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Abstract

Hidden Markov models (HMMs) are a common classification technique for time series
and sequences in areas such as speech recognition, bio-informatics and handwriting
recognition. HMMs are used to model processes which behave according to the
Markov property: The next state is only influenced by the current state, not by the
past. Although HMMs are popular in handwriting recognition, there are some doubts
about their usage in this field.

A number of experiments have been performed with both artificial and natural
data. The artificial data was specifically generated for this study, either by transform-
ing flat-text dictionaries or by selecting observations probabilistically under prede-
fined modelling conditions. The natural data is part of the collection from the Queen’s
Office (Kabinet der Koningin), and was used in studies on handwriting recognition.
The experiments try to establish whether the properties of Markov processes can be
successfully learned by hidden Markov modelling, as well as the importance of the
Markov property in language in general and handwriting in particular.

One finding of this project is that not all Markov processes can be successfully
modelled by state of the art HMM algorithms, which is strongly supported by a
series of experiments with artificial data. Other experiments, with both artificial and
natural data show that removing the temporal aspects of a particular hidden Markov
model can still lead to correct classification. These and other critical remarks will be
explicated in this thesis.
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Chapter 1

Introduction

Hidden Markov models (HMMs) are a statistical machine learning technique, com-
monly used in areas such as sound recognition, bio-informatics and handwriting
recognition (HWR) for classification of time series and sequences. In HWR, HMMs
are used to compare unknown instances of written words to previously trained, la-
belled instances. In sound recognition, spoken words or syllables are used while
bio-informatics typically classifies DNA sequences.

HMMs model processes which behave according to the Markov property: the next
state is only influenced by the current state, not the past. When modelling natural
data, the Markov property is generally assumed (it is therefore also referred to as the
Markov assumption).

Another essential assumption is that the underlying processes which are being
modelled are stationary. This means that the characteristics of the process do not
change over time. Both these assumptions are needed to solve two problems: it is
too difficult to deal with a large, unbounded number of past states and changing
probabilities which, for instance, determine the next state (Russell & Norvig, 1995).

This thesis has two experimental parts: The first investigates some generic prop-
erties of HMMs by creating artificial time sequences with specific properties. The
second part uses natural data from a handwriting recognition task to study the use
of HMMs in recognition of handwritten text. Consequently, this thesis will have a
focus on that area, although the theory is applicable to many other fields. Chapter 2,
Theoretical background, will explain all assumptions made due to the focus on HWR.

Markov models are state machines: at each point in time, they are in a certain
state. The change of state each time step is determined by the transition probability
matrix A. The number of discrete states is denoted with N , and thus the transition
matrix is N ×N in size. The transition from state Si at time t to Sj at time t + 1
is denoted with aij . This shows the Markov property: the state at time t+ 1 is only
dependent on the state at time t. The probability of being in state Si at time 1 is
denoted with πi.

When the current state is a physical, directly observable event, the above model
suffices and we call it an observable (or explicit) Markov model. But, when the
physical event is only partial evidence of the current state, the model needs to be
extended to a hidden Markov model. This means that for each state, there exists a
function which gives the probability of observing an event in that particular state.
This function is usually denoted with bi(`) for the probability of observation ` in
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CHAPTER 1. INTRODUCTION

state Si. Such situations are for example when sensors are unreliable.
In HWR, the observable events can be represented in a large number of ways. In

some cases, the representation in pixel-space is used by moving over the image from
left to right with a narrow window. Other cases compute higher order features, for
instance by computing the contour of connected components. These representations
are usually multi-dimensional and are not usable in the traditional HMM framework,
where an observation is assumed to be a single discrete token of occurrence of an
event. The problem of multi-dimensional features is solved by either transforming the
multi-dimensional feature vector space to an alphabet of discrete tokens, for example
by using K-means clustering or self-organising feature maps (Kohonen, 1987), or,
alternatively, by allowing an observation x to be a point in <n, for which a probability
can be computed.

Hidden Markov Models were first introduced to the domain of speech recognition.
The canonical reference is Rabiner (1989), which introduces the theory of HMMs as
well as their application to speech recognition.

Early in the 1990’s, HMMs were introduced to the domain of handwriting recog-
nition. They were used to overcome the problem of segmenting words into characters:
Oh, Ha, & Kim (1995) used Viterbi to find the most probable path through a net-
work of character and ligature HMMs. Bengio, LeCun, Nohl, & Burges (1995) used a
combination of artificial neural networks (ANNs) and HMMs: the HMMs were used
in the post-processing stage to segment the output of the ANNs.

A slightly different approach was used in Bunke, Roth, & Schukat-Talamazzini
(1995): a model was created for each word in the lexicon, and during recognition,
the model which best described the unknown word would be selected using the tech-
niques described later in this thesis. Dehghan, Faez, & Ahmadi (2000) used a similar
approach, where Iranian city names were represented by separate HMMs. Features
were first transformed into a discrete observation by using a self-organizing feature
map.

HMMs were also used in the closely related field of recognising handwritten nu-
meral strings (useful for, i.e., processing bank cheques): Britto Jr, Sabourin, Bor-
tolozzi, & Suen (2001) represented separate, isolated digits as HMMs, but also used
HMMs at the higher level of representing the entire string of digits as HMMs.

On-line handwriting recognition, where the input is from a digital pen or tablet-
PC, is usually regarded as easier to solve than off-line handwriting recognition, where
the input is from a static image. The temporal information is directly available as part
of the input. HMMs are therefore also successfully applied in this field, as shown by
Manke, Finke, & Waibel (1995) and Artières, Marukatat, & Gallinari (2007), which
used HMMs to represent both strokes and characters.

Despite the abundance of HMM-based solutions in the HWR field, there are also
doubts about the use of HMMs. A problem, although not unique to HMMs, is that
it usually needs a large amount of training data. Furthermore, as pointed out in
van der Zant, Schomaker, & Haak (2008), handwriting is 2-dimensional, containing
ascenders, descenders (loops and sticks, protruding from the letters up and down
respectively). The ascenders and descenders can extend to the left, where it overlaps
other letters in the position on the x-axis. This proves to be a problem when the
image is processed strictly from left to right, which is illustrated in Figure 1.1. In
the same study, high performances (89%) for word classification are reported with
non-Markovian, whole-word classification using Gabor features.

Furthermore, evidence was found that the temporal aspect of language may not
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1.1. THESIS STRUCTURE

Figure 1.1: Example of writing where the ascenders of the letters ‘d’ in the word
‘donderdag’ extend to the left. When processing this image strictly from left to right,
the ascenders are processed before the letters they actually belong to. Image adapted
from van der Zant et al. (2008).

be as distinctive as assumed by most HMM-based solutions. Schomaker (2010) shows
an experiment using a simple position-independent coding. The histogram of letter
occurrences in each word of the dictionary proves to be a good predictor of word
class. For Dutch, in a lexicon of 1144029 words, 95% of the letter histograms are
unique.

This last experiment was the motivation for this master’s project. It raised the
following question: If classification of words in ‘ASCII’ space can be done with 95%
accuracy with a simple position-independent code, how important is the Markov
assumption in language and recognition of handwritten text?

A possible way to investigate the importance of the Markov property is by remov-
ing the temporal information from an HMM, by ‘flattening’ the transition matrix A.
This means that the probability of moving from any state to any other state always
has the same probability, or: with N hidden states, the transition matrix becomes
A = {aij = 1

N }. If the Markov property is important in, e.g., handwriting, the
performance of an HMM-based recognition system should drop dramatically when
using such a flattened model.

The experiments will study flattened models, as well as some other types of mod-
els, to see whether the classification performance drops when using both artificially
generated data and natural data from a handwriting recognition task.

Another approach is that if we know that a certain time sequence is generated
by a particular (artificial) Markov process, the properties of that process should be
detectable by HMMs. A number of experiments in this thesis will investigate this
problem by controlling the properties of sequences used to train and test HMMs.

1.1 Thesis structure

After first discussing the theory behind HMMs in chapter 2 and some implementation
issues in chapter 3, the two types of experiments are discussed. Chapter 4 discusses
the experiments where artificial data is generated to control the properties of the input
sequences. Chapter 5 shows the experiments with data from a historical handwriting
recognition task. Finally, chapter 6 concludes the thesis with a discussion of the
results from the experiments and their consequences.
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Chapter 2

Theoretical Background

In this chapter, the theoretical background of hidden Markov models is reviewed.
The main body of this review is based on Rabiner (1989), a tutorial on HMM basics
and applications in Speech Recognition. The theory is reviewed here step by step, to
introduce the notation and the assumptions each implementation has to make (for
example: while the most common topology in handwriting recognition is Bakis, it is
not the only one, and others might have benefits in certain situations).

There are a few HMM packages available on the internet, which are built with
applications for Speech Recognition1 and Bioinformatics2 in mind. Since implemen-
tation of an HMM framework is not straightforward, the next chapter will introduce
some issues which may arise when implementing the theory discussed in this chapter.

The theory can be divided in three sections. The first section introduces the
theory of Markov processes and the Markov property, which is the basis of HMMs.
This section formalises so-called observable (or explicit) Markov models, which are
extended to hidden Markov models in section 2.2. This extension covers observation
probabilities, for both discrete and continuous observations. Section 2.3 discusses
classification using HMMs, or more specifically, training and testing models.

Finally, the chapter closes with two sections. One details the training of continu-
ous models separate from the general training of HMMs in section 2.3, and the final
section provides some methods to integrate HMMs in a handwriting recognition task.

2.1 Markov models

Stochastic processes for which the Markov property holds, are called Markov pro-
cesses. Stochastic processes are systems which probabilistically evolve in time (Gar-
diner, 1985, ch. 3). In this thesis, time is regarded as discrete, and the processes are
therefore discrete stochastic processes.

A Markov process then, is a stochastic process for which the Markov property
holds: Observations in the future are only dependent on the knowledge of the present.
More formally, when we describe a Markov process as a system that has N distinct
states S1, S2, · · · , SN and we denote the state at time t with qt, the Markov property

1See for example the HTK Speech Recognition Toolkit, http://htk.eng.cam.ac.uk/
2For example, the GHMM Library, http://ghmm.sourceforge.net/
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CHAPTER 2. BACKGROUND

states that

P (qt = Sj |qt−1 = Si, qt−2 = Sk, · · · )
= P (qt = Sj |qt−1 = Si) 1 ≤ i, j, k ≤ N (2.1)

This system is used as the basis of the explicit Markov models, as well as the hidden
Markov models.

The transition matrix A = {aij} contains all the transition probabilities aij : the
probability of moving from state i to state j, i.e.,

aij = P (qt = Sj |qt−1 = Si) 1 ≤ i, j ≤ N (2.2)

Since A is a probability matrix, it has the following properties:

aij ≥ 0 (2.3a)
N∑
j=1

aij = 1 1 ≤ i ≤ N (2.3b)

The probability of being in state i at time 1 is given by the initial state probability
πi:

πi = P (q1 = Si) 1 ≤ i ≤ N (2.4)

The transition matrix and initial state probability together make up a Markov
model. We call it an explicit, or observable, Markov model since the output of the
process at time t is its state qt, which corresponds directly to a physical, observable
event.

We can calculate the probability a certain observation sequence O will occur,
given an explicit Markov model (A, π). If we take the observation sequence O =
{S2, S3, S1}, we can calculate the probability of this sequence as follows:
P (O|model) = P (S2, S3, S1|model) = π2 · a23 · a31.

Let us examine a simple example. Imagine a model with two states: Srain and
Sdry, which indicate the weather on a certain day. Furthermore, imagine the proba-
bility of having rain on a day after a rainy day is 0.6, while the probability of having
a dry day after a rainy day is 0.4 (these probabilities have to add up to 1). The
probability of having a dry day follow a dry day is 0.5, which means a dry day is
followed by a rainy day half of the time. The probability of having rain the first day
is 0.3, while the probability of having a dry first day is 0.7.

Formalised, we have the following transition matrix:

A =

 Srain Sdry
Srain 0.6 0.4
Sdry 0.5 0.5


and the following initial probabilities:

π = (0.3 0.7)

So, the probability of having two days of rain followed by a dry day is:

P (Srain, Srain, Sdry|A, π) = 0.3 · 0.6 · 0.4 = 0.072
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2.1. MARKOV MODELS

1 2

3 4

(a) Ergodic

1 2 3 4

(b) Bakis

1 2 3 4

(c) Skip

1 2 3 4

(d) Forward

Figure 2.1: Topology examples. The images show all possible transitions in the
Ergodic, Bakis, Skip and Forward topologies. The arrows give no indication of the
probability of each transition. The flat topology is not displayed since it is equivalent
to Ergodic, with equal transition probabilities to all states. The probabilities of all
outgoing transitions from a state have to sum up to 1, and thus it is easy to see that
the transitions in a Forward model are always 1.

2.1.1 Model topology

So far, no constraints have been placed on the transition matrix. When every state
can be reached from every other state in the model in a finite number of steps without
repetitive cycles, we call the model Ergodic. Strictly speaking, when every state can
be reached in a single step, i.e., when all transitions have a non-zero probability, the
model is ‘fully connected ergodic’, but is still commonly referred to as being ‘ergodic’.
See also Figure 2.1(a).

The family of left-right models have the property that all states must be visited
in succession (S2 can not be visited after S4). This means that the transition matrix
is constrained by aij = 0 for all j < i.

Bakis models are left-right models as well, with the extra constraint that only
recurrent transitions or transitions to the next state are allowed: aij = 0 for all
j < i, j > i + 1. Figure 2.1(b) shows this relation between states. The Bakis model
has its origin in speech recognition, where the modelling of variable phoneme duration
is essential.

Models which can skip a few states as well, are constrained by aij = 0 for all
j < i, j > i + s where s is the largest jump a state change can make. In this the-
sis, s is usually 2, and we call these models simply Skip models. See Figure 2.1(c).
Skip models are more usable in handwriting recognition than in, e.g., speech recog-
nition, since noise is frequently in the form of specks or smudges. Skip models can
theoretically jump over this noise by skipping a state.

The Forward model is a simple model with no recurrent transitions and only a
transition to the next state. The only exception is the last state transition, which
must be recurrent. Thus: aij = 1 for j = i + 1 and j = i = N . aij = 0 in all other
cases. This topology is shown in Figure 2.1(d).

7



CHAPTER 2. BACKGROUND

Finally, a flat model has a transition matrix with aij = 1/N for all i, j. This
means that the probability to move from one state to another is for all states equal.
In other words, there is no temporal relation between states.

Models with a Bakis, Skip or Forward topology have an absorbing state. The
absorbing state is the state where no other transitions are possible than the recurrent
transition. So, once in the absorbing state, the model cannot leave that state. The
Forward topology always reaches the absorbing state after N − 1 transitions.

2.2 Hidden Markov Models

The previous section discussed explicit Markov models, where each state corresponds
to a physical, observable event. However, in many cases an observation is only partial
evidence for the current state (which means one can not decide which state a system
is in by looking at the observation alone). We have to extend the explicit Markov
models to hidden Markov models, to accommodate for such cases.

Recall the example from the previous section, with the two states for rainy and
dry days. In this example, the state was directly observable: just look outside and
see whether it rains or not. However, if we want to monitor the weather in a place
far away, and we only have a sensor which measures humidity, we cannot directly
observe the weather. The humidity level reported by the sensor is only an indication
of the kind of weather.

This ‘indication’ is modelled by having a probability function for each state in
the model. This function returns the probability of observing a particular symbol in
that state. In the case of having M distinct observation symbols, we can enumerate
the symbols by v1, v2, · · · , vM (the set V ). The probability of producing symbol ` in
state j is then defined as

bj(`) = P (v`,t|qt = Sj) 1 ≤ j ≤ N, 1 ≤ ` ≤M (2.5)

where v`,t is symbol v` at time t. This is the observation probability function for
discrete observations. Continuous observations will be discussed below.

The transition matrix A, the observation probabilities B and the initial proba-
bilities π make up an HMM, usually abbreviated to λ = (A,B, π).

If the sensor in the example above produces a discrete set of observations, say
Low,Middle,High, indicating humidity levels, and we know the probability of each
observations per state, we can formalise the HMM in this example:

B =

 Low Middle High
Srain 0.1 0.2 0.7
Sdry 0.6 0.3 0.1


Now, observing Low on a rainy day is very improbable, while it is very probable

on a dry day. The probability of observing High,High, Low and the state sequence
Srain, Srain, Sdry is therefore:

P (High,High, Low, Srain, Srain, Sdry|λ)
= πrain · brain(High) · arain,rain · brain(High) · arain,dry · bdry(Low)
= 0.3 · 0.7 · 0.6 · 0.7 · 0.4 · 0.6

Section 2.3.1 will go into more detail on how to efficiently calculate how well a
particular model explains a certain observation sequence.
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2.2. HIDDEN MARKOV MODELS

~f →


VQ → token k → p̃(~f ) ≈ p(k)
Naive Bayes assumption → p̃(~f ) ≈∏D

i p(fi)
Single Gaussian → p̃(~f ) ≈ ND(~f, ~µ,Σ)
Gaussian mixtures → p̃(~f ) ≈∑M

m pmND(~f, ~µm,Σm)

Figure 2.2: Illustration of different methods of calculating the probability of a feature
vector. The methods are listed from generic to specific: the first method does not make
assumptions about the data and models have less parameters to estimate. The first
method shows the traditional method of using vector quantization to transform ~f to
a discrete token k. The second method shows using the Naive Bayes assumption to
combine the probabilities of each feature by a product of probabilities. D denotes the
number of dimensions, |~f |. The third method shows calculating the probability using
a single Gaussian. Σ denotes the full covariance matrix, but might be a single scalar
for isotropic Gaussians. The final method shows using a mixture of M Gaussians.

2.2.1 Continuous observations

The traditional HMM framework allows for discrete observation symbols only, as
discussed above. When the feature vector contains continuous observations, there
is a number of options, summarised in Figure 2.2. The figure shows four differ-
ent methods, of which we will discuss two: either quantize the feature vector (i.e.,
transform the continuous data into discrete codebook indices for which histograms
can be tallied), or use continuous probability density functions such as a mixture of
Gaussians.

The naive Bayes method has the assumption that each feature is conditionally
independent. Each feature can have a different method of computing the probability
of that feature. Combination is done by a product of the probabilities for each feature.
This method will not be explored further.

While the Gaussian methods show a full covariance matrix Σ, in the specific case
of isotropic Gaussians, which can only model circular Gaussian distributions, only a
single standard deviation σ is needed. Further explanation can be found below.

With vector quantization, a multidimensional feature vector is transformed into a
single discrete token. Frequently used methods include K-means clustering and self-
organizing feature maps (SOFM), such as in Schomaker (1993) and Dehghan et al.
(2000). A SOFM consists of a (usually two-dimensional) grid of nodes (Kohonen,
1987, 1998). Each node is a model of observations and can be represented with a
vector. The best matching node for an unknown observation can be established by
calculating the distance (usually Euclidean) to each node. The node with the smallest
distance is then the best matching node.

In Schomaker (1993), stroke-based features are described, consisting of 30 (x, y)
pairs, which were then converted to a single point: the index of a Kohonen SOFM.
Dehghan et al. (2000) used a similar method in conjunction with HMMs, using fea-
tures based on the word contour.

A large feature vector with continuous features can now be represented by this
discrete index value, which means the traditional framework can be used without
modification for continuous feature vectors.

However, using a SOFM, and vector quantization in general, introduces an extra

9



CHAPTER 2. BACKGROUND

Figure 2.3: This figure illustrates how a small change in shape leads to a large jump
in the discrete representation. Shown is a 15×15 self-organizing feature map (SOFM)
trained on fragmented connected component contours (FCO3) extracted from hand-
written text of multiple writers. Image adapted from Schomaker et al. (2007)

step in the classification which requires separate training. Furthermore, a small shift
in the feature vector may lead to a large jump in the discrete representation, see
Figure 2.3 for an illustration of this effect. The performance of the recogniser will
degrade if this jump happens infrequently. This brittleness problem can be solved
with sufficient amount of training data. However, the amount of data is usually
limited, and other solutions are preferred.

A common solution is replacing the output probability matrix with a probability
density function, such as (mixtures of) Gaussians. This removes the separate training
of a quantization method. The assumption is that, since there is a gradual transition
from one observation to another, continuous observation probabilities will remove the
brittleness introduced by the large jumps in discrete observations.

In the continuous observation case, the output probability function will have the
following form:

bj( ~O) =
M∑
m=1

pjmN ( ~O, ~µjm, σjm) 1 ≤ j ≤ N (2.6)

where M denotes the number of Gaussians in the mixture, ~O is the observation
(possibly multi-dimensional), pjm is the mixing probability for state Sj and Gaussian
m. ~µjm, σjm are the means (a D-vector, D denoting the number of dimensions) and
standard deviation. N is the Gaussian PDF:

N ( ~O, ~µjm, σjm) =
1

(
√

2πσjm)D
exp

−1
2

(
‖ ~O − ~µjm‖

σjm

)2
 (2.7)

The observations regarded in this thesis are all 1-dimensional, although the theory
should be applicable to multidimensional observations as well. In a handwriting
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2.3. USING HIDDEN MARKOV MODELS

recognition task, examples of multidimensional observations include features with
pixel-position and time (x, y, t) or multiple features combined at the same time (and
therefore grouped as a single ‘observation’).

The specific Gaussian PDF in (2.7) can only model Gaussians which have the
same standard deviation in all dimensions (i.e., isotropic Gaussians). This means it
cannot model elongated clusters, which can be a serious limitation. For non-isotropic
Gaussians, a complete covariance matrix needs to be estimated, not just a single
standard deviation. In that case, the PDF becomes:

N ( ~O, ~µjm,Σjm) =
1

(2π)D/2|Σjm|1/2 exp
(
−1

2
( ~O − ~µjm)TΣ−1

jm( ~O − ~µjm)
)

(2.8)

where |Σ| is the determinant of Σ, a D ×D covariance matrix.
However, a complete D×D covariance matrix requires a lot of data to be reliably

estimated (there are a lot of parameters to estimate). Furthermore, as can be seen
from the PDF, the covariance matrix needs to be invertible, which may not always be
the case. Because of these limitations, and for simplicity, the theory of re-estimating
Gaussian mixtures in section 2.4 deals only with isotropic Gaussians.

A completely different approach is the use of conditional random fields (CRFs),
which are a generalisation of HMMs. CRFs are undirected graphs, where each edge
represents a dependency between the nodes. When represented as a chain, each
hidden state has a dependency on the previous hidden state, as well as a dependency
on the node which represents the input. As a chain, CRFs can be seen as HMMs
where the transition probabilities are replaced by functions depending on both the
input and the position in the sequence. See for more information Do & Artières
(2006).

2.3 Using Hidden Markov Models

Rabiner (1989) describes three basic problems. In this section, the two problems
directly related to classification are described: training and testing.

The first problem is the evaluation problem: given a model λ = (A,B, π) and a
sequence of observations O = O1, O2, · · · , OT , how do we compute the probability of
the observation sequence given the model P (O|λ)?

The second problem (Problem 3 in Rabiner, 1989) is how we train an HMM,
which means adjusting the model parameters A,B, π to maximise P (O|λ).

Problem number 2 in Rabiner (1989) deals with finding the state sequence
q1q2 · · · qT which best describes the observation sequence. This problem is usually
solved with the Viterbi-algorithm and is not discussed in this thesis.

2.3.1 Evaluation

Rabiner (1989) describes two ways of solving the evaluation problem. The first solu-
tion is naive, and based on enumerating all possible state sequences. This method is
infeasible since it requires too many computations. It does however give insight into
the problem. The solution is given as follows:

P (O|λ) =
∑

all Q
P (O|Q,λ)P (Q|λ) (2.9)
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where Q is a state sequence. The probability of observing O when Q is the state
sequence is: P (O,Q|λ) = P (O|Q,λ)P (Q|λ) with

P (O|Q,λ) = bq1(O1) · · · bqT
(OT ) (2.10)

P (Q|λ) = πq1aq1q2 · · · aqT−1qT
(2.11)

Since this is computationally too heavy (in the order of 1072 computations for 5
states and 100 observations, according to Rabiner, 1989), there is another method,
called the forward-backward procedure.

If we define the forward variable αt(i) as the probability of the partial obser-
vation sequence up to time t and state Si at time t, given the model (αt(i) =
P (O1O2 · · ·Ot, qt = Si|λ)), summing over all states at time T gives the desired prob-
ability: P (O|λ) =

∑N
i=1 αT (i).

The forward variable can be solved inductively by the following steps:

1. Initialisation:
α1(i) = πibi(O1) 1 ≤ i ≤ N (2.12)

2. Induction:

αt+1(j) =

(
N∑
i=1

αt(i)aij

)
bj(Ot+1) 1 ≤ t ≤ T − 1, 1 ≤ j ≤ N (2.13)

The forward-backward procedure also introduces a backward variable β, which is
not used in this problem, but in re-estimating the HMM parameters. β is therefore
explained in the next section.

2.3.2 Training

The second problem is how we adjust the model parameters A,B and π. This is done
using iterative procedures. Here we describe the Baum-Welch method, which is a
form of Expectation Maximisation (EM). Unfortunately, there is no known analytical
solution.

The model parameters are estimated (or chosen randomly3) at first, and then
iteratively re-estimated. The re-estimation formulas for the model parameters are
defined as

πi = expected number of times in state Si at time t = 1 (2.14a)

aij =
expected number of transitions from Si to Sj

expected number of transitions from Si
(2.14b)

bj(`) =
expected number of times in Sj and observing symbol v`

expected number of times in Sj
(2.14c)

3although estimation of the initial values of the parameters will yield better results, the experi-
ments in this thesis all chose the initial parameters randomly for efficiency reasons

12
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To compute the re-estimation formulas, we first need to introduce the backward
variable. The backward variable βt(i) gives the probability of the partial obser-
vation sequence from time t + 1 to T , given state Si at time t and the model:
βt(i) = P (Ot+1Ot+2 · · ·OT |qt = Si, λ). As with the forward variable, we can solve it
inductively:

1. Initialisation:

βT (i) = 1 1 ≤ i ≤ N (2.15)

2. Induction:

βt(i) =
N∑
j=1

aijbj(Ot+1)βt+1(j) t = T − 1, T − 2, · · · , 1, 1 ≤ i ≤ N (2.16)

Since βT (i) is not defined according to the definition of βt(i) (since the sequence
of T +1 to T is not defined), a specific initialisation step is needed. The initialisation
is somewhat arbitrary, since the backward variable is always explicitly normalised.4

Then, with both the forward and backward variable, we can calculate the proba-
bility of being in state Si at time t and Sj at time t+ 1:

ξt(i, j) = P (qt = Si, qt+1 = Sj |O, λ)

=
αt(i)aijbj(Ot+1)βt+1(j)∑N

i=1

∑N
j=1 αt(i)aijbj(Ot+1)βt+1(j)

(2.17)

The denominator is merely used to keep the desired probability properties 0 ≤
ξt(i, j) ≤ 1 and

∑N
i=1,j=1 ξt(i, j) = 1. The numerator can be explained by looking

at the meanings of αt(i), aijbj(Ot+1) and βt+1(j): αt(i) accounts for all possible
paths leading up to state Si at time t. aijbj(Ot+1) gives the probability of moving
from state Si to Sj when observing the symbol Ot+1, and βt+1(j) accounts for all
the future paths from t + 1 to T leading from Sj . This is illustrated by Figure 2.4,
adapted from Rabiner (1989).

Now, to compute the probability of being in Si at time t, we simply sum ξt(i, j)
over all states j:

γt(i) =
N∑
j=1

ξt(i, j) (2.18)

The reasoning behind this summation is simple: since ξt(i, j) defines the proba-
bility of being in state Si at time t and Sj at time t + 1, we can see that if we take
all possible states for j, we get the probability of being in state Si at time t and any
other state at time t+ 1.

4However, using a value for the initialisation of βT (i) other than 1, will have a small side effect.

Normally, P (o1o2 . . . oT ) =
PN

j=1 αT (j) =
PN

j=1 πjbj(o1)β1(j) must hold, but no longer does when

the initial βT (i) 6= 1.

13
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...
...

· · · · · ·
Si Sj

aijbj(Ot+1)

βt+1(j)

t + 1

αt(i)

t

Figure 2.4: Illustration of the meaning of ξt(i, j): The αt(i) term accounts for the
past, leading up to Si at time t. The term βt+1(j) accounts for the future leading
from Sj at time t + 1, while the aijbj(Ot+1) term accounts for the transition from
state Si to Sj. This figure was adapted from Rabiner (1989)

Another way to calculate γt(i) is by realising that
N∑
j=1

aijbj(Ot+1)βt+1(j) = βt(i),

which means that γt(i) can also be calculated by

γt(i) =
αt(i)βt(i)

N∑
j=1

αt(j)βt(j)

(2.19)

This is illustrated by Figure 2.5. The relation between ξt(i, j) and γt(i) should now
be clear, since the sum over j would account for the paths leading from Si at time t.

Now, if we sum both γ and ξ over t, we get the expected number of transitions:

expected number of transitions from Si =
T−1∑
t=1

γt(i) (2.20a)

expected number of transitions from Si to Sj =
T−1∑
t=1

ξt(i, j) (2.20b)

Note that we cannot sum to T , since ξt(i, j) has a βt+1(j) term, and βT+1(j) is
obviously not defined.

Using these facts, we can now formalise the re-estimation formulas (2.14):

14
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...
...

· · · · · ·
Si

βt(i)αt(i)

Figure 2.5: Illustration of γt(i), the probability of being in state Si at time t. Again,
the αt(i) term accounts for all the paths in the past up to time t and state Si, while
the βt(i) term accounts for all the paths leading from Si into the future from time t.

πi = γ1(i) (2.21a)

aij =

T−1∑
t=1

ξt(i, j)

T−1∑
t=1

γt(i)

(2.21b)

bj(`) =

∑
t∈[1,T ]∧Ot=v`

γt(j)

T∑
t=1

γt(j)

(2.21c)

The re-estimated model is λ = (A,B, π), and we can use this re-estimated model
instead of λ in the next iteration. Repeat the re-estimation procedure until no changes
occur for a number of iterations, or a total number of iterations is reached (to catch
non-converging situations).

It has been proven by Baum & Sell (1968) that either λ = λ or P (O|λ) > P (O|λ).
This is a desirable property, since the new model is more likely (or just as likely) to
have produced the observation sequence. It also has a drawback, in the sense that
this leads to local maxima. This means that the initial model (the randomly selected
model) has a (potentially) high impact on the final model.

Note that the model topology is preserved, since transitions with a zero probability
will remain zero. However, a Flat model is essentially an Ergodic model, with the
additional constraint that all transition probabilities must be aij = 1

N . In order to
retain this property, the transition probabilities of Flat models are not re-estimated.
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The following experiment can be performed to test the implementation of the
algorithms above. A single observation sequence [0, 1, 0, 1, 0, 1, 0, 1] is learned by
both an Ergodic model and a model with a Bakis transition matrix. The Ergodic
model will have no trouble learning the sequence and will result in a transition matrix
with a probability of 1 for switching to the other state. The observation probabilities
will show a probability of 1 for a symbol in state 0 and a probability of 1 for the
other symbol in state 1. See the probability matrices in (2.22).

A =
(

0 1
1 0

)
(2.22a)

B =
(

0 1
1 0

)
(2.22b)

The Bakis model will result in different probabilities, since it will not be able to
jump back to a previous state. The transition matrix will thus show a probability of
1 to move to the last state, and the observation probability matrix will show a clear
preference for one symbol (0 in the case of the sequence above) in the first state, the
starting state for all Bakis models, and a probability of 0.5 for both symbols in the
second state. See the illustration of these probability matrices in (2.23).

A =
(

0 1
0 1

)
(2.23a)

B =
(

1 0
0.5 0.5

)
(2.23b)

The probabilities shown are of course theoretical probabilities, the actual learned
probabilities will most likely not be as accurate. This is due to the EM-algorithm and
arriving at a local optimum. Performing this experiment with the implementation
used in this thesis, the learned probabilities approach the theoretically correct ones.

2.4 Continuous density observation probabilities

As discussed in section 2.2.1, observation probabilities are represented as Gaussian
mixtures in the case of continuous observations. Just as the discrete observation
density function, these Gaussian mixtures need to be estimated using Expectation
Maximisation as well.

First, estimating Gaussian mixtures from a single set of observations will be dis-
cussed, outside the context of HMMs. The adjustments necessary to estimate Gaus-
sian mixtures in a particular state will be introduced in section 2.4.2.

2.4.1 Estimating Gaussian mixture densities with EM

Given T observations O = (~o1, ~o2, . . . , ~oT ) (possibly multi-dimensional5), we can
estimate the parameters of M isotropic Gaussian functions (in D dimensions). Only
isotropic Gaussians are considered; This means this method might not be suitable

5As mentioned earlier, the observations in the experiments in this thesis are all 1 dimensional
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for all data sources, but it has the advantage that the covariance matrix does not
have to be estimated completely.

The final estimated function (mixture) is given by

f(O; θ) =
M∑
k=1

pkN (O; ~µk, σk) (2.24)

with M the number of Gaussians in the mixture, pk the mixing probability and θ the
set of parameters of all the Gaussians:

θ = (θ1, . . . , θM ) = ((p1, ~µ1, σ1), . . . , (pM , ~µM , σM ))

The mixing probabilities are subject to the usual probability properties: pk > 0 and∑M
k=1 pk = 1.
The probability that the observation at time t was generated by component k is

p(k|t) =
pkN (~ot; ~µk, σk)∑M

m=1 pmN (~ot; ~µm, σm)
(2.25)

This probability measure has an explicit normalisation component, which means that∑M
k=1 p(k|t) = 1.
Before the iterative EM-procedure can be started, the set of parameters (pk, ~µk, σk)

for 1 ≤ k ≤M must be (randomly) initialised.
The EM-procedure then consists of two steps: the Expectation, or E-step and the

Maximisation, or M-step. The following functions are derived in Tomasi (2005).
E-step:

p(k|t) =
pkN (~ot; ~µk, σk)∑M

m=1 pmN (~ot; ~µm, σm)
1 ≤ k ≤M (2.26)

M-step:

~̂µk =
∑T
t=1 p(k|t)~ot∑T
t=1 p(k|t)

(2.27)

σ̂k =

√√√√ 1
D

∑T
t=1 p(k|t)‖~ot − ~̂µk‖2∑T

t=1 p(k|t)
(2.28)

p̂k =
1
T

T∑
t=1

p(k|t) (2.29)

The re-estimated parameters ~̂µk, σ̂k, p̂k are then used in the next iteration.

2.4.2 Estimating Gaussian mixture densities in HMMs

In order to use the re-estimation formulae above in HMMs, each state needs a set
of parameters: ~µjk, σjk and pjk with 1 ≤ j ≤ N . In the re-estimation procedure,
the probability of being in state Sj needs to be modelled as well. In section 2.3.2
the measure γt(j) was introduced as the probability of being in state Sj at time t.∑T
t=1 γt(j) then represents the probability of being in state Sj .
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The E-step remains practically the same, apart from a notational difference
(namely, it is computed per state). The

∑T
t=1 γt(j) term is incorporated in the

parameter estimation. This time, O = ~o1, . . . , ~oT is regarded as a single observation
sequence.
E-step:

pj(k|t) =
pjkN (~ot; ~µjk, σjk)∑M

m=1 pjmN (~ot; ~µjm, σjm)
1 ≤ j ≤ N, 1 ≤ k ≤M (2.30)

M-step:

~̂µjk =
∑T
t=1 pj(k|t)~otγt(j)∑T
t=1 pj(k|t)γt(j)

(2.31)

σ̂jk =

√√√√ 1
D

∑T
t=1 pj(k|t)‖~ot − ~̂µk‖2γt(j)∑T

t=1 pj(k|t)γt(j)
(2.32)

p̂jk =
1
T

T∑
t=1

pj(k|t)γt(j) (2.33)

2.5 HMMs in Handwriting Recognition systems

This section provides a quick overview of the ways to use HMMs in Handwriting
Recognition (HWR) systems. It will show the most widely used approaches.

Hidden Markov models can be used to classify words as a whole, or character by
character. When classifying words as a whole, the evidence (features) is collected
on the word-level, and each model is associated with a class. When classifying an
unknown word, the model which has the highest probability of having produced the
unknown observation sequence is returned as classification. In short:

classk = argmax
λ∈Λ

P (Ok|λ) (2.34)

where Ok is the observation sequence for (unknown) word k. Λ denotes the list of
all word models. The observation sequence is usually produced by moving over the
word with a sliding window.

As discussed in section 2.4, a SOFM can be used to quantize the feature vector.
An example of this approach was also already mentioned, Dehghan et al. (2000) used
a SOFM to quantize a sliding window over the static image. A sequence of indices of
the SOFM (interpreted as discrete tokens) was then classified as a word, using (2.34).

Instead of using a SOFM, an artificial neural network can be used to output
sequences of ASCII characters. The input of the neural network is either a sliding
window of a static image or a time sequence, e.g., direct output of a pen tablet. The
output-sequence of ASCII characters is not clean in the sense that the network will
produce a lot of character hypotheses, which are not necessarily correct. This garbled
sequence of ASCII characters is then classified using HMMs. An example of such
an approach can be found in Schenkel, Guyon, & Henderson (1995). Here, hidden
Markov modelling is considered a post-processing method. Another post-processing
method, closely related to HMMs, are the variable memory length Markov models,
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introduced in Guyon & Pereira (1995), which are actually observable Markov models,
with a memory of a variable number of characters.

A different approach is to create HMMs per character and create a lexical graph.
Each node in the graph is a character HMM, while the entire graph represents the
word. By finding the optimal path through all character models, the final classifica-
tion can be obtained. However, segmentation into separate characters is a difficult
problem, therefore a stroke or syllable based approach is sometimes preferred.

A variation of this approach is used by Manke et al. (1995), where word models
are series of concatenated character models, which in turn consist of three states. An
artificial neural network is used to process the input (again, using a sliding window
over a static image), and provide estimates of the state probabilities. Based on these
estimates, the word is then classified by finding a path through the character models,
using the Viterbi algorithm.

Both the list of word-models and the tree of character models can be combined
to create word-level HMMs consisting of a tree of character models. The character
models represent the states of the higher level word-model, and during classification
the most likely sequence of character models can be found using, i.e., the Viterbi
algorithm. For examples of this last method, see Oh et al. (1995); Koerich, Sabourin,
& Suen (2003).

Finally, the continuous density hidden Markov model approach is used by, e.g.,
Bertolami & Bunke (2008): each character is modelled with a separate HMM, and an
observation is modelled by a mixture of twelve Gaussians in each state. A statistical
bigram language model is then used to concatenate all character models.
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Chapter 3

Implementation

When trying to implement hidden Markov models with the knowledge presented in
the previous chapter, one will encounter at least two main issues, both described in
Rabiner (1989). However, the solutions offered to these issues are not sufficient for
implementation. Both the solutions offered by Rabiner (1989) and final solutions
which were used in the implementation for the experiments are presented in this
chapter.

3.1 Scaling α and β

The re-estimation procedure of the transition matrix and the observation probabilities
makes use of the forward and backward variables αt(j) and βt(j). The former gives
the probability of the partial observation sequence up to time t and state Sj at
time t, given the model λ: αt(j) = P (O1O2 · · ·Ot, qt = Sj |λ). The latter gives the
probability of the partial observation sequence from time t+ 1 to time T , given state
Sj at time t and the model λ: βt(j) = P (Ot+1Ot+2 · · ·OT |qt = Sj , λ).

Recall the original definition of αt(j) (2.13):

α1(i) = πibi(O1)

αt+1(j) =

(
N∑
i=1

αt(i)aij

)
bj(Ot+1)

The calculation of αt(j) can potentially consist of many products of both transi-
tion and observation probabilities. The product of probabilities starts to approach 0
for large t (since 0 ≤ p ≤ 1). In theory, this is not a problem, but implementations
are usually bound by the precision of floating-point numbers offered by the computer
and programming language.

To keep αt(j) within the range of a floating-point variable, a scaling procedure is
needed. The proposed scaling factor is ct = 1PN

i=1 αt(i)
which is independent of the

state and normalises so that
∑N
i=1 α̂t(i) = 1 (with α̂t(i) being the scaled variant of

αt(i)).
The same scaling factor is used when scaling βt(i). This makes the re-estimation

procedure much easier, since most scaling factors will be cancelled out by each other.
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We begin scaling at the base case: α1(j):

α̂1(j) =
α1(j)∑N
i=1 α1(i)

= c1α1(j)

where α̂1(j) is the scaled variant of α1(j).
In the original version, the induction step uses the previous time step (αt(j)), but

in the scaled variant, it uses the scaled version of the previous time step:

α̂t+1(j) = ct+1

N∑
i=1

α̂t(i)aijbj(Ot+1) = ct+1αt+1(j)

where αt+1(j) means that it is based on the scaled variants of the previous time
step (see also Rahimi, 2000). We can move the scaling factors for α̂t(i) out of the
summation, since they are not dependent on i:

α̂t+1(j) = ct+1Πt
τ=1cτ

N∑
i=1

αt(i)aijbj(Ot+1) (3.1)

=
Πt
τ=1cταt+1(j)

Πt
τ=1cτ

∑N
i=1 αt+1(i)

=
αt+1(j)∑N
i=1 αt+1(i)

This is exactly what we wanted to achieve, since now
∑N
j=1 α̂t+1(j) = 1.

The important thing to remember during implementation is that each iteration
in the calculation of αt(j), one needs to use the scaled version of the previous step,
which means after each step the scaling factor needs to be applied.

From (3.1), one can also write:

α̂t(j) = Ctαt(j) (3.2)

where Ct = Πt
τ=1cτ .

The same scaling factor ct is used in scaling βt(i), where, again, the scaling needs
to be applied after every step:

β̂T (i) = cTβT (i)

β̂t(i) = ct

N∑
j=1

aijbj(Ot+1)β̂t+1(j)

Moving the scaling factors out of the summation as in the αt(j) case, results in

β̂t(j) = Dtβt(j) = ΠT
τ=tcτβt(j) (3.3)

We can no longer calculate P (O|λ) by summing over α̂T (i) however, since it now
includes a scaling factor as well. We can use the following property:

N∑
i=1

α̂T (i) = CT

N∑
i=1

αT (i) = 1
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which is equivalent to ΠT
t=1ctP (O|λ) = 1. So P (O|λ) = 1

ΠT
t=1ct

.
However, since this also runs out of the range of a floating-point variable, it is

common to compute the log probability:

log (P (O|λ)) = −
T∑
t=1

log ct

Classification of a sequence of an unknown word k can be done using argmax (see
also (2.34)):

classk = argmax
λ∈Λ

[log (P (Ok|λ))] (3.4)

The scaling procedure has a small effect on the re-estimation procedure, but since
we also change the re-estimation procedure in the next section, this effect will be
dealt with below. Rahimi (2000) derives the same re-estimation formulae, by first
deriving two intermediate variables.

3.2 Multiple observation sequences of variable du-
ration

In order to reliably train an HMM, one needs an appropriate number of instances
of observation sequences. More observation sequences means that the HMM can
generalise better and has a better chance of successfully classifying new, unknown
words. Rabiner (1989) suggests the following changes to the re-estimation formulas
(2.21) to train with multiple observation sequences of variable duration:

aij =

K∑
k=1

1
Pk

Tk−1∑
t=1

αkt (i)aijbj(O
(k)
t+1)βkt+1(j)

K∑
k=1

1
Pk

Tk−1∑
t=1

αkt (i)βkt (i)

(3.5a)

bj(`) =

K∑
k=1

1
Pk

∑
t∈[1,Tk−1]∧Ot=v`

αkt (j)βkt (j)

K∑
k=1

1
Pk

Tk−1∑
t=1

αkt (j)βkt (j)

(3.5b)

K is the number of observation sequences, O(k) is the kth observation sequence
and αkt (i) is the αt(i) based on observation sequence k. Finally, Pk = P (O(k)|λ).
Note the use of Tk, implying that each sequence can have a different duration.

Rabiner describes that π does not need re-estimation, since in a Bakis model
π1 = 1 and πi = 0 for i 6= 1. However, this only applies to left-right models, such as
Bakis and Skip. Below, a more generic definition of π will be provided, which can
also be used in Ergodic models.

Even though this is theoretically sound, implementing these formulas will prove
difficult. One source of difficulty lies in the fact that we cannot calculate Pk, since
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we use scaling (Section 3.1). We can however rewrite these formulas to no longer use
Pk.

Rahimi (2000) takes a different approach by first deriving two intermediate vari-
ables, but achieves the same formulae in the end, expressed in the scaled forward and
backward variables α̂t(j) and β̂t(j).

For rewriting the re-estimation formulae we use the following equalities:

t∏
s=1

cks = Ckt (3.6a)

Tk∏
s=t+1

cks = Dk
t+1 (3.6b)

Ckt D
k
t+1 =

Tk∏
s=1

cks = CkTk
(3.6c)

P (O(k)|λ) =
1

Tk∏
t=1

ckt

=
1
CkTk

(3.6d)

where ckt is the scaling factor 1PN
j=1 α

k
t (j)

.

We now substitute Pk with 1
Ck

Tk

:

aij =

K∑
k=1

CkTk

Tk−1∑
t=1

αkt (i)aijbj(O
(k)
t+1)βkt+1(j)

K∑
k=1

CkTk

Tk−1∑
t=1

αkt (i)βkt (i)

(3.7)

We can now substitute αkt (i) and βkt (i) by their scaled variants, and use the fact
that αt(i) = 1

Ct
α̂t(i) and βt(i) = 1

Dt
β̂t(i) (see (3.2) and (3.3)):

aij =

K∑
k=1

CkTk

Tk−1∑
t=1

1
Ckt

α̂kt (i)aijbj(O
(k)
t+1)

1
Dk
t+1

β̂kt+1(j)

K∑
k=1

CkTk

Tk−1∑
t=1

1
Ckt

α̂kt (i)
1
Dk
t

β̂kt (i)

(3.8)

Note that CtDt = CtDt+1ct. This leads to the final form:

aij =

K∑
k=1

Tk−1∑
t=1

α̂kt (i)aijbj(O
(k)
t+1)β̂kt+1(j)

K∑
k=1

Tk−1∑
t=1

α̂kt (i)β̂kt (i)
1
ckt

(3.9)

Rewriting the re-estimation formula for bj(`) is similar and leads to the final form:
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OBSERVATION SEQUENCES

bj(`) =

K∑
k=1

∑
t∈[1,Tk−1]∧Ot=v`

α̂kt (i)β̂kt (i)
1
ckt

K∑
k=1

Tk−1∑
t=1

α̂kt (j)β̂kt (j)
1
ckt

(3.10)

Since we also want to be able to train Ergodic models, we can use the following
formula to re-estimate π:

πi =
∑K
k γ

k
1 (i)∑N

j

∑K
k γ

k
1 (j)

(3.11)

where γk1 (i) = 1
ck
1
α̂k1(i)β̂k1 (i) which is the probability of being in state Si at time 1. It

can be derived from the non-scaled version:

γk1 (i) = αk1(i)βk1 (i)
1

P (O|λ)
(3.12)

= α̂k1(i)β̂k1 (i)
1

P (O|λ)
1
Ck1

1
Dk

1

(3.13)

= α̂k1(i)β̂k1 (i)
1
ck1

(3.14)

3.3 Continuous observation probabilities with mul-
tiple observation sequences

The continuous observation probabilities also need to be updated with multiple se-
quences. The following formulae show how we can adjust the original formulae
(2.30) · · · (2.33) for updating with multiple observation sequences (since k now rep-
resents the sequence, we represent the current Gaussian with n):

E-step:

pkj (n|t) =
pjnN (~o kt ; ~µjn, σjn)∑M

m=1 pjmN (~o kt ; ~µjm, σjm)
1 ≤ j ≤ N, 1 ≤ n ≤M, 1 ≤ k ≤ K

(3.15)
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M-step:

~̂µjn =

K∑
k=1

Tk∑
t=1

pkj (n|t)~o kt γkt (j)

K∑
k=1

Tk∑
t=1

pkj (n|t)γkt (j)

(3.16)

σ̂jn =

√√√√√√√√√√
K∑
k=1

Tk∑
t=1

pkj (n|t)‖~o kt − ~̂µn‖2γkt (j)

D

K∑
k=1

Tk∑
t=1

pkj (n|t)γkt (j)

(3.17)

p̂jn =
1
KT

K∑
k=1

Tk∑
t=1

pkj (n|t)γkt (j) (3.18)

3.4 Summary

This chapter has shown a number of possible issues which might arise when imple-
menting the hidden Markov model algorithms from the previous chapter: α and β,
when computed without scaling, quickly become zero due to a large product of prob-
abilities and the limitations of floating point representations on digital computers.
The other issue deals with the need of multiple observation sequences to reliably
estimate transition, observation and initial state probabilities.

Both issues are mentioned in Rabiner (1989), but the solutions offered are in-
complete at best. This makes the implementation not straightforward. One of the
issues was the order of computing the scaled variants of α and β: each iteration needs
to use the scaled variant of the previous iteration. Another issue, not addressed by
the author is the use of P (O|λ) in the re-estimation formulae for multiple observa-
tion sequences. Both issues have been addressed above, which resulted in formulae
equivalent to those derived in Rahimi (2000).

In the next two chapters, a series of experiments will be described and their results
shown. The next chapter uses artificially generated data to answer the questions how
important the Markov property is in language at a character level, and whether the
properties of a Markov process can be reliably learned by the algorithms described in
the previous and current chapter. Chapter 5 uses data from a handwriting recognition
task to determine the importance of the Markov assumption in handwriting.
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Chapter 4

Artificial data experiments

This chapter describes a number of experiments done with artificial data. The ex-
periments try to answer two questions: (i) What is the impact of removing temporal
information from an HMM and what does that mean? (ii) Can the properties of
Markov processes be reliably learned and modelled by HMMs?

The data sets used in these experiments are artificially created. Some data sets
are created by adding noise to words from a flat-text dictionary and then representing
these words as series of integers. Other data sets are generated by an artificial Markov
process with randomly instantiated transition and observation probabilities.

By generating sequences based on transition and observation probabilities, the
nature of data can be manipulated. Two experiments will use this to investigate the
role of both the transition matrix and the observation probabilities.

4.1 Modelling a noisy, flat-text dictionary

In order to test the algorithm and perform an initial test, an experiment was per-
formed with simple linguistic data: words consisting of a sequence of ASCII charac-
ters. The first experiment also investigates the importance of the Markov assumption
in language at the character level, i.e., can the next letter of a word be reliably pre-
dicted when either knowing the previous letter or ignoring the past observations?

The experiment uses artificially generated data: Random noise is added to words
from a flat-text dictionary. When classifying these ‘dirty’ words with models with
different topologies, the impact of these topologies can be studied. Temporally in-
sensitive models (such as those with a flat transition matrix) should perform badly
when temporal ordering is the decisive information source.

This experiment uses data from a Dutch dictionary: a text file containing a large
list of Dutch words, although any language should suffice. The words are unique
and the string of letters can be seen as a series of observations, changing over time.
These observations need to be represented in a numerical format. Since the alphabet
(ASCII characters) is already discrete, no discretization is needed. The ASCII-value
was taken as the numerical representation of each character, although one could also
choose a different enumeration for all characters, as long as this scheme remains
consistent throughout the experiment.

Noise was added by adding p random letters to the string, at random positions.
The experiment was done for p = 0, 1, 2, · · · , 10, where p = 0 is the case where no
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Original word Result

tegenstand teguenstpanBd
YtegenZstacnd

motief moItbBief
Bkmotietf

Table 4.1: Two examples of words with added noise. p = 3 random letters were
added at random positions in the words “tegenstand” (opposition) and “motief” (mo-
tive).

noise was added. Two examples can be found in table 4.1 for p = 3.
To keep the duration of the training and testing cycle within reasonable limits, a

random sample of 200 words was selected for each fold and each topology (it should
be noted that this is a drastic reduction from the 114.029 total words in the Dutch
dictionary file). During training, a cut-off of 3000 iterations was used to catch non-
converging situations.

Each experiment was conducted 7 times with a random sample of 200 words. The
training and test set were generated by randomly adding the p letters 500 times per
set, and thus generating 1000 sequences for each word.

A model was trained on each word from the training set, with N = 3 hidden
states. After training, for each sequence in the test set, the highest ranking model
was selected (argmaxλ[P (O|λ)], where O is the sequence) as the classification. If this
model corresponded with the correct word, the trial was a success.

It should be noted that, due to the way the noise was added, the last letter was
untouched and remained at its original, last position. This might give a small boost
to performance since more information is available, but there were almost no unique
last letters per sample of 200 words.

4.1.1 Results

The low error rates in the presence of substantial noise (Figure 4.1) give a good
indication that the algorithm is working properly. The amount of noise effects the
performance, although the traditional, temporally sensitive models are less affected by
the noise than the Forward and Flat models. Performances for models with a Bakis,
Skip or Ergodic topology stay above 99%, even at 10 randomly inserted letters.

The performances of the models with a flat and forward transition matrix show
a similar pattern. A possible explanation might be that for both topologies the
transition probability values are fixed.

It is remarkable that the models with a flat topology still has a performance
of 98.5% correctly classified words, words with p = 10 randomly inserted letters.
Performances of up to 4 added letters are comparable with the other topologies. The
drop in performance for the Forward models can be explained by the fact that after
3 letters, the model has reached the absorbing (final) state, since N = 3.

Also consider the average length of a word in the dictionary: 10.4 characters.
This means that with p = 10, a word doubles in size in the average case.
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4.2. NOISY, FLAT-TEXT DICTIONARY, FIRST AND LAST LETTERS
UNTOUCHED
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Figure 4.1: Results of the flat-text dictionary-experiment. Performance of each
topology measured in error rate. The x-axis shows the amount of added noise in
letters. Reported performances are averages over 7 folds. For each fold and each
topology a new random sample of 200 words was selected, for which 1000 sequences
were generated, distributed evenly over test and training set. The bands show a 95%
confidence interval.

4.2 Noisy, flat-text dictionary, first and last letters
untouched

A commonly known phenomenon, which was getting a lot of attention on the internet
a few years back, is that reading is not drastically impaired when letters are rear-
ranged, as long as the first and last letters retain their position. This phenomenon
was first researched in 1976 by Rawlinson (for a summary, see Rawlinson, 2007), an
example is shown in Figure 4.2.

Since human readers are apparently apt at such a task, it is also interesting to see
whether our dictionary-experiment is helped by retaining the first and last letters.
Although the task is a bit different from the experiment in Rawlinson (2007) (we add
letters, instead of rearranging the existing letters), the performance should improve
with regards to the previous dictionary experiment.

Note that new data has to be generated. Again, for each of the 7 folds, a random
sample of 200 words was taken. For each word, 1000 sequences were generated by
adding random noise. These sequences were split equally over training and test sets.
Two examples of words with p = 3 added random letters are shown in table 4.2. The
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Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn’t
mttaer in waht oredr the ltteers in a wrod are, the olny
iprmoetnt tihng is taht the frist and lsat ltteer be at the rghit
pclae. The rset can be a toatl mses and you can sitll raed it
wouthit porbelm. Tihs is bcuseae the huamn mnid deos not
raed ervey lteter by istlef, but the wrod as a wlohe.

Figure 4.2: Illustration of the phenomenon found by Rawlinson (2007): reading
is not drastically impaired when letters are rearranged, as long as the first and last
letters retain their position.

Original word Result

eervol eerASvZol
ebxehrvol

pret prasCet
pGYrTet

Table 4.2: Two examples of words with added noise. p = 3 random letters were
added at random positions between the first and last letter in the words “eervol”
(honourable) and “pret” (fun).

methods of training and testing are equivalent to those described in section 4.1.

4.2.1 Results

The results are summarised in Figure 4.3. As can be seen, the performance for the
Flat and Forward topologies are much improved. The other topologies already showed
an error-rate of about 0.3% at 10 inserted letters. The simple, extra information of
the first letter apparently has a positive effect on the Flat and Forward models.

The 95% confidence bands show overlap for all topologies for almost all experi-
ments, except the final experiments with the most noise inflicted words, i.e., at p = 10.
The confidence bands for the Flat topology do not overlap with the confidence bands
of the other topologies. However, this is only one sample of the 55 total experiments,
and still the performance is above 99.5%.

Also note that the error rate at 0 inserted random letters (i.e., no noise) is lower
than before (0%, instead of 0.1%). This might indicate that the classes in the random
samples were separated more (i.e., words were less similar) in the current experiment,
which made the classification task easier.

4.3 Artificial Markov processes: varying transition
topologies

The previous experiments were based on data from a dictionary. The data in this
experiment was generated by an artificial Markov process. The goal of this exper-
iment was to further investigate the effect of topology and whether the underlying
properties of the Markov process can be learned and modelled by HMMs. With an
artificial Markov process, the properties of the generated data can be controlled.
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4.3. ARTIFICIAL MARKOV PROCESSES: VARYING TRANSITION
TOPOLOGIES
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Figure 4.3: Performance of each topology measured in error rate on the dictionary-
task with the first and last letters intact. The x-axis shows the amount of added noise
in letters. Reported performances are averages over 7 folds. For each fold and each
topology a new random sample of 200 words was selected, for which 1000 sequences
were generated, distributed evenly over test and training set. The bands show a 95%
confidence interval. The scaling of the y-axis is made the same as in Figure 4.1 for
comparison purposes; turn to page 29.

In this experiment, five data sources were used; each having a different transi-
tion matrix with a particular topology. A data source can be thought of as a ‘word’
generator: According to the transition and observation probabilities, sequences of
observations can be generated. The observations are generated randomly accord-
ing to the distribution in the current state, which is selected solely on the basis of
the previous state. This is formalised in Algorithm 4.1 and means that the gener-
ated sequences actually have the Markov property and should be very suitable for
classification with HMMs.

Each data source consists of (i) a unique transition matrix A, generated according
to one of the five topologies: Forward, Bakis, Skip, Ergodic and Flat, (ii) a randomly
generated, shared observation probability matrix B and (iii) an initial state prob-
ability distribution π. For the Forward, Bakis and Skip data sources, the initial
state probabilities were fixed to π = [1, 0, 0, · · · ], while for the Flat and Ergodic data
sources they were fixed to π = [ 1

N ,
1
N , · · · ] (with N the number of hidden states).

The observation probability matrix B is the same for each data source.
After generating the data sources, individual sequences were generated using Al-
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Algorithm 4.1 Generating random sequences based on a data source with A a tran-
sition matrix, B an observation probability matrix and π an initial state probability
vector. Random is a hypothetical function which takes a probability vector (distribu-
tion) and returns a randomly selected index according to the provided distribution.

q0 ← Random(π)
O0 ← Random(B[q0])
for t = 1 to T do
qt ← Random(A[qt−1])
Ot ← Random(B[qt])

end for

Generator model Resulting sequence

Ergodic 14 47 42 11 74 16 1 84 49 89 37 · · ·
18 0 57 33 93 49 32 23 94 68 32 · · ·

Flat 22 88 46 55 16 79 48 92 93 85 99 · · ·
1 2 12 19 15 55 40 44 14 26 86 · · ·

Table 4.3: Two examples of sequences generated by algorithm 4.1, using models with
an Ergodic and Flat transition matrix.

gorithm 4.1 (Rabiner & Juang, 1993). These sequences then, were used to train and
test HMMs. Some example sequences are shown in table 4.3.

Each of the five classes in this experiment corresponded to a topology. Classifi-
cation then, was done using the argmax function in equation (3.4), where classk ∈
{Forward,Bakis,Skip,Ergodic,Flat}.

The experiment was conducted in 7 folds, with N = 27 states, M = 100 symbols
and each sequence having a length of 100 observations. The training and test set for
each data source contained 500 sequences. The parameters used for the training of
the HMMs were equal to those of the data sources: Number of hidden states, size
of the discrete alphabet and topology. So models with a Bakis transition matrix, for
instance, were trained on data generated by the Bakis data source. Again, during
training, a cut-off of 3000 iterations was used to catch non-converging situations.

4.3.1 Results

Table 4.4 shows how often the test sequences of a data source are classified as one of
the five models. As discussed above, the models are named after the generator which
generated its training sequences. The percentages which are highlighted in a bold
typeface are the classifications which are most common for the given data source.
The table shows that 3 out of the 5 data sources are most frequently classified as
“Flat”, except for the Bakis and Skip sources, which are most frequently classified
as “Skip”.

In a smaller font, χ2 distances are reported for the model which was used to
generate the sequences and the model in the corresponding column. The distance
was the sum of the distance between both transition matrices and both observation
probability distributions. Generally, the smallest distances are for models trained
on data generated by a source with the same topology, except for the Ergodic data
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PROBABILITIES

Model
Forward Bakis Skip Ergodic Flat

D
at

a
So

ur
ce

Forward 7.5% (77) 0.0% (106) 0.1% (113) 7.5% (132) 84.9% (121)

Bakis 0.0% (94) 40.1% (89) 59.7% (98) 0.0% (132) 0.1% (119)

Skip 0.0% (103) 40.6% (98) 59.3% (98) 0.0% (131) 0.1% (116)

Ergodic 7.2% (132) 0.0% (134) 0.0% (135) 7.4% (133) 85.4% (84)

Flat 6.9% (126) 0.1% (128) 0.0% (128) 7.2% (126) 85.9% (72)

Table 4.4: Results of the experiment for distinguishing between different topologies.
The cells first display the percentages how much of the test data generated by the data
source was classified as the corresponding model. The second measure shows the χ2

distance between the data source and the trained model. All numbers are averages
over 7 folds with 1000 instances generated per generator and split evenly over test
and training set each fold. Each generator had 27 hidden states and 100 symbols.
Each sequence was 100 observations long. The highest percentages are displayed in
bold.

source. In that case, the Flat model had a smaller χ2 distance to the Ergodic data
source.

Also interesting to note is that the χ2 distance for the Flat data source and the
Flat model only portrays the distance of the observation probabilities (the same holds
for the Forward data source and model) since the transition probabilities for these
topologies are fixed.

4.4 Artificial Markov processes: varying observa-
tion probabilities

In line with the previous experiment, this experiment also generates data with an
artificial Markov process. However, the transition matrix is now fixed across the data
sources, while the output probabilities vary. This is interesting since it can tell more
about the role of the output probabilities.

The set-up of the experiment is largely the same as the previous experiment, with
the noted differences. 5 data sources are generated by generating an output proba-
bility matrix and a flat transition matrix (so all 5 sources have the same transition
probabilities). Each data source represents a pseudo-word.

1000 sequences are then generated per word, split evenly between train and test
set. Each generator has N = 27 hidden states and M = 100 discrete symbols. Each
generated sequence is 100 observations long. Some examples of sequences generated
for this experiment can be seen in table 4.5.

For each pseudo-word, a model is trained on the generated training sequences.
After all models have been trained, the test sequences are classified as before. This
procedure is repeated for each topology we are interested in: Forward, Bakis, Skip,
Ergodic and Flat. Again, this experiment was performed 7 times.

It should be noted that no effort has been made to separate the classes. Therefore,
this experiment can prove very difficult since the classes might be very close to
each other. This will lead to overlap in observations, which is not easily detectable.
Contrast this with natural language, where the general rule is to avoid ambiguity and
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Generator model Resulting sequence

class 1 77 69 13 54 11 78 75 52 78 57 91 · · ·
70 57 32 32 38 53 20 80 37 80 78 · · ·

class 2 39 8 57 1 24 67 12 7 78 13 5 · · ·
48 0 97 41 29 16 3 4 33 41 90 · · ·

Table 4.5: Two examples of sequences generated with different observation probabil-
ities, but with the same flat transition matrix, so the classes can only be distinguished
by the observation probabilities.

Topology Performance stdev
Forward 36.7% 0.33
Bakis 36.6% 1.20
Skip 38.8% 1.59
Ergodic 30.3% 1.14
Flat 47.9% 1.80

Table 4.6: Results of varying observation probabilities, while fixing the generator-
topology to Flat, creating 5 different pseudo-words. The reported performances are
averaged over 7 folds, with 1000 instances generated per word, divided equally over
training and test set. Each model had 27 hidden states and 100 symbols; Each se-
quence consisted of 100 observations.

therefore separate classes as much as possible.

4.4.1 Results

The results of this experiment are summarised in Table 4.6. The topology which
performs best on this data is the Flat topology, which can be explained by the fact
that the trained transition matrix was exactly the same as in the generated samples.
The other topologies score between 30% and 40%.

These results can be contrasted by a small experiment where a histogram of token-
occurrences is classified using a non-temporal 1-nearest neighbour algorithm. Using
an Euclidean distance, this simple method can classify 30% of the test sequences
correctly. This result is comparable to the performance of the HMMs with an ergodic
topology, while the models with other topologies perform better.
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Chapter 5

Natural data experiments

While the previous experiments were based on artificial data, the following experi-
ments are performed with natural data, extracted from a set of handwritten pages.
The images used to extract the features from are scans from a single volume of the
National Archive of the Netherlands (see also van der Zant et al., 2008, Section 2),
all originating from a single writer.

The volume is part of the collection from the Queen’s Office (“Kabinet der
Koningin” in Dutch, abbreviated as KdK) which contains documents with royal de-
crees. The writing used in this experiment is part of an index and therefore relatively
structured. An example page from this index is shown in Figure 5.1.

The book is annotated by specialist volunteers through a web-based system, line
by line. The lines are extracted by an automated procedure using horizontal ink-pixel
density and white pixel run-length histograms (see van der Zant et al., 2008).

Lines are then segmented into word zones by using white space between connected
components. Word zones are conservative estimations of words and can contain, for
instance, non-text and parts of ascenders and descenders from neighbouring lines.
These word zones are then presented to the previously mentioned volunteers, which
label the words.

This chapter discusses two experiments, each using a different method to extract
features from the images, which are detailed in Section 5.1. The actual experiments
are discussed in Section 5.2, their results summarised in Section 5.3.

5.1 Features

This chapter describes two experiments, which differ on the type of feature used. The
first experiment uses fragmented connected component contours (FCO3) (Schomaker
et al., 2007; Schomaker & Bulacu, 2004), while the second experiment uses pixel
positions in a sliding window. Both features are quantized using a Kohonen SOFM.

The type of feature influences certain parameters of the experiments, which are
discussed in more detail below. For example, since the sequences in the FCO3 ex-
periment are much shorter, a small amount of hidden states is used.
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Figure 5.1: Example page from the collection of the Queen’s Office. The experi-
ments in this chapter use data extracted from images like this, which are first con-
verted into black and white images, then cut into line strips. Each line is segmented
into word zones. Features are then extracted from these word zones.

5.1.1 FCO3

Connected component contours (CO3) were introduced by Schomaker & Bulacu
(2004), and designed with writer identification rather than writing recognition in
mind. After extracting the images, blurring and binarising them, connected com-
ponents were extracted. For each of these connected components, the contour was
computed using Moore’s algorithm by starting at the left-most pixel and around the
connected component in a counter-clockwise direction. Inner contours are not in-
cluded in the resulting CO3. The CO3 is represented as a vector containing 300 X
and Y coordinates, so the vector has 600 dimensions.

In cursive writing, the connected components will span multiple characters. A
heuristic will be used to segment the connected components into broken connected
components (fraglets). The method used in this experiment is “SegM”, which seg-
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of a handwritten FCO3 to the patterns which are present in
the SOM. The pseudo-code for the algorithm is as follows:

~n 0
forall i 2 K
{

~xi  ð~xi " lxÞ=rr

~yi  ð~yi " lyÞ=rr
~f i  ðX i1; Y i1;X i2; Y i2 . . . ;X i100; Y i100Þ

k  argminl; k~f i "~klk
Nk Nk + 1/N

}

Notation: ~n is the PDF of FCO3s, K is the set of frag-
mented connected components in the sample. Scalar vector
elements are shown as indexed upper-case capitals.
Steps: First, the PDF is initialized to zero. Then each frag-
mented connected-component contour ð~xi;~yiÞ is normalized
to an origin of 0,0 and a standard deviation of radius
rr = 1, as reported elsewhere (Schomaker, 1993). The
FCO3 vector ~f i consists of the X and Y values of the nor-
malized contour resampled to 100 points. In the table of
pre-normalized Kohonen SOM vectors k, the index k of
the Euclidean nearest neighbor of ~f i is sought and the
corresponding value in the PDF Nk is updated (N = jKj)
to obtain, finally, ~n, i.e., p(FCO3). This PDF is assumed
to be a writer descriptor containing the connected-compo-
nent shape-emission probability for characters by a given
writer.

2.4. Stage three: writer identification

Each of the 150 paragraphs of the 150 writers is divided
into a top half (set A) and a bottom half (set B). Writer
descriptors p(FCO3) are computed for set A and B. For
each writer sample u, its Hamming distance to all samples
v 5 u was computed where v,u 2 A [ B (leave-one out). A
sorted hit list of samples vi with increasing distance to the
query u was constructed.

3. Results

As regards nearest-neighbor search, we will report the
results on the Hamming distance only: use of the Chi-
square distance function (Schomaker and Bulacu, 2004)
produced similar results, while Euclidean, Bhattacharya
and Minkowski3 distances performed much worse. Fig. 7
shows the Top-1 writer-identification performance as a
function of Kohonen self-organized map dimensions. A
point represents from 7 h (2 · 2) to 122 h (50 · 50 network)
training time. However, training is an infrequent process-
ing step. Performances are stable for Kohonen maps of
dimension 15 · 15 units or larger. The highest performance
is reached for the ‘‘Copied’’ text category: Using the
33 · 33 codebook as the measuring stick (cf. Schomaker
and Bulacu, 2004), a Top-1 performance of 97% is reached.

The performance of the ‘‘Upper case’’ category shows
the generalization (70%) of a codebook trained on mixed
lower-case styles to queries which are fully written in
upper-case letters. The ‘‘Free’’ text category displays a sim-
ilar performance (70%) which might be attributed to both
the smaller number of characters and its variable text con-
tent. As was to be expected, the variability in the ‘‘Forged’’
category is highest, which can be inferred from a lower
identification performance (50%). The number of writers

Fig. 6. A Kohonen self-organized map (SOM) of fragmented connected-
component contours from the SegM(inima) fragmentation heuristic. The
network size of 15 · 15 was selected for display because writer-identifica-
tion performances start to be useful at this dimension and contour details
of all cells can still be discerned. In the evaluation, network size varied
from 2 · 2 to 50 · 50 feature-vector cells. Training data consisted of 300
pages by 100 different writers (152 k sample vectors). Each contour is
normalized in size to fit its cell.
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Fig. 7. Top-1 writer-identification performance as a function of Kohonen
map dimensions (performance is % of correct writer identification at the
first position of the hit list).

L. Schomaker et al. / Pattern Recognition Letters 28 (2007) 719–727 723

Figure 5.2: A Kohonen self-organizing feature map (SOFM) of fragmented
connected-component contours (FCO3). Image from Schomaker et al. (2007). While
the size of the map shown is 15× 15, the map in the experiments was 70× 70. Also,
this image shows the map based on 300 pages by 100 different writers, while the SOFM
used in the experiments was solely based on a single writer.

ments at ‘each vertical lower-contour minimum which is one ink-trace width away
from a corresponding vertical minimum in the upper contour’ (Schomaker et al.,
2007, Section 1.1). This segmentation makes the CO3 feature usable in a handwrit-
ing recognition task.

The 600 dimensions are then reduced to a single index by classification with a
Kohonen SOFM, like in Dehghan et al. (2000). For the FCO3 feature, the dimensions
of the SOFM were 70 × 70, resulting in an alphabet of 4900 discrete symbols. An
example of a SOFM with a reduced size (15× 15) is shown in Figure 5.2.

5.1.2 Sliding window

The other feature uses a sliding window technique. A window is 4 pixels wide and
51 pixels high, centred around the centroid of black pixels over the entire word zone.
A window is moved one pixel to the right each time and all windows are sent to a
Kohonen SOFM, returning a single index.

Centering around the centroid with a height of 51 pixels means that parts of big
ascenders and descenders are not part of the window. The ascenders and descenders
are not essentially removed, but truncated with preservation of the outstanding sticks
and (partial) loops.

The images from each window are then discretised by presenting it to a SOFM,
with dimensions 25x25. The alphabet is then 625 discrete symbols.
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5.2 Experiments

We now have two datasets, corresponding with both features: the first dataset con-
tains sequences of indices from the 70x70 SOFM, applied to the FCO3 feature, the
second dataset contains sequences of indices from the 25x25 SOFM, applied to the
sliding windows.

Each dataset is split up into 7 parts, for 7-fold cross-validation. This means that
a single part is the test set, the other 6 parts are considered training set.

Since training an HMM requires enough data, we excluded all classes with 50
instances or less in the training set. This left us with 130 classes in the FCO3 case,
with a total of 30 869 labelled instances. The sliding window data set has only 20
classes. The use of all classes with more than 50 instances would computationally be
too intensive. The sliding window dataset contained 4 928 labelled instances.

The number of hidden states used in both experiments are chosen with consider-
ation of the average length of each sequence. The average length of sequences in the
FCO3 experiment was 4.4 observations, while the sequences in the sliding window
experiment consisted of 65.9 observations on average. The number of hidden states
is respectively 3 and 27.

The number of discrete symbols was directly influenced by the dimensions of the
SOFM: the size of the FCO3 alphabet was 4900 symbols, while the sliding window
experiment had an alphabet of only 625 symbols.

A cut-off was used to limit the number of iterations. While for the FCO3 exper-
iment, a maximum of 3000 iterations was chosen, it had to be lowered to 1000 for
the sliding window experiment due to the long duration of training models in this
experiment. The expectation is that a higher number of iterations might perform a
little bit better, but will not result in a large performance improvement.

An HMM is trained for each label in each training set. Testing is then done by
calculating logP (O|λ). The classification is

argmax
λ∈Λ

[logP (O|λ)] (5.1)

where Λ is the set of all trained models and O is the test sequence.
Training and testing is done for each fold and for each topology (Forward, Bakis,

Skip, Ergodic and Flat), the results are presented in the next section.

5.3 Results

5.3.1 FCO3

The results of the experiments using the FCO3 features are summarised in table 5.1.
The table shows a performance of 59%–60% for all topologies. There are no significant
differences (ANOVA, p � 0.05) between the topologies. This means that there is
also no performance difference between the Flat models and the more conventional
topologies as Bakis and Skip.

5.3.2 Sliding window

The results of the sliding window experiment are summarised in table 5.2. Al-
though these results show a significant difference between the topologies (ANOVA,
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Topology Correctly classified (%) std.dev.
Forward 59.9% 0.9
Bakis 59.9% 0.7
Skip 59.7% 0.8
Ergodic 59.5% 0.9
Flat 59.1% 0.8

Table 5.1: Results of the FCO3 experiment. Performances reported are averages
over 7 folds, with 130 labels, and at least 51 instances per label in training set. As can
be seen, all topologies perform around 60%. Flat models do not perform significantly
worse.

Topology Correctly classified (%) std.dev.
Forward 65.0% 2.0
Bakis 75.2% 2.5
Skip 74.8% 1.8
Ergodic 78.5% 1.2
Flat 71.1% 1.3

Table 5.2: Results of the sliding experiment. Performances reported are averages
over 7 folds, with 20 classes, and at least 51 instances per class label in training set.
Differences between the topologies are statistically significant (p < 0.001) although the
difference between Flat and Ergodic is not as dramatic as expected.

p < 0.001), the difference between Ergodic and Flat is not as dramatic as would be
expected when temporal ordering was the decisive information source. The difference
between the conventional topology Bakis and Flat is even smaller.
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Chapter 6

Discussion

Hidden Markov Models are frequently used in fields as speech recognition, bio-
informatics and handwriting recognition. HMMs were first used in speech recog-
nition, and became popular in handwriting recognition in the early 1990’s. This
thesis looked at some generic properties of HMMs as well as their use in handwriting
recognition. The questions addressed by the experiments were whether the proper-
ties of Markov processes could reliably be learned and modelled by HMMs and how
important the Markov assumption is in handwriting recognition.

As discussed in the introduction, the motivation for this study was an experi-
ment detailed in Schomaker (2010), where a position independent coding was used
to classify words from a dictionary with the 1-nearest neighbour algorithm. This ex-
periment lead to the first experiment in this study, where noise was added to words
from a flat-text dictionary to assess how models with different topologies are affected
by noise. The results show that all models perform over 98%. Given that the average
word length is 10 letters, and on average the words are doubled in size, this is a high
performance. At 10 randomly added letters, the temporally sensitive models such
as Bakis and Skip only yield an advantage of around 1.5% on the Flat and Forward
models. This suggests that the detailed structure of the transition matrix is maybe
not as important as usually expected.

Adding a small bit of extra knowledge can boost the performance even more.
Keeping the first letter of the original word intact keeps the performance above
99.5%, even for models with a Flat or Forward transition matrix.

The experiments with the flat-text dictionary data can not answer the question
whether the properties of Markov processes can be reliably learned by the HMM-
algorithms since the underlying process of generating the Dutch lexicon is not known.
The next experiments address this question by using known, randomly sampled mod-
els to generate sequences. The underlying properties of these sequences are now
exactly known and can be controlled to determine what can be reliably learned.

Five models were generated, each with a different topology but with shared ob-
servation probabilities. HMMs were trained on data generated by the models, and
classification of all generated test-sequences showed that they were mostly classi-
fied as being generated by an incorrect model. Since the observation probabilities
were shared by all the generator models, this means that it is hard to separate the
sequences only on the basis of the underlying transition probabilities.

The next step is then to examine the role of observation probabilities and whether
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they can be learned reliably. This was studied by generating data from models which
differed only in observation probabilities. The transition matrix was fixed to a Flat
topology. The results show that models with a Flat transition matrix have the highest
classification performance with 48%. Forward, Bakis and Skip come second with
around 37%, while Ergodic models, with 30%, perform at the same level as a simple,
non-temporal 1-nearest-neighbour classifier on the observation histogram. This shows
how important the role of observation probabilities is. The high performance of the
models with a flat transition matrix can be explained by the fact that the generator
models used a flat transition matrix as well and that all transition probabilities are
fixed. This means that effectively no transition matrix has to be estimated.

While the previous experiments investigated the question whether it is possible
to learn underlying properties of Markov processes, the final experiment is designed
to investigate the role of the Markov property in handwriting recognition. We used
data from a handwriting recognition task to train models for all topologies. When
temporal modelling is important in handwriting recognition, models with a flat tran-
sition matrix should have a dramatic decrease in performance compared to more
conventional and temporally sensitive topologies such as Bakis and Skip.

Using fragmented connected component contours (FCO3, see also Schomaker
et al., 2007), quantized using a SOFM, the classification performed, in all cases,
around 60%. Flat models do not perform significantly worse than models with other
topologies.

Even though the experiment with data from a sliding window resulted in signif-
icant differences between the topologies, the performance drop when using a Flat
transition matrix is not as dramatic as might have been expected. It should be noted
that the number of lexical classes for the sliding window task was relatively small
due to time restrictions, which has a positive effect on the performance. Also, in
the FCO3 experiments, the length of the sequences was small, which has a negative
impact on reliably learning properties of the underlying model. These two critical
remarks might be indications that the features used in the experiments are not opti-
mal for use with HMMs. However, the conclusions of the experiments with artificial
data remain: it is hard to find the underlying properties of a Markov process. Also, if
the temporal (left-to-right) ordering would have been the decisive information source
in handwriting, a bigger difference between recognition performances would be ex-
pected, especially in the FCO3 experiments.

It should also be noted that the usage of 7-fold cross validation, although it is
a commonly accepted evaluation method, can lead to a very small test set. In the
worst case, where only 51 instances are available per class, the test set for that class
only contains 7 instances. This might have a negative impact on the performance
estimation. This is not the case in the artificial experiments, since we generated
enough data for both training and testing; each set contained 500 sequences.

An implementation of the HMM algorithms was developed to have complete con-
trol over the topology of the transition matrix. Standard implementations, which
can be found on the internet, have assumptions, such as topology, hard-coded.
Hard-coding assumptions was avoided during implementation. The implementation
is easily extended with new topologies and new observation probability functions.
That said, implementation was not straightforward: The canonical paper on hid-
den Markov models (Rabiner, 1989) was not sufficient to implement the algorithms.
Chapter 3 discussed the shortcomings as well as their solutions.

Furthermore, each experiment needs to make a number of assumptions on the

42



data. For example, the number of hidden states must be established beforehand.
Some studies use different number of hidden states per class, others choose N to be
fixed. Also, the topology of the transition matrix must be chosen, which might, or
might not have a positive effect on the performance. The type of observation mod-
elling must be determined as well: will the feature vector be quantised using a vector
quantisation method, or model the observations using a mixture of Gaussians in each
state? Each decision will introduce a different set of parameters to be chosen, and
makes not only the implementation, but also the use of HMMs not straightforward.

No extensive experiments were conducted using continuous HMMs, or the Viterbi
algorithm. A start has been made with the implementation of estimating mixtures
of isotropic Gaussians. Some preliminary tests have been performed, but not to the
extent of the other reported experiments. Furthemore, the method of classification
only used lists of word models; a different classification method, using path finding
with the Viterbi algorithm might provide a better comparison with other existing
studies.

The results of the experiments with the artificial Markov process strongly suggest
that the Baum-Welch algorithm is insufficient for learning the hidden state transi-
tions. It remains to be seen whether this is a fundamental problem of the hidden
Markov modelling paradigm, or is due to the EM-method. Pérez, Piccardi, Garćıa,
Patricio, & Molina (2007) suggest using genetic algorithms to update the parame-
ters of HMMs for classification of human activity in video. Bhowmik, Parui, Kar,
& Roy (2007) show a similar approach for a limited lexicon of West Bengal town
names. It would be interesting if the same performance gain could be achieved in the
recognition of unconstrained handwritten text.

The results of the experiments with the artificial Markov process also suggest that
the observation probabilities have an important role. Combined with the previous
conclusion, we can conclude the role of the observation probabilities are maybe more
important than that of the transition probabilities.

Mention of these issues in the literature is very rare. Artières, Dorizzi, Gallinari
et al. (2001) just hint at the importance of the observation probabilities by using a
Bakis topology with fixed, predefined transition probabilities. They do not mention
the consequences; the hidden state transitions seem to be the heart of hidden Markov
models after all. By predetermining the sequence of state transitions, there is no
added value of having a hidden state.

The fact that the transition probabilities seem of lesser importance than the
observation probabilities, is also supported by the results of the experiments with
lingual data. Both the experiments with the ASCII-dictionary and the natural data
show that the performance of a model with a flat transition matrix is not drastically
lower than the performance of models with a more specific topology (such as Bakis
or Skip). In the dictionary experiment, a small bit of extra knowledge is enough to
bring the error rate down to 1% at most.

As for the experiments with the data from the handwriting task, the results
show that using a flat transition matrix does not drastically degrade performance.
Coupled with the fact that van der Zant et al. (2008) report high performances for
word classification with a non-Markovian classifier, this suggests that finding a robust
feature should be the top priority.

The idea of having a simple model of state transitions and observation probabil-
ities is highly attractive. However, we have shown in this thesis that the use and
implementation of the hidden Markov modelling algorithms is not straightforward.
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The use of HMMs is not straightforward due to the number of parameters needed to
be predetermined such as the number of hidden states and the modelling of observa-
tions. Moreover, the Baum-Welch algorithm has difficulty finding the properties of
time sequences, and removing the temporal aspects of a particular model still yields
an acceptable result. There have been promising results using genetic algorithms to
learn the parameters of a model, instead of expectation maximisation. Finally, the
fact that high recognition performances can be achieved without Markovian classifiers
recommends a greater emphasis on finding robust features.
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