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Abstract
In the field of diagnostic reasoning, it has been argued that memory 
activation can provide the reasoner with a subset of possible explanations 
from memory that are highly adaptive for the task at hand. However, few 
studies have experimentally tested this assumption. Even less empirical and 
theoretical work has investigated how newly incoming observations affect 
the availability of explanations in memory over time. In this chapter we 
present the results of two experiments in which we address these questions. 
While participants diagnosed sequentially presented medical symptoms, the 
availability of potential explanations in memory was measured with an 
implicit probe reaction-time task. The results of the experiments were used 
to test four quantitative cognitive models. The models share the general 
assumption that observations can activate and inhibit explanations in 
memory. They vary with respect to how newly incoming observations affect 
the availability of explanations over time. The data of both experiments 
were predicted best by a model in which all observations in working 
memory have the same potential to activate explanations from long-term 
memory and in which these observations do not decay. The results illustrate 
the power of memory activation processes and show where additional 
deliberate reasoning strategies might come into play.
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Introduction
A basic goal of human cognition is to explain and understand the events happening in 
the world. Whether it is in scientific discovery, medical diagnosis, software debugging, 
or social attribution, people try to find explanations based on what they observe. The 
kind of reasoning underlying this task is often called abductive ( Josephson & Josephson, 
1996) or diagnostic reasoning (Kim & Keil, 2003) and it is described as highly complex. 
First, complexity arises from the large number of potential observations that can each 
have a large number of potential explanations. Take for example a physician who is 
confronted with a patient’s symptoms. Each of the symptoms has a number of possible 
alternative explanations and only the combination of symptoms allows for selecting a 
diagnosis. The task is further complicated by the fact that information often does not 
become available all at once, but only over time. Even if given all at once, observations 
might be perceived and understood only over time due to limited cognitive capacities. 
Thus, the ability to integrate newly incoming information over the course of the 
diagnosis process is important. A related factor is uncertainty. The physician can never 
be sure if all symptoms necessary to find the correct diagnosis were observed and 
whether all observed symptoms were caused by the current disease. Despite all these 
constraints, people often generate explanations with high speed and accuracy (T. R. 
Johnson & Krems, 2001). 

Theories trying to understand diagnostic reasoning consistently make the distinction 
between, on the one hand, the generation of a potential set of explanations or 
hypotheses and, on the other hand, the evaluation of these explanations or hypotheses 
against potential alternatives. Often the evaluation of hypotheses is assumed to be 
performed in a second, deliberate reasoning stage after a first stage in which potential 
hypotheses are generated from memory (e.g., Evans, 2006; Kintsch, 1998; Thomas, 
Dougherty, Sprenger, & Harbison, 2008; Wang, Johnson, & Zhang, 2006a). For the 
deliberate stage of hypothesis evaluation, a number of strategies that allow reasoners 
to deal with the complexity of the task have been investigated (cf. T. R. Johnson & 
Krems, 2001). However, a key aspect of diagnostic reasoning is that observations can 
be associated with a large number of possible explanations in memory (in fact, the 
number of potential explanations has been shown to be computationally intractable; 
Bylander, Allemang, Tanner, & Josephson, 1991). Generating and deliberately 
evaluating the complete set of explanations is therefore often impossible due to 
constraints set by cognitive capacity and time available for diagnosis (Dougherty & 
Hunter, 2003a, 2003b). Consequently, already during the generation of explanations 
from memory a selection amongst potential alternative hypotheses has to be made 
(Dougherty, Thomas, & Lange, 2010; Thomas et al., 2008). 

The goal of this chapter is to more closely investigate how memory activation 
processes can provide the reasoner with such an adaptive selection. Specifically, we 
want to test how memory activation can help the reasoner to select amongst a large 
number of potential explanations and how this selection is affected by newly observed 
pieces of information over time. In the remainder of the introduction we first give 
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a short overview of empirical findings on hypothesis generation and then we take a 
closer look at the theoretical background. 

Empirical Findings on the Generation of Explanations
Thomas et al. (2008) stated, “Although the evaluation of prespecified hypotheses 
has been the subject of research for many years, relatively little research has been 
concerned with the initial generation of the to-be-judged hypotheses.” (p. 158; see also: 
Weber, Böckenholt, Hilton, & Wallace, 1993). Existing empirical findings concerning 
hypothesis generation consistently show that reasoners generate only a subset of up 
to four possible hypotheses from memory (Barrows, Norman, Neufeld, & Feightner, 
1982; Dougherty, Gettys, & Thomas, 1997; Dougherty & Hunter, 2003a; Elstein, 
Shulman, & Sprafka, 1978; Joseph & Patel, 1990; Mehle, 1982; Weber et al., 1993). 
Whereas this small number of generated hypotheses seems to contradict the large 
number of potential hypotheses, research has shown that the selection of hypotheses 
into the generated subset is highly adaptive. Out of all potential hypotheses, reasoners 
generate those hypotheses that have a high likelihood of being relevant as explanations 
in the current situation. Specifically, those hypotheses seem to be generated that (a) 
have a high a priori probability based on previous experiences (Dougherty et al., 1997; 
Dougherty & Hunter, 2003a; Gettys, Pliske, Manning, & Casey, 1987; Sprenger & 
Dougherty, 2006; Weber et al., 1993) and that (b) are most likely in the context of the 
current observations (Weber et al., 1993).

Although the studies mentioned above say something about the outcome of the 
hypothesis generation process, they say little about the cognitive processes that yield 
this outcome (exceptions are Dougherty & Hunter, 2003b, and Dougherty & Sprenger, 
2006, who showed that participants tended to generate those hypotheses that were 
most “active” as defined by a strength manipulation in the learning phase). To test if 
memory activation can indeed help the reasoner to select explanations from memory, 
the availability of explanations has to be assessed as a function of the observed 
information. In previous experiments, the availability of explanations has been 
estimated using explicit measures. For example, Wang, Johnson and Zhang (2006b) 
asked their participants for explicit belief ratings after serially presented observations, 
and Dougherty and Hunter (2003b) asked their participants for probability judgments 
of different explanations. However, such explicit measures have two major drawbacks. 
First, explicitly asking participants during the course of the task might influence the 
outcome of the task itself (cf. Hogarth & Einhorn, 1992). Second, although there have 
been efforts at clarifying this issue (Drewitz & Thüring, 2009; Thomas et al., 2008), it 
is not clear how the implicit concept of availability in memory translates into explicit 
concepts like ratings and judgments. Furthermore, to investigate how the availability 
of explanations is affected by newly incoming observations, availability should be 
tracked over time. With few exceptions (Baumann, Krems, & Ritter, 2010; Sprenger, 
2007; Wang et al., 2006b) this issue has received little attention in previous studies. 

Methods used in diagnostic reasoning research range from protocol analysis of 
physicians explaining a patient’s pathophysiology (Arocha, Wang, & Patel, 2005) to 



19Introduction

simple laboratory experiments where only a few pieces of evidence and a few alternative 
hypotheses need to be considered (e.g., Wang et al., 2006b). Whereas the first method 
allows for high external validity of aspects like task complexity, the second method 
allows for high control of aspects like previous knowledge. For analyzing the subtle 
effects of memory activation it is essential to have an optimal trade-off between both. 

In this chapter we attempt to address the issues discussed above by designing 
experiments in which participants have to generate explanations in a diagnostic task 
that is more complex than in previously reported studies and that at the same time 
are controlled enough to study memory effects. During this diagnostic reasoning task, 
we assess the availability of explanations not only at the end of a trial, but we also 
track the availability while new symptoms are observed. We do this with an implicit 
probe reaction time measure, rather than with an explicit measure of the explanations’ 
availability. This should reduce potential effects of the measurement on the outcome 
of the task itself. Before we present the experiments in detail, we discuss the potential 
role of memory activation for the generation and evaluation of explanations. 

Memory Activation and the Generation 
and Evaluation of Explanations
To understand the role of memory activation in diagnostic reasoning, it is necessary 
to consider how diagnostic knowledge is represented in memory (Arocha et al., 2005). 
A large number of studies have shown that with increasing experience in a domain 
reasoners develop knowledge structures whose content reflects the structure of the 
environment (Anderson & Schooler, 1991; Gigerenzer, Hoffrage, & Kleinbölting, 
1991). To illustrate this using our earlier example, a physician will have a stronger 
memory representation of a diagnosis that has occurred frequently in the past, 
compared with a rare diagnosis. Similarly, the association between symptoms and 
their potential diagnoses in memory will increase with increasing experience of their 
co-occurrence. Given such a highly adapted knowledge structure, data extracted from 
the environment can serve as a cue for the retrieval of diagnostic hypotheses from 
long-term memory (Arocha & Patel, 1995; Ericsson & Kintsch, 1995; Kintsch, 1998; 
Thomas et al., 2008). An observation’s efficiency as retrieval cue will depend on how 
strongly it is linked to the explanation in memory; the stronger the link, the more 
activation will occur (Anderson et al., 1998). 

So far, we have looked at the question of how observed information can serve as 
a retrieval cue for one associated explanation from memory. However, a key aspect of 
diagnostic reasoning is that pieces of information are usually associated with a large 
number of possible explanations. Retrieving them all from memory is often impossible 
due to constraints set by cognitive capacity and the time available for diagnosis. To 
understand diagnostic reasoning it is therefore necessary to understand not only how 
one potential explanation is retrieved from memory but also how a selection is made 
among all the possible alternatives. For selecting explanations from a set of alternatives 
it is necessary to evaluate the alternatives in the set. A factor commonly linked to the 
evaluation of explanations is their coherence with the data. In his theory of explanatory 
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coherence, Thagard (1989a, 1989b, 2000) showed how a set of potential explanations 
can be evaluated purely on the basis of the coherence between the explanations and 
the observed data. In the computational implementation of this theory, ECHO, 
pieces of information are represented by interconnected nodes that, depending on 
their coherence to each other, spread activation or inhibition. The theory predicts that 
explanations most coherent with the observed data are most strongly available (because 
they receive a large amount of activation) and that explanations that are associated 
with only some of the observations have a lower availability (because they receive some 
inhibition). Applied successfully to explain phenomena in various domains, the theory 
has been described as a “computationally efficient approximation to probabilistic 
reasoning” (Thagard, 2000, p. 95). However, in its original implementation it is used to 
model the integration of information only at a certain point of time. 

An extension of Thagard’s theory that can account for sequential information 
integration has been proposed by Wang at al. (2006b; see also Mehlhorn & Jahn, 
2009). They assumed that activation and inhibition spreading from new observations 
would add to the activation of observations that were observed before. Referring to 
work on memory retention, they proposed that the impact of observations decays 
exponentially with the square root of time. Consequently, over time observations 
should increasingly lose their impact on memory activation. This assumption is in 
contrast to recent findings that suggest that information in working memory seems 
to be subject to very little decay (Berman, Jonides, & Lewis, 2009; Jonides et al., 2008; 
Oberauer & Lewandowsky, 2008) or even no decay (Lewandowsky, Oberauer, & 
Brown, 2009). Thus, whereas constraint satisfaction seems to be a plausible mechanism 
for information integration at a certain point in time, the integration over time leaves 
open questions. Furthermore, the implementation of the theory into a connectionist 
network makes it difficult to assess how such a hypothesis evaluation mechanism 
would interact with the constraints set by other aspects of cognition, like perception, 
memory, and deliberate decision strategies. 

A theory that takes into account the effect of limited cognitive resources on 
hypothesis generation and evaluation has recently been proposed by Thomas et al. 
(2008). In their HyGene model, diagnostic reasoning is described as a two-stage 
process, where a phase of automatic memory retrieval of hypotheses is followed by a 
phase of deliberate hypothesis evaluation. The memory retrieval stage itself consists 
of two parts. The first stage is a prototype extraction process, in which a memory 
trace is derived from episodic memory that “resembles those hypotheses that are most 
commonly (and strongly) associated with the data” (Dougherty et al., 2010, p. 308). 
In the second stage, this prototype is matched against known hypotheses in semantic 
memory. If sufficiently activated by the prototype, hypotheses from semantic memory 
are placed in working memory where they can be evaluated by deliberate reasoning 
processes. Although the authors stressed the importance of understanding sequential 
information integration and discussed possible related questions, they did not present 
predictions for the sequential integration of information. Such predictions are 
complicated due to the assumptions of two distinct memory systems that are involved 
in hypothesis generation. Would, for example, new observations lead to the retrieval 
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of different prototypes from memory? And if so, what would be the effects on the 
availability of hypotheses that were activated by previously retrieved prototypes?

Given the open questions presented above, we were interested in whether memory 
activation can indeed explain the generation and evaluation of explanations as found 
in an experimental setting. To answer this question, we extracted the most essential 
elements of the theories presented above and implemented them into a general 
cognitive architecture. For avoiding additional questions that might arise from 
understanding the interaction of episodic and semantic memory we focus on the 
effects on semantic memory. The basic assumption of the theories mentioned above 
is that each observation can affect the availability of explanations in memory. If an 
observation supports a particular explanation, the observation will spread activation 
to the explanation and will make it more available to the reasoner. If an observation 
does not support a particular explanation, the observation will spread inhibition to the 
explanation and make it less available to the reasoner.1 If an observation is completely 
unrelated to an explanation, the explanation’s activation will not be affected. Following 
the idea of Wang et al. (2006b), we assume that if several observations are currently in 
the focus of attention (that is, stored in working memory) they can serve as a sort of 

“combined retrieval cue” for explanations in long-term memory. 

Current Chapter
As mentioned above, not much progress has been made in understanding how exactly 
sequentially made observations will affect memory activation over time. To shed light 
on this question, we implemented four different cognitive models. These models all 
share the general assumptions about memory activation and inhibition as presented 
above, but they vary with regard to how strongly newly incoming observations affect 
the availability of explanations over time. In a first model, model-current, at each 
point in time only the most recent observation affects the availability of explanations. 
This model is designed to test whether the assumption that sequentially observed 
symptoms serve as combined retrieval cue is necessary, or whether the activation and 
inhibition spread by the current symptom alone can fit the activation curves found in 
the experiments. In the remaining three models the observations serve as combined 
retrieval cue and, thus, all affect the explanations’ availability. The models vary with 
regard to how strong each observation is weighed. One of the models, model-time, tests 
the assumption that observations are weighed according to the times since they were 
observed, as proposed by Wang et al. (2006b). As decay of information in working 
memory has been questioned (Berman et al., 2009; Jonides et al., 2008; Lewandowsky 
et al., 2009; Oberauer & Lewandowsky, 2008), we implemented two alternative 
models in which observed information does not decay. One model, model-constant, 
tests the assumption that observations are weighed according to the total amount of 
1 In contrast to the concept of spreading activation between positively associated memory elements, the concept of spreading inhibition 
between negatively associated memory elements is neglected in many theories of memory retrieval, as it often has little practical 
impact (cf. Anderson & Lebiere, 1998). However, in diagnostic reasoning making a certain observation does not only increase the 
probability for positively associated explanations being the correct diagnosis, but it also decreases the probability of other explanations. 
Consequently, inhibition between observations and nonsupported explanations becomes important (Dougherty & Sprenger, 2006).
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information that is currently held in working memory. This assumption arises from 
the idea that the total amount of activation that can be spread from working memory 
is a limited and constant amount that will be equally divided between the elements 
in working memory (Lovett, Daily, & Reder, 2000). The fourth model, model-number, 
tests the assumption that all observations currently stored in working memory are 
weighed equally, independent of the time since they were observed and independent 
of the number of observations. Consequently, in this model, the total amount of 
activation and inhibition spread into long-term memory will increase with the number 
of observed symptoms.

To test the models, we conducted two behavioral experiments. In the experiments, 
participants had to find diagnoses for sequentially presented series of medical 
symptoms. The knowledge necessary to solve this task consisted of a number of 
symptoms, each of which was associated with a number of alternative explanations. 
Whereas the symptoms were real medical conditions, their association with the 
explanations was artificial to avoid possible effects of prior knowledge and for being 
able to fully balance the material. To be able to investigate the effects of memory 
activation on the generation of explanations, we tried to minimize the role of 
deliberate hypothesis evaluation strategies in the task. Therefore, experimental trials 
were generated in a way such that in most trials to find the correct diagnosis it was 
sufficient to retrieve the one explanation from memory that was most coherent to the 
set of observed symptoms. Thus, although each of the serially presented symptoms 
had a number of possible explanations that should vary in their availability over the 
course of the trial, at the end of the trial the most active explanation would also be the 
correct diagnosis. We expected the activation of explanations in memory to depend 
upon the serially observed symptoms as described above, with supporting symptoms 
increasing an explanation’s availability and nonsupporting symptoms decreasing its 
availability. Activation was measured with a probe reaction task. The idea behind this 
task is based on lexical decision tasks where participants respond faster to a probe 
that is more highly activated in memory than to a probe of lower activation (e.g., 
Meyer & Schvaneveldt, 1971). We now first describe the method and the data from 
Experiment 1. Then we describe the cognitive models in detail and present the model 
results. Subsequently, we present Experiment 2, compare its results to predictions of 
the models, and discuss the implications of our findings.

Experiment 1
The goal of Experiment 1 was to test whether the availability of explanations over 
the course of diagnostic reasoning indeed depends upon the information observed 
over time. Therefore, we tracked the activation of three different kinds of memory 
elements during trials of a diagnostic reasoning task: (a) explanations that were 
supported by all the observed symptoms (compatible explanations), (b) explanations 
that were not supported by all of the observed symptoms (incompatible explanations), 
and (c) explanations that were completely unrelated to the symptoms (foils). (See the 
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experimental-material section below for a more detailed description of the different 
kinds of explanations.) If the availability of explanations in memory depends on the 
observed symptoms as described above, we would expect symptoms to increase the 
activation of compatible explanations and to decrease the activation of incompatible 
explanations. The availability of foils should not be affected by the observed symptoms.

To introduce some uncertainty in the task, we varied the reliability of the symptoms 
presented in each trial. Whereas in 75% of the trials each of the symptoms reliably 
pointed towards the correct diagnosis (coherent trials), in 25% of the trials a misleading 
symptom was added that did not correspond to the correct diagnosis (incoherent 
trials). Participants were not told whether a trial was coherent or incoherent.

Method

Participants

Twenty-three undergraduate students from the Chemnitz University of Technology 
took part in this experiment. Of those, one participant had to be excluded from 
analysis, because she did not reach the required performance in the training session. 
Twelve of the remaining 22 students were female. The mean age was 24.1 (SD = 6.8). 

Tasks

Diagnosis task. Participants were told that the main task they had to solve was to 
diagnose hypothetical patients after a “chemical accident”. In each experimental trial, 
a set of three to four symptoms was presented and the chemical that explained the 
combination of these symptoms had to be found (see Figure 2.1 for a sample trial). 
This task allowed us to assess overall performance in the trials.

Probe task. The second task to be solved in the experiment was a probe task. After 
one of the symptoms in each trial, a probe was presented. Participants had to decide 

+headache

+

+

cough

vomiting

+

itching

T +

Enter your 
diagnosis:

2sec
1sec

2sec
1sec

2sec
1sec

???
1sec

2sec
1sec

???

Figure Illustration of the trial procedure for a sample trial from 
Experiment 1.

2.1
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as fast as possible whether the probe (e.g., T in Figure 2.1) was the name of one of 
the chemicals learned in the training session (see Table 2.1) or not. Participants were 
told that the two tasks were not related to each other. This task allowed us to track the 
availability of explanations over the course of the diagnosis task.

Material

Learning material. The material that participants had to learn before the experiment 
consisted of nine different chemicals (see Table 2.1). Chemicals were named 
with single letters, which allowed us to construct balanced, artificial connections 
between symptoms and explanations about which participants would have no prior 
knowledge. Furthermore, using single letters as chemical names allowed us to use 
letters in the probe task, avoiding potential problems associated with the use of whole 
words (e.g., individual differences in reading speed and word frequency effects). The 
chemicals were grouped into the three artificial categories Landin, Amid, and Fenton. 
Participants were told that chemicals from the three categories differed in their state 
of aggregation: Landin chemicals, for example, were gasiform and affected especially 
the respiratory system because they were inhaled. This organization of knowledge 
into a hierarchical structure was used to ease the learning of the material by allowing 
participants to connect it to their knowledge about the biological workings of the 
human body. It reflects in a simplified form the hierarchical knowledge organization 
found in medical diagnosis (Arocha & Patel, 1995). Each chemical caused three to four 
medical symptoms. Symptoms had either a relatively small number of two or three 

Aggregate state 
and source of 

contamination
Category Chemical Specific symptoms Unspecific symptoms

Gasiform, 
inhaled Landin

B Cough Shortness 
of breath Headache

T Cough Vomiting Headache Itching

W Cough Eye 
inflammation Itching

Crystalline,
skin contact Amid

Q Skin 
irritation Redness Headache

M Skin 
irritation

Shortness 
of breath Headache Itching

G Skin 
irritation

Eye 
inflammation Itching

Liquid,
drinking 

water
Fenton

K Diarrhea Vomiting Headache
H Diarrhea Redness Headache Itching

P Diarrhea Eye 
inflammation Itching

Note. Original materials were presented in German.

Domain knowledge participants had to acquire before Experiment 1.2.1 Table
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explanations (specific symptoms like cough) or a larger number of six explanations 
(unspecific symptoms like headache). This variance in the number of explanations was 
introduced because it is an important feature of real-world diagnostic knowledge that 
increases the complexity of the task.

Experimental material. Coherent trials were generated by presenting the three or 
four symptoms caused by one of the chemicals. In those trials all symptoms pointed 
coherently toward the correct diagnosis. Incoherent trials were generated by inserting 
an additional misleading symptom into the symptoms of one of the three-symptom 
chemicals (see Table 2.2 for a coherent and an incoherent sample trial). Apart from 
this manipulation, the order in which symptoms were presented in each trial and the 
order of trials were randomly chosen for each participant. Each diagnosis occurred 
with equal frequency during the experiment. Participants were told that, throughout 
the experiment, the second symptom of each trial might be misleading.2 To keep 
them aware of this, the second symptom of each trial was printed in normal letters, 
whereas all other symptoms were printed in bold letters. Participants had no means of 
distinguishing coherent from incoherent trials until they observed the third symptom 

2 Although manipulating uncertainty in this way represents a strong simplification of real-life diagnostic uncertainty, we chose this 
design for two main reasons. First, varying the position of the unreliable information within trials would have required a far larger 
number of trials. The number of trials already being very large, we decided against this (potentially very interesting) manipulation. 
Second, not informing participants about the potential unreliability of the second symptom might have resulted in a variety of 
potential strategies in dealing with incoherent trials (see Chinn & Brewer, 1998 for an overview of potential strategies in dealing 
with incoherent data). By informing participants which symptom might be unreliable, we attempted to reduce the amount of possible 
strategies.

Order Symptoms
Explanations 
supported by 

current symptom

Possible target probes
Possible foils

Compatible Incompatible

Coherent trial - Correct diagnosis: T
1st Cough BTW BTW QMGKHP FZVDNCXLR
2nd Vomiting TK T QMGKHP FZVDNCXLR
3rd Itching TWMGHP T QMGKHP FZVDNCXLR
4th Headache BTQMKH T QMGKHP FZVDNCXLR

Incoherent trial - Correct diagnosis: B
1st Cough BTW BTW QMGKHP FZVDNCXLR
2nd Eye inflammation WGP W QMGKHP FZVDNCXLR
3rd Shortness of breath BM B QMGKHP FZVDNCXLR
4th Headache BTQMKH B QMGKHP FZVDNCXLR

Note. Shown for each symptom are supported explanations, possible target probes, and foils. Note that the set 
of potential incompatible probes stayed the same over the trial (it consisted of those explanations that were 
not supported by the first symptom), whereas the set of potential compatible probes changed as the number 
of explanations supported by all symptoms decreased.

Coherent and incoherent sample trials for Experiment 1.2.2 Table
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of the trial, which was either coherent with the second symptom (coherent trials) or 
not (incoherent trials). 

To track the activation of explanations, a probe was presented after one of the 
symptoms in each trial. Each probe was a single letter that was either a target probe 
(one of the names of the nine chemicals) or a foil (see Table 2.2 for examples of the 
different probe types). Target probes were either compatible targets or incompatible 
targets.3 Compatible targets probed explanations that were supported by all the 
symptoms preceding the probe (except for the misleading symptom in incoherent 
trials). Incompatible targets probed explanations that were not supported by all 
symptoms. The incompatible targets were chosen such that they were not supported 
by at least the first symptom of the trial. This allowed us to test the possible effect of 
inhibition beginning directly after the first symptom, where explanations that were 
supported by the symptom (compatible targets) could be compared to explanations 
that were not supported (incompatible targets). Foils were randomly sampled from 
nine letters that were not associated with any of the symptoms (see Table 2.2).

The type of probe (compatible target, incompatible target, or foil) and the position of 
the probe in the trial (after the first, second, third, or fourth symptom) were randomized 
over trials, with the constraints that (a) target probes and foils appeared equally often 
and (b) probes of each type appeared with equal frequency at all the positions. In 8.3% 
of the trials no probe was presented. Instead, after one of the symptoms of those trials, 
participants were asked to provide the set of diagnoses they currently had in mind. 
These ‘no-probe’ trials were intended merely to prevent participants from expecting a 
probe in each trial and were not analyzed.

Procedure

Each participant completed 5 sessions, which took part over a maximum of 10 days, 
with the first and second session on consecutive days.

Training session. The first session was a training session to ensure a high familiarity 
with the material and the task. It consisted of several blocks that were repeated until 
participants solved them with at least 80% accuracy. First, participants were presented 
with the cover story “diagnose patient after chemical accident” and with the complete 
knowledge (see Table 2.1). After a paper-and-pencil exercise in which they could 
use the table to write down which chemicals were associated with each symptom, 
participants had to study each chemical category separately on the screen. They were 
asked to memorize and report the name of the category, of the chemicals, and their 
respective symptoms. When they could report complete knowledge of the category at 
least once without error, they completed two more training blocks for that category. In 
the first block, sets of symptoms were displayed on the screen, and participants had to 
enter the chemical that caused this set of symptoms. In the second block, symptoms 
3 In incoherent trials a third type of target probe was used (rejected targets). Rejected targets probed explanations that were 
compatible with early symptoms but incompatible with later symptoms. The reactions to those probes were in line with our predictions. 
However, as those probes were presented only in the incoherent trials, we will not report them here.
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were presented sequentially on the screen. After each symptom, participants were 
asked to enter all chemicals from the currently practiced category that could explain 
the symptoms seen so far.

After the training blocks for the single categories were completed, participants 
could again study the complete material (see Table 2.1). They were then presented 
with four training blocks for the complete material. The first block was identical to the 
final one in the single category training, but now all categories were tested. The second 
block was used to familiarize participants with the concept of incoherent trials; that is, 
they learned that the second symptom of each trial might be misleading. In the third 
block the probe task was introduced. After an explanation of the task, participants were 
presented with probes and had to decide whether they were targets (chemicals) or foils. 
The last block consisted of trials identical to the trials in the experiment. Participants 
were sequentially presented with symptoms. After one of the symptoms they had to 
react to a probe, and after all symptoms had been presented, they were asked for their 
diagnosis. Depending on a participant’s performance, this session lasted between 60 
and 90 min.

Experimental sessions. The experimental phase was split into four sessions. Each 
session began with a short practice block to refresh the participants’ knowledge of the 
material. Afterwards participants solved 96 diagnostic reasoning trials, of which 75% 
were coherent and 25% were incoherent. The completion of the experimental trials in 
each session took about 30 min. Each trial was started self-paced. The symptoms of 
the trial were presented sequentially in the middle of the screen for 2 s each, with a 
fixation cross presented for 1 s in between (see Figure 2.1). After one of the symptoms 
in each trial, either the probe or the question for the current set of explanations was 
presented. The probe appeared in the form of a letter, and participants had to indicate 
if the letter was the name of a chemical by pressing a button on a response box. At 
the end of each trial, participants were asked to enter their diagnosis on a standard 
keyboard. Participants were instructed to solve the diagnosis and the probe task as 
accurately and fast as possible. Reactions times for probes and diagnoses were recorded 
from the moment that the probe/question for diagnosis appeared on the screen. After 
each input participants received feedback about their response accuracy.

Results

Probe reactions

To test the activation of explanations during the diagnostic reasoning trials, reaction 
times of correct probe responses were analyzed in coherent and incoherent trials with 
correct diagnoses. Scores above and below 3 SD from the condition mean of each 
participant were excluded from analysis, resulting in the elimination of 1.7% of the 
correct probe responses. 4

4 To test for the robustness of our findings, we also conducted all analyses of the reaction time data based on the medians (without 
excluding outlier values). The primary results are consistent across analyses.
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Coherent versus incoherent trials. To test if the reaction time patterns differed 
depending on whether the third and fourth symptoms were coherent (coherent trials) 
or incoherent (incoherent trials) with the second symptom, we conducted an ANOVA5 
with the factors coherence (coherent vs. incoherent trial) and type of probe (compatible 
target, incompatible target, or foil). Symptoms before probe (three vs. four) was used 
as a numerical regressor variable. Neither the main effect of coherence, F(1,21) = 1.642, 
p = .214, hp

2 = .073, nor any of the interactions involving coherence were significant: 
coherence × type of probe: F(2,42) = 2.776, p = .074, hp

2 = .117; coherence × symptoms 
before probe: F(1,21) < 1; coherence × type of probe × symptoms before probe: F(2,42) 
< 1. Consequently, for further analyses we collapsed the data over the factor coherence.

Compatible versus incompatible versus foil. Figure 2.2a shows the reaction times of 
the different probe types over the course of the trials. Table 2.3 shows the results of 
the ANOVAs performed to analyze this data. First, an ANOVA with the factor type 
of probe (compatible target, incompatible target, or foil) and the numerical regressor 
symptoms before probe (one, two, three, or four) confirmed a significant interaction. 
To check whether this interaction was indeed caused by different slopes of all probe 
types, we conducted additional ANOVAs for each pair of probe types. They confirmed 
significant interactions for each pair, except for the pair compatible-foil. For this pair, 

5 All ANOVAs were repeated-measures ANOVAs.

Figure Mean (±1 SE) reaction time to probes over the course of trials in Experiment 1, showing (a) 
human data and (b) model data. The models are described later in the text.
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we additionally looked at the main effect of probe type, which showed to be significant, 
confirming that compatible probes are reacted to faster than foils. To test the course 
of availability over the course of the trial in more detail, we conducted additional 
simple effects analyses for each probe type. They confirm decreasing reaction times for 
compatible probes and foils. Incompatible probes did not vary over the course of the 
trial. Finally, simple effects analyses for symptoms before probe revealed significant 
differences between the probe types after all but the second symptom of the trial.

Diagnoses

To assess participants’ performance in the diagnosis task, we measured diagnosis 
accuracy and diagnosis time at the end of each trial. For the analysis of diagnosis time, 
wrong diagnoses and diagnoses exceeding 3 SDs from the condition mean of each 
participant  were excluded (resulting in an exclusion of 1.8% of the correct diagnoses). 
Diagnosis accuracy was equally high in coherent trials (M = 95.5%; SD  = 4.1) and 
in incoherent trials (M = 95.5%; SD = 4.0), t(21) < 1. The equivalence between the 

Effect Factors F p hp
2

Interaction Type of probe (compatible, incompatible, foil) ∑ 
Symptoms before probe (one, two, three, four) 	(2,42) = 5.03  	 .011 	 .19

Interaction Type of probe (compatible, incompatible) ∑ 
Symptoms before probe (one, two, three, four) 	(1,21) = 7.15 	 .014 	 .25

Interaction Type of probe (compatible, foil) ∑
Symptoms before probe (one, two, three, four) 	(1,21) = 2.35 	 .140 	 .10

Main effect Type of probe (compatible, foil) 	(1,21) = 4.49 	 .046 	 .18

Interaction Type of probe (incompatible, foil) ∑ 
Symptoms before probe (one, two, three, four) 	(1,21) = 3.70 	 .068 	 .15

Simple effect for 
compatible Symptoms before probe (one, two, three, four) 	(1,21) = 20.21 	< .001 	 .49

Simple effect for 
incompatible Symptoms before probe (one, two, three, four) 	(1,21) = 0.46 	 .506 	 .02

Simple effect 
for foil Symptoms before probe (one, two, three, four) 	(1,21) = 25.56 	< .001 	 .55

Simple effect 
after symptom 1 Type of probe (compatible, incompatible, foil) 	(2,42) = 12.49 	< .001 	 .37

Simple effect 
after symptom 2 Type of probe (compatible, incompatible, foil) 	(2,42) = 1.21 	 .309 	 .05

Simple effect 
after symptom 3 Type of probe (compatible, incompatible, foil) 	(2,42) = 29.13 	< .001 	 .58

Simple effect 
after symptom 4 Type of probe (compatible, incompatible, foil) 	(2,42) = 17.41 	< .001 	 .45

Note. p values <.1 are shown in bold. For nonsignificant interactions the main effect of type of probe is also 
reported.

Results of the ANOVAs for compatible targets, incompatible targets, and foils after each 
symptom in Experiment 1.

2.3 Table
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conditions was supported by a Bayes factor (BF) t-test, which showed clear evidence in 
favor of the null hypothesis (BF = 6.13).6 This shows that the participants could solve 
the task well and, again, that there was no effect of a trial’s coherence.  Participants’ 
time for entering correct diagnoses was fast overall but was significantly slower in 
coherent (M = 795 ms; SD = 211) than in incoherent trials (M = 496 ms; SD = 125), 
t(21) = 8.612, p < .001.7

Discussion
The results of the probe reaction task in Experiment 1 support the assumption that 
the availability of explanations over the course of diagnostic reasoning depends on 
the observed symptoms. Compatible targets (explanations supported by all symptoms) 
were responded to faster than incompatible targets (explanations not supported by all 
symptoms) and foils (not related to any symptom). This is in line with the prediction 
that explanations in memory receive activation from symptoms that support them. 
Incompatible targets were responded to not only slower than compatible targets 
but also slower than foils. This is in line with the prediction that symptoms inhibit 
explanations that they do not support. 

An unexpected result of the probe reaction task was that the reaction times not only 
to compatible targets decreased over the course of the trial but also those to foils. Foils 
were letters that did not name chemicals and were therefore not related to any of the 
symptoms. Given a pure memory activation account, these letters should not change 
in their level of activation over the course of the trial, as they receive no activation or 
inhibition from any of the observed symptoms. A possible reason for the unexpected 
reaction time decrease might lie in our methodology. By presenting the probes with 
equal frequency after one of the four symptoms, we might have caused participants 
to be increasingly prepared to respond to the probe toward the end of the trial. Such 
an increasing response preparedness can be described by a hazard function (Chechile, 
2003) and is comparable to the foreperiod effect (Vallesi, Shallice, & Walsh, 2007). 
The foreperiod effect is “usually observed when a range of variable FPs [foreperiods] 
occur randomly and equiprobably, [and] consists of reaction times (RTs) decreasing as 
the FP increases” (Vallesi et al., 2007, p.466). In our experiments, participants knew 
that after one of the symptoms in almost every trial a probe would appear. The position 
of the probes’ occurrence was randomly and equiprobably distributed over the trials. 
With each symptom that went without a following probe, the likelihood for a probe 
increased. Participants could thus prepare for the probe and react slightly faster to it 
later on in the trial. Consequently, it is likely that part of the increase in response times 
6 Bayes factors larger than 1.0 are taken as evidence in factor of the null, whereas Bayes factors less than 1.0 are taken as evidence 
in favor of the alternative. See Rouder, Speckman, Sun, Morey, and Iverson (2009) for derivations and a guide for interpreting the 
magnitude of Bayes Factors.
7 Although the result of higher diagnosis times in coherent trials might seem counterintuitive, it is most likely caused by the number of 
symptoms presented before the diagnosis, rather than by the coherence of the trial. Incoherent trials always consisted of four symptoms, 
whereas coherent trials could consist of three (56% of all coherent trials) or four (44% of all coherent trials) symptoms. Analyzing 
coherent three-symptom and four-symptom trials separately shows that coherent four-symptom trials were in general responded to 
faster than coherent three-symptom trials (Mfour = 644 ms, SD = 208; Mthree = 915 ms, SD = 223, t(21) = 11.233, p < .001, and 
that the diagnosis times in coherent four-symptom trials were significantly faster than in incoherent trials, t(21) = 4.684, p < .001.
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to all probe types is caused by an increasing response preparedness over the course of 
the trial.

The manipulation of the symptoms’ coherence affected neither the probe reaction 
times nor the accuracy of diagnoses. As explained above, participants could determine 
the correct diagnosis in incoherent trials by remembering that the second symptom of 
each trial is potentially misleading. A very simple strategy to use this knowledge would 
be to simply ignore the second symptom of each trial. Whereas such a strategy would 
lead to good performance in the incoherent trials and in most coherent trials, it would 
lead to suboptimal performance in a small part of the coherent trials, where ignoring 
the second symptom does not allow for unambiguously identifying the correct 
diagnosis (this was the case in 15% of the coherent trials). Nevertheless, a closer look 
at the probe reaction data seems to support such a strategy. Whereas reaction times 
differ significantly between the different probe types after the first, third, and fourth 
symptoms, they do not differ after the second symptom.8

Although the probe reaction time patterns are in line with our predictions, the 
comparison between verbal hypotheses and empirical data is usually reduced to a 
qualitative descriptive level. To test if memory activation, combined with ignoring the 
misleading symptom and increasing response preparedness over the trial, can also 
quantitatively explain the data, we developed computational cognitive models of the 
task. The models entail (a) the assumptions about memory retrieval as described in the 
introduction, as well as (b) the strategy to ignore potentially misleading information 
and (c) the participants’ increasing preparedness to respond over the trial.9

Models
Model Description
To reach maximum comparability between the models, we implemented them all 
within one modeling framework, the cognitive architecture ACT-R (Anderson et 
al., 2004). From all the variants of potential modeling accounts we chose ACT-R 
because it puts a strong emphasis on processes underlying memory activation 
(Anderson et al., 1998; Anderson & Schooler, 1991) and integrates these processes 
with general assumptions about human cognition. It accounts for both subsymbolic 
and symbolic components of cognition and, therefore, allows for the implementation 
8 To further test if participants indeed ignored the second symptom, we compared the diagnostic performance in coherent trials 
where ignoring the second symptom allowed for unambiguously finding the correct diagnosis (unambiguous coherent trials) and 
coherent trials where ignoring the second symptom did not allow for finding the correct diagnosis (ambiguous coherent trials). Indeed 
diagnosis accuracy was marginally higher in unambiguous (M = 95.8%; SD = 3.8) than in ambiguous coherent trials (M = 93.8%; 
SD = 7.4), t(21)=1.815, p = .084. Diagnosis times for correct diagnoses were considerably faster in unambiguous (M = 757 ms; SD 
= 195) than in ambiguous coherent trials (M = 1053 ms; SD = 363), t(21)=5.297, p < .001, suggesting that participants used time 
at the end of the trial to solve the ambiguity caused by ignoring the second symptom.
9 Building the ignoring of misleading information and the increasing response preparedness into the models allowed us to assess 
whether the response pattern indeed could have been caused by the interaction of memory activation and these task- specific factors. It 
is important to note however, that these additional model components alone would not have been able to fit the participants’ responses. 
Without an effect of observations on reaction times to the probes, ignoring the second symptom would not predict any effect on the 
reaction time data by itself. Increasing response preparedness alone would predict a decrease of reaction times over the trial, but no 
differences or interactions between the different probe types.
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of automatic memory processes as well as deliberate reasoning strategies and their 
possible interaction. It has received empirical support and validation from a large 
number of studies in a variety of research areas (ranging from simple list memory 
tasks, Anderson et al., 1998;  to language acquisition, Taatgen & Anderson, 2002; see 
http://act-r.psy.cmu.edu for an extended list of publications). Furthermore, ACT-R 
allows for modeling of the complete task, as solved by the participant. Thereby, without 
requiring additional assumptions about how the model maps on the experiment, it 
produces results that are directly comparable to human data. This is possible because 
the ACT-R theory predicts not only the probability and latency of retrieving facts 
from declarative memory but also the time taken to perceive a stimulus and give a 
response (e.g., by pressing a key).

Knowledge about facts is represented in the form of chunks in ACT-R’s long-
term memory, which is commonly referred to as declarative memory. Chunks can 
represent observations (e.g., medical symptoms), as well as their potential explanations 
(e.g., medical diagnoses). Access to the chunks depends on their activation in memory 
(Anderson, 2007; Lovett et al., 2000). Only chunks whose activation exceeds a certain 
amount, the retrieval threshold, τ, can be retrieved. The probability, p, that a chunk i will 
cross the retrieval threshold, τ, depends on its activation, Ai:

		  (2.1)

where s reflects the amount of noise added to the chunk’s activation.
If a chunk i is activated strongly enough to be retrieved, its activation, Ai, determines 

the time required for the retrieval. The more active the chunk, the faster it can be 
retrieved. The time it takes to retrieve chunk i is a negative exponential function of its 
activation, Ai, as shown in Equation 2.2:

		  (2.2)

where F is a parameter scaling the latency of retrievals.
The idea behind the concept of a chunk i’s activation, Ai, is that the strength of 

activation reflects the likelihood (specifically, the log odds) of the chunk being needed 
in the near future (Anderson & Schooler, 1991). This likelihood is determined by three 
factors: the chunk’s usefulness in the past, Bi, its usefulness in the current context, Si, 
and a random noise component, ε:

 	 	 (2.3)

The chunk’s usefulness in the past is reflected by the base-level activation, Bi. ACT-R 
predicts that the more often a chunk has been retrieved from memory and the more 
recent these retrievals were, the higher its activation. This prediction can explain 
empirical findings that show that explanations with high base-rates of occurrence are 
generated more often and earlier than explanations with low base-rates. Although 
the effects of an explanation’s previous use are an interesting aspect of memory effects 

p = 1

1+ e
τ −Ai
s

Time = Fe− Ai

Ai = Bi + Si + ε
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in diagnostic reasoning, they are not the focus of the current chapter. Therefore, base 
levels were kept at a constant level in the model. This was plausible because participants 
received extensive training on the task (leading to a saturation effect) and all symptoms 
and explanations appeared equally often in the experiment. 

The important factor for our research question is the second part of Equation 2.3: 
the chunk’s usefulness in the current context, Si. A chunk’s usefulness in the current 
context reflects the likelihood that the chunk will be needed given the information 
currently available from the environment. In diagnostic reasoning, the current context 
is defined by the to-be-explained observations (e.g., the medical symptoms displayed 
by a patient;  Arocha et al., 2005; T. R. Johnson & Krems, 2001; Thomas et al., 2008). 
ACT-R predicts that an explanation i that is stored in long-term memory receives 
activation, Si, from each observation j that is currently stored in working memory:10 

	 	 (2.4)

where the amount of spreading activation, Si, is determined by the associative strength, 
Sji, between explanation i and observation j, scaled by the amount of activation that can 
be spread  from working memory, Wj. As we describe in detail below, we manipulated 
this scaling parameter, Wj, to implement different ways of sequential information 
integration in the different models. The associative strength, Sji, represents the extent to 
which observation j increases or reduces the likelihood that the explanation i is needed 
from memory. This relationship can be described by a log conditional probability ratio 
(Anderson & Lebiere, 1998): 

	 	 (2.5)

where the numerator describes the probability that observation j has been observed 
when explanation i is needed (i.e., is valid in this context) and the denominator 
describes the probability that j has been observed when i is not needed. Using an 
example, the equation describes the probability for observing the symptom cough 
while having the flu divided by the probability for observing cough while not having 
the flu. As the likelihood to observe cough is higher when having the flu than when not 
having the flu, Equation 2.5 predicts a positive associative strength between cough and 
flu. In contrast, if an observation (cough) does not support an explanation (pregnancy), 
the likelihood to observe cough when the patient is pregnant decreases. This results in 
a negative associative strength. 

Although Equation 2.5 provides a good estimate for associative strengths between 
chunks, their exact calculation is often computationally intractable (Anderson & 
Lebiere, 1998). Following ACT-R, we approximate positive associative strengths, Sji, 
between chunks as

	 	 (2.6)
10 To model working memory we use one of the buffers of ACT-R’s cognitive modules, the imaginal buffer. The imaginal buffer is 
commonly used to hold a mental representation of the problem currently in the focus of attention (Borst et al., 2010).

Si = WjS ji
j
∑

S ji = log
p(observation j |explanationi )

p(observation j |not(explanationi ))

S ji = S − ln( fan ji )
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where S is a parameter for the maximum associative strength between chunks in 
memory and fanji is the number of chunks i that are positively associated with a chunk 
j. Following this equation, an observation that is associated with only few explanations 
(e.g., a medical symptom that is specific to a certain group of diseases) has a lower fan 
and therefore a higher associative strength to the explanations than an observation that 
is associated with many explanations (e.g., a medical symptom that is associated with 
a variety of diseases). Although the associative strength between positively associated 
symptom-explanation pairs can be estimated as shown in Equation 2.6, the estimation 
of “negative associations” is problematic. Depending on the certainty that is assumed 
in the task, the values for Sji resulting from Equation 2.5 would lie somewhere between 

-∞ (if it is absolutely certain that an explanation can be excluded from consideration 
when a certain observation is made) and 0 (if it is not known whether a certain 
observation and explanation can occur together). As ACT-R provides no solution for 
this issue, we treat negative associative strengths as a free parameter that we estimate 
from our empirical data.

Four Different Models of Sequential Information Integration

To implement the different assumptions of how observations might affect the 
availability of explanations over time, we used the parameter Wj. This parameter scales 
the amount of activation and inhibition that each observed symptom can spread to 
long-term memory. For reaching maximum comparability between the models, we 
kept the total amount of W after the fourth symptom at a constant level between the 
models.11 Consequently, in all four models, the same amount of activation is spread 
from working memory after all symptoms have been observed. The models vary in 
how this activation is distributed amongst the symptoms and in how it varies over the 
course of the trial in the following ways.

Model-current

In the first model, at each point in the trial, only the most recently observed 
symptom spreads activation and inhibition to explanations in long-term memory. We 
implemented that by setting Wj for all but the current observation to zero. The current 
observation was scaled with value W.

11 For being able to directly compare the levels of explanations’ availability over the course of the trial, we kept the total amount of 
the scaling parameter W constant after the fourth symptom of the trial. This choice was somewhat arbitrary, as we could have kept W 
constant at any other point during the trial (e.g., using a constant value W1 after the first symptom of the trials). Note however, that 
this would have not changed the results substantially, as it would have merely produced a linear transformation of all scaling values. 
To test this we implementing all models with a constant value of W1=.16. This produced the same pattern over the course of the trial, 
however, with much smaller differences between the different probe types at each point during the trial, leading to much smaller 
values for R2 and lower diagnosis accuracies for all models except model-number.
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Model-time

In the second model, all observed symptoms spread activation and inhibition. As 
proposed by Wang et al. (2006b), the amount of activation spread by each of the 
symptoms depends on the time since the observation was made. The most recently 
observed symptom is weighed most strongly. Earlier observations are weighed with a 
decayed strength, with the strength decaying exponentially in the square root of time:

	 	 (2.7)

Model-constant 

In the third model, all observed symptoms spread activation and inhibition. As 
proposed by Lovett et al. (2000), the total amount of activation that can be spread 
from working memory has a constant value W. If several observations j are stored in 
working memory, they share this total activation. Consequently, the more symptoms 
are observed, the smaller is the impact of each of these symptoms:

	 	 (2.8)

Model-number

In the fourth model, the total amount of activation spread from working memory 
at a certain point in time depends on the number of observed symptoms. Each 
symptom can spread a fixed amount of activation, resulting in an increasing amount 
of spreading activation and inhibition with an increasing amount of observed 
symptoms. Consequently, in this model the amount of activation spread by each of the 
observations neither depends on the time since the observation was made nor on the 
number of observations. Each symptom is scaled with the same value Wj.

Model Procedure
All models follow the same procedure, with the only difference between the models 
being the setting of parameter W as described above. The model code can be 
downloaded from http://www.ai.rug.nl/~katja/models. As for the participants in our 
experiments, the models observe sequentially presented medical symptoms, diagnose 
the chemical that caused these symptoms, and react to the probe that is presented 
after one of the symptoms. The knowledge necessary to solve this task (see Table 2.1) 
is represented in the models’ declarative memory and consists of two different types of 
facts, represented as chunks. The first type reflects the possible symptoms. The second 
type represents the letters that can be presented during the experiment (chemicals and 
foils) and their associated information. Each letter is represented by a chunk that holds 

Wj =Wj−1(1− d ) t

W j =
W
n



36 Chapter 2  The Availability of Explanations in Memory for Diagnostic Reasoning

the letter’s name, the information stating whether it is a chemical or a foil, and, for 
chemicals, the associated symptoms.12

When a symptom is presented on the screen, the model moves its attention to the 
symptom, reads it, and retrieves its meaning from declarative memory. The symptom is 
then stored in working memory. This process is repeated for each observed symptom so 
that, over the course of a trial, working memory is successively filled with the observed 
symptoms. Stored in working memory, symptoms automatically spread activation 
and inhibition to explanations in declarative memory as described by Equation 2.4. 
To simulate the strategy of ignoring the potentially misleading symptom, the second 
symptom observed in each trial is not stored in working memory. When the question 
for the final diagnosis is presented on the screen, the model retrieves that explanation 
from declarative memory that receives the most activation from the symptoms in 
working memory and enters the respective letter. The letter representing the correct 
explanation is most strongly associated with the observed symptoms. However, as 
described above, the different models vary in how the associative strength between 
the symptoms and their explanations are weighed. In model-current, only the current 
symptom spreads activation. Thus, at the point of diagnosis, only the last of the 
observed symptoms affects activation of explanations in memory. In the remaining 
models all observed symptoms spread activation at the point of diagnosis. In model-
time, the strength of activation depends on the time since an observation was made. 
Consequently, even though all observations affect explanations’ availability in memory, 
availability is most strongly affected by newer observations. In model-constant and 
model-number, at the point of diagnosis, each symptom is weighed with equal strength. 
As the letter representing the correct explanation is most coherent with the symptoms, 
it obtains the highest amount of spreading activation and is the one most likely to 
be retrieved. However, as shown in Equation 2.3, due to random noise also in these 
models it can happen that an alternative explanation receives more activation and is 
incorrectly entered as diagnosis.

When a probe is presented, the models move their attention to the probe and 
retrieve the chunk representing the probe letter. If that letter is stored as a chemical, 
the models respond “yes”; if it is stored as a foil, the models respond “no”. As described 
by Equation 2.2, the speed with which a chunk can be retrieved depends on its 
activation. The more spreading activation the chunk receives from the symptoms in 
working memory, the higher it will be activated and the faster the retrieval. Thus, as 
in human participants, the time the models need to respond to a probe can be used 
as a measure of the activation of explanations in memory. To simulate the participants’ 
increasing response preparedness over the trial, the models retrieve expectations about 
whether the upcoming stimulus is a symptom or a probe. If the retrieved expectation 
is met by the presented stimulus, the stimulus is processed as explained above. If the 
expectation is violated, the models need to make a change to their expectation before 
they can process the stimulus. This change in expectation costs 50 ms. The later in the 
12 Note that not only the chemicals but also the foils are represented in memory. This is because, contrary to lexical decision tasks, 
where a constrained number of words stands against an unconstrained number of non-words, in our experiment chemicals and foils 
each consisted of a set of nine letters which were taught to the participants in the training session.
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trial the probe is presented, the higher the chance that it is expected by the models and 
that no time-costly expectation changes have to be made.13 

Results and Discussion of the Models
The models were run for each participant on the trials that this participant had solved. 
As described above, the four different models varied in their setting of the values for the 
parameter, Wj, that weighs the strength of observations j in working memory. All other 
parameters were kept constant between the models. To fit the models, we estimated 
the speed and stochasticity of memory retrievals, the base-level activation of facts in 
memory, and the amount of spreading activation from symptoms to explanations.14 All 
other parameters were kept at the default values of ACT-R 6.0 (Anderson, 2007).

Following the analysis of the human data, we collapsed the models’ data over the 
factor coherence. The resulting reaction times to the probes are shown in Figure 2.2b. 
13 Reflecting the probabilities for upcoming stimuli, the base-level activations of the expectations vary. As probes are presented equally 
often after one of the four symptoms, the probability of a probe being presented after the first symptom is only .25. Consequently, the 
base level of an expect-probe chunk after the first symptom is so much lower than the base level of an expect-symptom chunk that the 
model will retrieve an expect-probe chunk only in about 25% of all trials. With each additional symptom that is presented without 
a probe, the probability of a probe (reflected by the base levels of the expect-probe chunks) increases (to .33, .5, and 1 respectively). 
Consequently, the earlier in the trial the probe appears, the higher the chance that the model retrieves no expect-probe chunk and has 
to make a time-costly change to its expectation. The model changes its expectation by firing an additional production rule (costing 
50 ms).
14 ACT-R’s latency factor (F) was set to 1.4 and activation noise (s) to .05. All facts in memory were set to equal, relatively high base 
levels of 2, modeling trained participants. Positive associative strengths (Sji) were calculated using Equation 2.6, with the maximum 
associative strength (S) set to 2.5. Negative associative strengths (Sji) were estimated from the data to be -.75. The total amount of W 
that the models spread after four symptoms were presented was set to .48.

R2 RMSD 
(ms)

Diagnosis 
Accuracy (%)

Diagnosis 
Time (ms)

Experiment 1
Human Data, M (SD) 95.5 (3.7) 705 (167)

Model-current 	.79 30 28 586
Model-time 	.79 28 53 597

Model-constant 	.70 38 86 592
Model-number 	.85 27 85 569

Experiment 2
Human Data, M (SD) 95.9 (3.9) 574 (264)

Model-current 	.24 61 27 566
Model-time 	.37 75 71 584

Model-constant 	.45 60 95 587
Model-number 	.71 83 92 589

Note. The best fitting model is indicated in bold. RMSD = root-mean-
square-deviation.

Fits for probe reaction times (R2 and RMSD) and diagnostic 
performance (Diagnosis Accuracy and Diagnosis Time) of 	

	 each model for Experiments 1 and 2.

2.4 Table
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Fits for the probe reaction times and the diagnostic performance reached by each model 
are shown in Table 2.4. All models produce the basic result that, overall, compatible 
probes are reacted to fastest. This happens because in all models compatible probes 
receive more activation from the observed symptoms than do all other probe types. 
In all models, incompatible probes are slower than or at about the same level as foils. 
This happens, because in all models incompatible probes receive inhibition as well as 
activation from the observed symptoms. The reaction times to foils over the course of 
the trial are identical in all models, because these reaction times are not affected by 
spreading activation. As in the human data, they decrease over the trial. In the models 
this decrease is solely caused by the varying expectations about upcoming stimuli, 
suggesting that part of the decrease of reaction times to all probes was indeed caused 
by an increasing preparedness to respond. All models produce comparable diagnosis 
times. The models differ in the course of activation for compatible and incompatible 
probes and in the accuracy of their diagnoses in the following ways. 

Model-current 

Merely using the current symptom at each point in time, the model produces a 
surprisingly good fit to the probe reaction pattern. The model produces no difference 
between probe types after the second symptom, because no activation and inhibition is 
spread to long-term memory at this point. After all other symptoms, reaction times for 
compatible probes are faster than for foils because compatible probes receive activation 
from the current symptom. However, contrary to the human data, reaction times to 
compatible targets do not increase over the course of the trial. Incompatible probes 
are slower than foils, with a decrease of reaction times over the course of the trial. This 
happens because incompatible explanations are explanations that are incompatible 
to at least the first symptom of the trial. Consequently, incompatible probes always 
receive inhibition from the first symptoms, and they can receive inhibition, as well 
as activation, from the later symptoms. The model has poor diagnostic performance, 
which is not surprising, as in this model only the last symptom of the trial affects 
activation of explanations at the point of diagnosis.

Model-time 

Letting the impact of observed symptoms decay over time, the model produces a good 
fit to the empirical probe reaction data. After the second symptom the difference 
between probe types is smallest, because at this point in the trial, only the decayed 
activation and inhibition of the first symptom affect explanations’ availability. After all 
other symptoms, reaction times to compatible probes are faster and decrease over the 
course of the trial as the amount of spreading activation increases with each observed 
symptom. However, this decrease is much less pronounced than in the human data. 
Reaction times to incompatible probes also decrease, because the later in the trial, 
the higher the chance that incompatible probes not only receive inhibition but also 
activation from the observed symptoms. The model produces correct diagnoses in 
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about half of the trials, because in this model, symptoms that are presented late in the 
trial have an overproportional impact on explanations’ availability.

Model-constant

By letting the observations at each point in time share a constant amount of total 
working-memory activation, this model also produces a good overall fit. However, here 
the visual inspection of the time course of explanations’ activation also shows some 
deviations from the human data. In the model, at each point in time a constant amount 
of activation is spread from working memory. Consequently, compatible explanations 
stay at a constant level over the course of the trial (with a slight decrease caused by 
increasing response preparedness over the trial). Incompatible explanations stay at a 
constant and relatively high level of reaction times between the first and the second 
symptom and then decrease considerably. The model produces a high proportion of 
correct diagnosis, which is only slightly lower than in the empirical data.

Model-number

By increasing the amount of spreading activation and inhibition with each observed 
symptom, the model produces the best overall fit to the human data. As in the human 
data, reaction times to compatible probes do not change from the first to the second 
symptom and do decrease afterwards. This happens because compatible probes receive 
an increasing amount of activation with all but the second symptom. Incompatible 
probes slightly decrease over the course of the trial as they receive inhibition as well 
as activation. Like model-constant, the model does not reproduce the dip in reaction 
times to incompatible probes after the second symptom. The model produces the same 
proportion of correct diagnoses as model-constant, because after the last symptom of 
the trial they are identical due to the setting of the total amount of parameter W at 
this point.

To summarize, all models produce the overall pattern of probe response times as 
found in the human data. The models vary in how well they fit details of activation 
levels over the course of the trials. Only model-constant and model-number are able 
to produce high diagnostic performance, because they weigh all symptoms with 
equal strength at the point of diagnosis. However, even these models underpredict 
the diagnosis accuracy as well as the diagnosis times found in the human data. This 
underprediction is caused by the fact that in part of the coherent trials, ignoring the 
second symptom does not allow for finding a correct diagnosis. Whereas, as discussed 
earlier, participants might try to remember the second symptom once they realize 
that they cannot distinguish between explanations otherwise, the models do not have 
such knowledge. When simply relying on memory activation they have no means to 
correctly distinguish between alternatives if they receive an equal amount of activation 
from the observed symptoms. This result is a good illustration of the importance of 
automatic memory activation to interact with deliberate reasoning. Whereas in most 
experimental trials it was sufficient to enter the diagnosis suggested by memory 
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activation, in coherent trials where ignoring the second symptom led to equal activation 
of alternatives, participants most likely used additional deliberate reasoning processes 
to find the correct explanation.

In the experiment, participants had to diagnose coherent and incoherent sets of 
symptoms, because we wanted to add uncertainty to the task and because we were 
interested in seeing what happens in cases where memory activation alone might 
not be sufficient to find the correct explanation. As the empirical and model data for 
diagnoses and probe reactions suggest, participants dealt with that challenge by simply 
ignoring the potentially misleading symptom. They did so even though they were told 
to use all the presented symptoms for their diagnosis, they were trained to do so in 
the practice session, the information was misleading in only 25% of the trials, and 
ignoring the second symptom reduced diagnosis performance in 15% of the coherent 
trials. As suggested by the probe reaction data and the models, using this strategy was 
highly adaptive, because it allowed for finding the correct diagnosis by simply relying 
on memory activation in the vast majority of the trials.

Experiment 2
Experiment 2 had three main goals. First, we wanted to test the reliability of the key 
findings from Experiment 1 with an experimental setup that allowed us more control 
over participants’ strategies. Therefore, symptoms in this experiment always coherently 
pointed toward the correct diagnosis. During trials we again tracked the activation of 
compatible explanations (supported by all symptoms), and incompatible explanations 
(not supported by at least the first symptom), and foils (not related to the symptoms). 
Second, we wanted to investigate in more detail the availability of explanations that 
are associated with only part of the symptoms observed in the trials. Therefore, in this 
experiment we tracked the availability of an additional group of explanations: rejected 
explanations. These explanations are supported by the initial symptoms of a trial but 
not by symptoms presented later on in the sequence. Consequently, they have to be 
rejected from the set of potential explanations at some point in the trial. Being able 
to inhibit such no-longer-compatible explanations has been described as one of the 
crucial aspects of diagnostic performance (Dougherty & Sprenger, 2006). To assess 
the activation of rejected explanations over the course of the task, we compared the 
activation of explanations that were (a) rejected at different points in the trial and (b) 
measured at different time spans after rejection. Third, we wanted to test how well the 
different models generalized to a new data set.

Method

Participants

Twenty-nine undergraduate students from the Chemnitz University of Technology 
who did not participate in Experiment 1 took part in this experiment. Three of them 
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had to be excluded from data analysis, as they did not reach the required performance 
in the training phase. The resulting 16 female and 10 male participants had a mean age 
of 22.8 (SD = 3.6).

Material

Training material. The material that participants had to acquire in the training phase 
(see Table 2.5) was a slightly modified version of the material from Experiment 1. 
Again, chemicals were grouped into categories and caused three or four symptoms 
each. Whereas in Experiment 1 each symptom was caused by chemicals of either 
one, two, or all three categories, symptoms in this experiment were caused either by 
chemicals of only one category (specific symptoms like cough) or by chemicals of all 
three categories (unspecific symptoms like headache). 

Experimental material. In the experimental phase participants solved trials that 
were comparable to the coherent trials of Experiment 1 (see Table 2.6 for a sample 
trial). The only difference was that now rejected explanations were also probed. These 
explanations varied in the point of their rejection during the trial and in the number of 
symptoms presented between the rejection and the respective probe. This manipulation 
resulted in three different types of rejected target probes: rejected-after-2, which could 
be presented after the second, third, or fourth symptom; rejected-after-3, which could 

Aggregate state 
and source of 

contamination
Category Chemical Specific symptoms Unspecific symptoms

Gasiform, 
inhaled Landin

B Cough Shortness 
of breath Headache Eye 

inflammation

T Cough Shortness 
of breath Headache Itching

W Cough Eye 
inflammation Itching

Crystalline,
skin contact Amid

Q Skin 
irritation Redness Headache Eye 

inflammation

M Skin 
irritation Redness Headache Itching

G Skin 
irritation

Eye 
inflammation Itching

Liquid,
drinking 

water
Fenton

K Diarrhea Vomiting Headache Eye 
inflammation

H Diarrhea Vomiting Headache Itching

P Diarrhea Eye 
inflammation Itching

Note. Original materials were presented in German.

Domain knowledge participants had to acquire before Experiment 2.2.5 Table
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be presented after the third or fourth symptom; and rejected-after-4, which could only 
be presented after the fourth symptom. This allowed us to investigate not only the 
course of an explanation’s activation after its rejection but also the potential effect 
of the point when it is rejected in the trial. To prevent participants from expecting 
a probe in each trial, in 14% of the trials no probe was presented, but instead the 
question for the current diagnosis was asked after one of the symptoms. Again, these 
‘no-probe’ trials were not analyzed.

Procedure

The experiment consisted of one training session and two experimental sessions. In 
both experimental sessions participants solved 170 diagnostic reasoning trials, with a 
5-min break after half of the trials were completed. Except for this, the procedure was 
identical to Experiment 1.

Models
To generate predictions for the data of this experiment we used the models as 
described above, with the only change being that the models now did not ignore the 
second symptom of the trial. Except for the total amount of memory activation that 
was increased to reflect the higher number of observed symptoms in the trial, none of 
the parameters of the model were changed.15 

15 As no symptoms were ignored, the models now had one more symptom to integrate than in Experiment 1. To account for this, we 
adjusted the setting of parameter W. The total amount of W that the models spread after four symptoms were presented was set to .64.

Order Symptoms
Explanations 
supported by 

current symptom

Possible target probes

Compatible In-
compatible

Rejected-
after-2

Rejected-
after-3

Rejected-
after-4

Correct diagnosis: T

1st Headache BTQMKH BTQMKH WGP

2nd Cough BTW BT WGP QMKH

3rd Shortness 
of breath BT BT WGP QMKH -

4th Itching TWMGHP T WGP QMKH - B

Note. Shown for each symptom are supported explanations and possible target probes. Dashes indicated 
where cells cannot be filled in this particular trial. Foils were identical to those in Experiment 1.

Sample trial for Experiment 2.2.6 Table
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Results

Probe reactions

Reaction times of correct probe responses were analyzed in trials with correct final 
diagnoses. Scores above and below 3 SDs from the condition mean of each participant  
were excluded from data analysis, resulting in the elimination of 2.0% of the correct 
probe responses. The reaction times to all types of probes are presented in Figure 2.3a. 
Due to the incomplete design, analyzing the data with standard analyses is difficult. 
Here we present analyses for three subsets of the data that are most interesting to test 
our predictions. Subsequently we present the model fits, which cover the complete 
data set.

Compatible versus incompatible versus foil
First, we tested whether our results for compatible and incompatible target probes 
and foils could be replicated. Therefore, we did the same analyses as in Experiment 1; 
detailed results of the corresponding ANOVAs are shown in Table 2.7. An ANOVA 
with the factor type of probe (compatible target, incompatible target, or foil) and 
the numerical regressor symptoms before probe (one, two, three, or four) confirmed 
a significant interaction. To check whether this interaction was indeed caused by 
different slopes of all probe types, we conducted additional ANOVAs for each pair of 
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Figure Mean (±1 SE) reaction time to probes over the course of trials in Experiment 2, showing (a) 
human data and (b) model data.

2.3
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probe types. As in Experiment 1, they confirmed significant interactions for each pair, 
except for the pair compatible-foil. For this pair, we additionally looked at the main 
effect, which again was significant, confirming that compatible probes are reacted 
to faster than foils. To test the course of availability over the course of the trial in 
more detail, we conducted additional simple effects analyses for each probe type. They 
showed that, for all probe types, reaction times decrease over the course of the trial. 
Finally, simple effects analyses for the symptoms before probe revealed significant 
differences between the probe types after all but the second symptom of the trial.

Compatible versus incompatible versus rejected-after-2 versus foil
To test how the activation of rejected explanations changes with time after their 
rejection, we analyzed the course of activation of explanations that were rejected after 
the second symptom. Detailed results of the corresponding ANOVAs are shown 
in Table 2.8. An ANOVA with the factor type of probe (compatible, incompatible, 
rejected-after-2, and foil) and the numerical regressor symptoms before probe (two, 

Effect Factors F p hp
2

Interaction Type of probe (compatible, incompatible, foil) ∑ 
Symptoms before probe (one, two, three, four) 	(2,50) = 3.84 	 .028 	 .13

Interaction Type of probe (compatible, incompatible) ∑ 
Symptoms before probe (one, two, three, four) 	(1,25) = 5.65 	 .025 	 .19

Interaction Type of probe (compatible, foil) ∑ 
Symptoms before probe (one, two, three, four) 	(1,25) = 0.90 	 .352 	 .04

Main effect Type of probe (compatible, foil) 	(1,25) = 10.88 	 .003 	 .30

Interaction Type of probe (incompatible, foil) ∑ 
Symptoms before probe (one, two, three, four) 	(1,25) = 3.39 	 .077 	 .12

Simple effect for 
compatible Symptoms before probe (one, two, three, four) 	(1,25) = 34.46 	< .001 	 .58

Simple effect for 
incompatible Symptoms before probe (one, two, three, four) 	(1,25) = 9.49 	 .005 	 .28

Simple effect 
for foil Symptoms before probe (one, two, three, four) 	(1,25) = 68.46 	< .001 	 .73

Simple effect 
after symptom 1 Type of probe (compatible, incompatible, foil) 	(2,50) = 4.37 	 .018 	 .15

Simple effect 
after symptom 2 Type of probe (compatible, incompatible, foil) 	(2,50) = 2.10 	 .133 	 .08

Simple effect 
after symptom 3 Type of probe (compatible, incompatible, foil) 	(2,50) = 3.76 	 .030 	 .13

Simple effect 
after symptom 4 Type of probe (compatible, incompatible, foil) 	(2,50) = 7.60 	 .001 	 .23

Note. p values <.1 are shown in bold. For nonsignificant interactions the main effect of type of probe is also 
reported.

Results of the ANOVAs for compatible targets, incompatible targets, and foils after each 
symptom in Experiment 2.

2.7 Table
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three, or four) showed no overall interaction but a significant main effect of type 
of probe. To compare rejected-after-2 targets to each of the other probe types, we 
conducted additional pairwise ANOVAs. They reveal that rejected-after-2 targets 
interact with compatible targets, but do not interact with or differ from incompatible 
targets and foils. To test the course of availability of targets rejected-after-2 symptoms 
over the course of the trial, we conducted a simple effects ANOVA. It showed that 
reaction times for these targets also decrease over the course of the trial. Finally, simple 
effects analyses for reactions after two, three, and four symptoms revealed significant 
differences between the probe types after the third and fourth symptoms.

Time since rejection
The analysis of rejected-after-2 targets that is reported above sheds some light on the 
course of explanations’ activation after rejection. However, a potential problem with 
this analysis is that it confounds the time since rejection and the time of measurement. 
Systematic effects of the time of measurement (e.g., the foreperiod effect or the number 
of compatible explanations at the point of testing) might thereby drown out the effects 
of the time since an explanation’s rejection. Therefore, we conducted an additional 

Effect Factors F p hp
2

Interaction
Type of probe (rejected-after-2, compatible, 
incompatible, foil) ∑ Symptoms before probe 

(two, three, four)
	(3,75) = 1.89 	 .138 	 .07

Main effect Type of probe (rejected-after-2, compatible, 
incompatible, foil) 	(3,75) = 8.44 	< .001 	 .25

Interaction Type of probe (rejected-after-2, compatible) ∑ 
Symptoms before probe (two, three, four) 	(1,25) = 4.52 	 .043 	 .15

Interaction Type of probe (rejected-after-2, Incompatible) ∑ 
Symptoms before probe (two, three, four) 	(1,25) < .01 	 .980 	 < .01

Main effect Type of probe (rejected-after-2, Incompatible) 	(1,25) = .06 	 .811 	 < .01

Interaction Type of probe (rejected-after-2, foil) ∑ 
Symptoms before probe (two, three, four) 	(1,25) = 1.20 	 .284 	 .05

Main effect Type of probe (rejected-after-2, foil) 	(1,25) = .06 	 .149 	 .08
Simple effect for 
rejected-after-2 Symptoms before probe (two, three, four) 	(1,25) = 5.80 	 .024 	 .19

Simple effect 
after symptom 2

Type of probe (rejected-after-2, compatible, 
incompatible, foil) 	(3,75) = 2.09 	 .108 	 .08

Simple effect 
after symptom 3

Type of probe (rejected-after-2, compatible, 
incompatible, foil) 	(3,75) = 2.70 	 .052 	 .10

Simple effect 
after symptom 4

Type of probe (rejected-after-2, compatible, 
incompatible, foil) 	(3,75) = 6.91 	< .001 	 .22

Note. p values <.1 are shown in bold. For nonsignificant interactions the main effect of type of probe is also 
reported.

Results of the ANOVAs for rejected-after-2 targets, compatible targets, incompatible targets, and 
foils after symptoms two, three, and, four in Experiment 2.

2.8 Table
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analysis in which we compared the different types of rejected targets (rejected-after-2, 
rejected-after-3, and rejected-after-4) when tested after the fourth symptom. An 
ANOVA with the factor type of probe (compatible, incompatible, foil, rejected-after-2, 
rejected-after-3, and rejected-after-4) confirmed that after the fourth symptom, 
reaction times differed significantly between the probe types, F(5,  125)  =  5.085, p 
< .001, hp

2 = .169. Holm-corrected pairwise comparisons showed that reactions to 
compatible targets were faster than reactions to all other probes (p < .04), except for 
probes rejected after the fourth symptom (p = .172). No other difference reached 
significance. This confirms the prediction that explanations supported by all symptoms 
receive the most activation and suggests that the activation of rejected targets indeed 
differs depending on the time since rejection. 

Diagnoses

Again, we assessed accuracy and time for entering the diagnoses at the end of each 
trial. For the analysis of diagnosis times, wrong diagnoses and diagnoses above and 
below 3 SDs from the condition mean of each participant were excluded (resulting in 
an exclusion of 2.5% of correct diagnoses). The high diagnosis accuracy (95.9%; SD 
= 3.9) and short time for entering correct diagnoses (574 ms; SD = 264) show that 
participants could solve the diagnosis task with high performance. 

Model predictions

Model predictions for the probe reaction times are presented in Figure 2.3b. The 
associated fits and the diagnostic performance reached by each model are shown in 
Table 2.4. The model that also produced the best fit in Experiment 1, model-number, 
generalizes best to the probe reaction data of Experiment 2. A visual inspection of the 
model predictions shows that this model predicts the time course of compatible and 
incompatible probes very well and better than the other three models do. For rejected 
probes the picture is less clear. Model-constant and model-number make almost identical 
predictions for rejected probes. Whereas these predictions are very good for rejected-
after-4 probes, model-time seems to predict the time course of rejected-after-2 and 
rejected-after-3 probes better. However, in interpreting these results, it should be kept 
in mind that all predictions of the best fitting model, model-number, are within the 
standard errors of the empirical data. Again, only model-constant and model-number are 
able to produce the high diagnostic accuracy as found in the empirical data.

Discussion
Experiment 2 had three main goals: (a) to replicate the findings about the availability of 
compatible and incompatible explanations and foils in a more controlled setup, (b) to 
allow a closer evaluation of the availability of rejected explanations, and (c) to test how 
well the models generalize to a new data set. We were able to replicate the results for 
compatible and incompatible explanations. The inspection of rejected probes suggests 
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some difference between these probes, depending on the time since their rejection. The 
model comparison reveals large differences in generalizability of the models. Model-
number predicts the probe reaction data time and the diagnostic performance well, 
whereas the remaining models show clear deviations from the data. Model-number 
is able to predict the effects for compatible and incompatible targets and foils. More 
interestingly, it is also able to approximate the pattern of the different types of rejected 
targets. The explanations rejected at different points in time had not been probed in 
Experiment 1 and therefore it was not self-evident that any of the models would be 
able to predict them. 

Given that the parameters of the models were fit to Experiment 1 and not adjusted 
to the data of this experiment, the best fitting model, model-number, also reaches a 
lower fit in Experiment 2 than in Experiment 1. This is not surprising, as reaction 
times in Experiment 2 decreased more strongly than reaction times in Experiment 
1. Reasons might be found not only in differences between the samples but also in 
differences between the tasks of the two experiments. In Experiment 1, participants 
had to keep in mind that symptoms might potentially be misleading and therefore that 
the current explanation might have to be changed during the trial. In Experiment 2, 
no such uncertainty existed and therefore participants could allocate more resources 
to the probe task. By adjusting parameters characterizing the sample (e.g., duration 
of memory retrievals) and the task (e.g., how strong response preparedness increases 
over the trial), the model could be fit to produce reaction times closer to those of the 
humans. In the current chapter we decided to forgo this adjustment, because we were 
interested in seeing how well the models generalize to a new data set (see Böhm & 
Mehlhorn, 2009, for earlier versions of the models that were fit to part of this data 
set). The fact that without parameter adjustment model-number was able to predict 
the major effects found in the human data lends additional support to this model, as 
the ability of a model to generalize to a new data set, without any further parameter 
adjustments, has been described as an important standard by which models should 
be evaluated (Marewski & Olsson, 2009; Pitt, Myung, & Zhang, 2002; Roberts & 
Pashler, 2000).

General Discussion
In diagnostic reasoning, reasoners have to generate and evaluate possible explanations 
for data observed from the environment. Whereas the number of potential explanations 
is often large, reasoners usually generate and deliberately evaluate only a small subset of 
explanations. Empirical research has shown that the selection of explanations into the 
generated subset seems to be highly adaptive to previous experience and the current 
reasoning context (Dougherty et al., 1997; Dougherty & Hunter, 2003a; Gettys et 
al., 1987; Sprenger & Dougherty, 2006; Weber et al., 1993). However, although the 
idea that currently available observations affect the generation of explanations from 
memory seems obvious, few studies have experimentally tested this assumption. Even 
less work has investigated how newly incoming observations affect the availability 
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of explanations over time. The goal of this chapter was to more closely investigate 
how automatic memory processes can provide the reasoner with an adaptive selection 
from memory over time. We report the results of two behavioral experiments that 
were designed to overcome potential problems of earlier studies. The results of the 
experiments are compared with predictions of four cognitive models. Implemented 
in the cognitive architecture ACT-R, these models test hypotheses about how 
sequentially observed information might affect the availability of explanations in 
memory over time.

In both experiments participants diagnosed quickly and with high accuracy. Whereas 
all models diagnosed equally fast, only the models that weighed each observation 
equally strongly at the point of diagnosis (model-constant and model-number) were 
able to replicate the high diagnosis accuracy. The models reached this performance 
by merely relying on spreading activation between symptoms and explanations, 
suggesting that, given sufficient knowledge, memory activation can indeed provide the 
reasoner with a highly adaptive selection of explanations from memory. The models’ 
underprediction of diagnostic performance in trials of Experiment 1 where memory 
activation alone was not sufficient to find the correct diagnosis shows where deliberate 
reasoning processes might come into play.

The probe reaction task proved to be a useful measure for the availability of different 
explanations over the course of the reasoning task. Whereas for the participants 
the probe task seemed unrelated to the diagnosis task, reaction times to probes of 
different explanations varied, as predicted, as a function of the observed symptoms 
over time. All models were able to reproduce the overall activation differences between 
explanations found in the human data. This lends support to the basic assumption of 
spreading activation and inhibition as it was implemented in all models. The models 
differed in their ability to reproduce the courses of explanations’ activation over time. 
In Experiment 1, all models reached a high overall fit, with varying success in fitting 
details of the activation curves. Furthermore, all models but model-constant reflected the 
ignoring of the second symptom in their curves. The generalization test of Experiment 
2 shows that model-number generalizes best to the new data set. The success of this 
model suggests that the impact of observations on memory activation might depend 
neither on the time since an observation was made nor on the number of observations. 
Rather, the results suggest that all observations that are stored in working memory 
seem to be weighed equally at each point in time until an explanation is found. 

Generalizing to Real-World Diagnostic Reasoning
To allow for the experimental control that was necessary to test our assumptions 
about memory activation, the experiments and models in this chapter present a 
simplified version of diagnostic reasoning.  In real-world diagnostic reasoning, the task 
characteristics, the memory representation, and the reasoning strategies will often be 
more complex. This increased complexity raises a number of issues, which we briefly 
discuss here.
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An important issue for understanding real-world diagnostic reasoning is the 
interaction of automatic processes as investigated here with more deliberate 
reasoning strategies. Our models assume a very simple strategy: Observed symptoms 
are successively stored in working memory and, when asked for the diagnosis, the 
explanation that receives the most activation from the observed symptoms is retrieved 
from memory. Obviously, such a simple strategy oversimplifies diagnostic reasoning. 
Whereas we chose to implement such a simple strategy to test different assumptions 
about automatic memory activation processes over time, it is very likely that people use 
additional deliberate strategies. People probably start to retrieve possible explanations 
early on in the reasoning process (see, e.g., Just & Carpenter, 1987, for evidence 
that people interpret evidence as soon it becomes available). Thus, presumably, not 
only are the sequentially acquired observations stored in working memory but also 
potential explanations that have been retrieved from long-term memory. Such an 
additional strategy of retrieving explanations earlier in the reasoning process might 
explain some of the deviation between our probe data and the model predictions. For 
example, all models underpredicted the decrease of the slope of reaction times for 
compatible targets in both experiments. If the reasoner additionally would retrieve 
candidate explanations and store them in working memory, these explanations would 
be available at low time cost. Therefore, mean reaction times to compatible targets 
would decrease over the course of the trial to a stronger extent than predicted by our 
pure activation-based models.

The question about reasoning strategies is closely linked to another important 
question for understanding real-world diagnostic reasoning. How do people represent 
the sequentially observed data and the generated explanations in working memory? As 
discussed above, for the sake of simplicity, in our models only observations are stored 
in memory. Storing observations is not implausible, as it has been found that not 
yet explained observations are kept in a more active state in memory than explained 
observations (Baumann, 2001). However, a more comprehensive account of diagnostic 
reasoning will also have to incorporate predictions about the representation of already 
retrieved explanations and their influence on memory activation over time.

A key aspect of such considerations has to be the contrast between limited human 
working-memory capacity and the large number of observations and explanations that 
might have to be maintained during diagnostic reasoning tasks. In our experiments 
participants had to maintain up to four symptoms in working memory, a number 
that lies within the accepted range of 4±1 (Cowan, 2001). However, assuming that 
participants also store retrieved candidate explanations in memory, one would quickly 
reach capacity limits. Furthermore, in most real-life diagnostic reasoning tasks, a 
higher number of observations needs to be explained. An interesting question for 
further research will be to investigate what happens if the amount of information to be 
actively maintained during the task exceeds working-memory capacity. In such a case, 
the least activated information might be dropped from working memory (Chuderski, 
Stettner, & Orzechowski, 2006; Thomas et al., 2008) and therefore should lose its 
ability to spread activation to long-term memory, unless it is actively recovered from 
long-term memory.
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Also time and task constraints will be more complex in many real-world settings. 
In our experiments, symptoms were presented at a fixed rate, with a relatively small 
spacing over time, and with (almost) no interference from other tasks. It has been 
proposed that information will be held by a cognitive resource like working memory 
until the resource is needed for another task (Salvucci & Taatgen, 2008). Applied 
to diagnostic reasoning as proposed in this chapter, this would mean that observed 
symptoms would remain in working memory until working memory is needed for 
something else (see also Berman et al., 2009). With increasing spacing of the symptoms 
over time, and with increasing complexity of the diagnostic situation, the chance for 
interfering working-memory use grows. Consequently, the probability for observed 
symptoms to be lost from working memory also grows under these conditions. Also 
in this case, symptoms would have to be actively recovered from long-term memory 
before they could affect memory activation again.

Another open question is related to the representation of knowledge in long-
term memory. As we discussed in the introduction, memory activation processes can 
only provide the reasoner with an adaptive set of possible explanations if diagnostic 
knowledge is represented in a way that fits the requirements of the task. Memory 
activation might for example favor the retrieval of an explanation that has been 
successfully used in the past compared with the retrieval of an explanation that has 
rarely occurred in the reasoner’s experience but fits the current patient better. The 
representation of knowledge in long-term memory will most probably vary depending 
on the task structure and the way in which it was learned. In our experiments, the task 
structure was clearly defined, and the knowledge was learned in an explicit semantic 
fashion through a series of practice trials. This simplification of knowledge acquisition 
compared with real-life situations allowed us to focus on the effects of memory 
activation by keeping the effects of knowledge representation relatively constant. It will 
be an interesting question for future research to investigate the role of different ways 
of knowledge representation in memory activation processes. By proposing an episodic 
as well as a semantic representation and specifying the memory activation processes 
related to these representations, Thomas et al. (2008) already made an important step 
in this direction. We suspect, however, that a more detailed investigation of different 
ways of knowledge representation will not call the implications of our findings 
into question. A less clearly defined task structure and a more implicit acquisition 
of knowledge as they would be expected to occur in real-life will only increase the 
importance of memory activation processes (Dijksterhuis & Nordgren, 2006).

Conclusion
 To conclude, our results support the assumption that automatic memory activation can 
adaptively regulate the availability of explanations in memory and thereby provide the 
reasoner with a subset of explanations that have a high probability of being relevant in 
the current context. This regulation of explanations’ availability was evident not only at 
the point of the diagnosis but throughout the whole reasoning process. Future research 
must show whether simple models of memory activation as we tested them in this 
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chapter prove to be sufficient to explain memory processes in real-world diagnostic 
reasoning tasks. Further research is also needed to investigate how such simple memory 
models can be extended into more comprehensive models of diagnostic reasoning that 
take into account the interaction and respective contributions of automatic memory 
activation and deliberate reasoning strategies.
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