g., observed medical 
symptoms) available in memory. Such available information could then be subjected 
to more deliberate reasoning processes as they had been classically discussed in the 
reasoning literature. While the idea of automatic activation processes regulating the 
availability of memory contents was not new, direct experimental evidence for such 
memory processes in diagnostic reasoning was sparse. 

With the goal to present such evidence, we set out to conduct a series of experiments 
(Baumann, Mehlhorn, & Bocklisch, 2007; Mehlhorn, Baumann, & Bocklisch, 2008). 
In these experiments, we used a probe reaction task to track the availability of different 
diagnostic hypotheses in memory, while participants had to generate diagnoses for 
sequentially presented medical symptoms. The probe reaction task was based on the 
idea of lexical decision tasks, where participants respond faster to a probe that is 
more highly activated in memory than to a probe of lower activation (e.g., Meyer & 
Schvaneveldt, 1971). If observations indeed activate associated explanations in memory, 
then, when presented with symptoms like fever, nausea, and headache, a participant 
should react faster to the probe “influenza”, than to a probe that is less related to 
these symptoms (e.g., “pregnancy”), or to a neutral probe (e.g., “house”). To avoid the 
possible influence of previous experience on memory activation, in the experiments 
we used artificial medical knowledge, which consisted of medical symptoms that were 
caused by hypothetical chemicals. Chemicals were named with single letters, which 
allowed us to use letters in the probe reaction task, thereby preventing potential 
problems associated with the use of complete words (e.g., individual differences in 
reading speed and word frequency effects).
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Overall, the results seemed to support our theoretical considerations. For example, 
diagnostic hypotheses that were compatible to all observed symptoms caused the 
fastest probe reactions, suggesting that these compatible hypotheses were indeed more 
easily available in memory than their alternatives. Also, with an increasing amount of 
observed symptoms, reaction times to compatible hypotheses decreased faster than 
reaction times to other hypotheses. This suggested that the availability of hypotheses 
indeed might be a function of their association to observed symptoms. However, when 
trying to understand the results in detail, we quickly ran into open questions. Could 
it have been that the results were actually not caused by memory activation, but were 
merely byproducts of deliberate reasoning processes? And, assuming that it was indeed 
memory activation that caused our results, how would the underlying activation 
processes look precisely? What we needed was a detailed model of the assumed 
memory processes that would make precise predictions.

The first “model” that we generated consisted of several boxes and arrows (see 
Figure 1.1 and Baumann et al., 2007). The boxes represented medical symptoms (e.g., 
headache) and their potential explanations (e.g., influenza). The arrows represented 
the associations between symptoms and explanations that could be positive (solid 
lines) or negative (dashed lines). This model was useful to illustrate the processes 
that we assumed to cause the activation of diagnostic hypotheses. For example, we 
proposed that “After the integration phase the influenza explanation as a still relevant 
explanation should be strengthened as it receives activation both from the symptom 
fever and the symptom headache [...]” (Baumann et al., 2007, p. 804). However, the 
problem with this model was a lack of precision. For example, why exactly was there a 
positive association between headache and influenza and how strong was it precisely? 
As Allen Newell (1973) put it, in such a model “Too much is left unspecific and 
unconstrained.” (p. 301).

	  
Figure Box and arrow model of memory processes assumed to 

underlie diagnostic reasoning as reported in Baumann et 
al. (2007). 

1.1
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The lack of theoretical precision, which we faced when trying to understand our 
data, is inherent to verbal theories of cognition (and their associated box and arrow 
models). A solution for that problem has been proposed by Allen Newell (1990) and 
many others. It is the use of computational cognitive models. These models should 
be specific and constrained enough to provide quantitative predictions that can be 
tested by comparing them to human data. After the initial difficulties described above, 
I moved on to using such models. In the remainder of the introduction I give a brief 
introduction of the two modeling approaches that I used in my dissertation and 
present an overview of the chapters in this thesis.

A Connectionist Approach: ECHO
In his theory of explanatory coherence, Thagard (1989a, 1989b, 2000) proposes that a set 
of propositions (e.g., observations and their potential explanations in memory) can be 
evaluated by automatic activation processes, purely on the basis of their coherence. In 
the connectionist constraint-satisfaction implementation of this theory, ECHO (e.g., 
Thagard, 1989a), propositions are represented by a network of interconnected nodes. 
The connections between the nodes represent the relations (constraints) between 
the respective propositions. Depending on these connections, when the network is 
integrated, activation or inhibition is spread between the nodes. After the network has 
been integrated, the strength of a proposition is indicated by the numerical activation 
of its node, which depends on its coherence to the other nodes in the network. 
Applying Thagard’s theory to diagnostic reasoning predicts that those explanations 
that are strongly associated with the observed data are most strongly available in 
memory (because they receive a large amount of activation) and that less strongly 
associated explanations have a lower availability (because they receive less activation 
and potentially also inhibition). 

As we will show in Chapter 3, such a connectionist account increases the precision 
compared to mere verbal predictions. It requires a detailed specification of the 
assumed memory processes (e.g., how strong is the connection between observation 
x and explanation y?) and it predicts precise numerical activation values that can be 
compared to behavioral data. However, this account has also some major limitations 
(see e.g., Fodor & Pylyshyn, 1988, for an overview). Maybe most importantly, it 
does not represent a fully functioning cognitive system. While presenting a precise 
account of activation dynamics within an assumed network, it remains mute about the 
interplay of these dynamics with, for example, perceptual, decisional, intentional, and 
motor processes, which might play an important role in human reasoners. Another 
problematic point is the interpretability of its results. The model predicts precise 
activation values, which can be plotted against and correlated with behavioral data. 
But what exactly do these values mean and how, precisely, do they correspond with 
behavioral data? 
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An Architectural Approach: ACT-R
An approach that not only endeavors precision, but also comprehensiveness in terms 
of understanding how the brain “achieves the function of the mind” (Anderson, 2007, 
p. 7) is the use of cognitive architectures1. The term “cognitive architecture” was, maybe 
most prominently, described by Allen Newell (1990) as a way towards the “ultimate 
goal” of a unified theory of human cognition. The idea is that the architecture is both 
a psychological theory, as well as a platform for constructing computational models, 
that allows for investigating different phenomena within one framework. This idea has 
been developed since then, resulting in various architectures, like for example EPIC 
(Meyer & Kieras, 1997), Soar (A. Newell, 1990), and ACT-R (Anderson et al., 2004).

The cognitive architecture I used in my dissertation is ACT-R, because it puts a 
strong emphasis on processes underlying memory activation. It has received empirical 
support and validation from a large number of studies in a variety of research areas, 
ranging from list memory (Anderson, Bothell, Lebiere, & Matessa, 1998) to car 
driving (Salvucci, 2006). ACT-R allows for modeling of the complete task as solved 
by the participant. Thereby, without requiring additional assumptions about how the 
model maps on the experiment, it produces results that are directly comparable to 
human data. This is possible because the underlying theory makes precise predictions 
not only about the probability and latency of retrieving facts from memory, but also 
about the time needed to perceive stimuli and give responses. 

In ACT-R, cognition is described by a number of independent modules. Each of 
the modules represents a different cognitive resource and is associated with specific 
brain regions. For example, a visual module allows ACT-R to perceive visual stimuli 
and a motor module allows for motor actions like pressing a key. Most important 
for the work presented in this thesis are three of the central cognitive modules: the 
imaginal module, the declarative module, and the procedural module. 

The imaginal module holds information necessary to perform the current task and is 
thereby comparable to the focus of attention in working memory (e.g., Borst, Taatgen, 
& van Rijn, 2010). In a diagnostic reasoning task, the imaginal module might, for 
example, hold observed medical symptoms, which determine the present usefulness of 
potential explanations. In Chapter 2 we investigate how such observed symptoms can 
affect the availability of explanations in long-term memory.

The declarative module allows for the storage in and retrieval of facts from 
declarative memory and thereby represents ACT-R’s account of long-term memory. 
In a diagnostic reasoning task, such facts could, for example, be possible diagnoses. 
Availability of the facts is determined by their activation (see Chapters 2, 4, and 5 for 
a detailed description of the underlying equations). Basically, the activation of a fact 

1 In the literature, the term cognitive architecture has also been used for connectionist models (e.g., Kintsch, 1998). In this thesis we 
use the term cognitive architecture exclusively for what Fodor and Pylyshyn (1988) referred to as “Classical architectures”, that is, 
architectures that are committed to a symbol-level of representation and thereby aspire “paying attention to three things: the brain, 
the mind (functional cognition), and the architectural abstractions that link them” (Anderson, 2007, p. 8). However, as Fodor 
and Pylyshyn (1988) point out, connectionism might provide “an account of the neural [...] structures in which Classical cognitive 
architecture is implemented” (p. 3). In fact, Lebiere and Anderson (1993) successfully created such a connectionist implementation of 
an early version of ACT-R.
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represents the likelihood that it will be needed in the near future and depends on 
two factors: its past and present usefulness. In Chapter 4 we explore the respective 
contribution of these two factors for the availability of hypotheses in diagnostic 
reasoning.

The procedural module allows for communication between the other modules. It 
contains production rules, which can recognize patterns of information in the modules’ 
so-called buffers, and react to these patterns by sending requests to the modules. A 
production rule might, for example, recognize that a visually presented symptom was 
encoded in the visual buffer and react by requesting the name of this symptom from 
declarative memory. Production rules implement strategies that the reasoner might use 
in a certain situation. For example, after retrieving an explanation for observed medical 
symptoms from memory, one strategy might be to simply give that explanation as 
diagnosis, whereas another strategy would be to deliberately test the explanation 
against potential alternatives. In Chapter 5 we use this module to implement different 
decision making strategies and test how well these strategies predict behavioral data.

Overview
In this thesis I will show how we used the approaches outlined above to implement 
and test precise models of decision making. 

In Chapter 2, we introduce our idea of how memory activation affects the 
availability of explanations. We present several ACT-R models that all share the 
assumption that observations stored in working memory can activate associated 
explanations in long-term memory. The models differ in their assumptions about how 
sequentially observed symptoms affect the activation of associated explanations over 
time. Using ACT-R allows us for testing these assumptions within a well-established 
and elaborate theory of human memory. It also allows for investigating the interaction 
of the assumed memory processes with other potentially task-relevant factors. The 
results of the models are compared to human data from two behavioral experiments 
in which we used the probe reaction task mentioned above to track the availability of 
different explanations during a sequential diagnostic reasoning task. 

In Chapter 3, we explore different methods of modeling sequential information 
integration with connectionist constraint satisfaction models, based on Thagard’s 
ECHO. Just like the ACT-R models presented in Chapter 2, the models share the 
basic assumption that observations can activate associated explanations, but they differ 
in how sequentially observed medical symptoms affect the activation of explanations 
over time. The models are evaluated on the probe reaction data from the same 
experiments as presented in Chapter 2.

In Chapter 4, we investigate how an explanation’s present usefulness, as reflected by 
the observed symptoms, interacts with its past usefulness, as reflected by the recency 
and frequency of previous encounters with the explanation. We thereby test whether 
the memory mechanisms as proposed by the ACT-R theory can explain why, out of 
all possible hypotheses, reasoners tend to generate those hypotheses from memory 
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that have a high a priori probability and a high usefulness in the current context. 
Model predictions are compared to behavioral data from an experiment in which we 
manipulated both memory components independently, by means of a secondary task 
that had to be solved next to a primary diagnostic reasoning task.

In Chapter 5, we move on to a slightly different domain of decision making. 
Whereas in Chapters 2 to 4 we investigate how automatic activation process affect 
the availability of information in memory as a function of the past and present 
environment, in Chapter 5 we investigate how reasoners use information from memory, 
given its availability. More specifically, we focus on a debate that has evolved over the 
last decade in the decision-making literature and is centered on the question whether 
decisions can better be described by simple non-compensatory heuristics or by more 
complex compensatory decision making strategies. In Chapter 5 we show how the 
precision and comprehensiveness provided by a cognitive architecture can be used to 
get beyond the simple dichotomy of non-compensatory versus compensatory decision 
strategies. We use ACT-R to implement various strategies that have been discussed 
in the literature and compare the resulting quantitative predictions to behavioral data 
from two previously published experiments (Pachur, Bröder, & Marewski, 2008).


