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ABSTRACT
We describe a soundscape annotation tool for unconstrained environmental sounds. The tool 
segments the time-frequency-plane into regions that are likely to stem from a single source. A 
human annotator can classify  these regions. The system learns to suggest possible annotations 
and presents these for acceptance. Accepted or corrected annotations will be used to improve the 
classification further. Automatic annotations with a very high probability of being correct might 
be accepted by default. This speeds up the annotation process and makes it possible to annotate 
complex soundscapes both quickly  and in considerable detail. We performed a pilot on 
recordings of uncontrolled soundscapes at locations in Assen (NL) made in the early  spring of 
2009. Initial results show that the system is able to propose the correct class in 75% of the cases.

1. INTRODUCTION

Humans can recognize events in the sonic environment (soundscape) seemingly effortlessly. 
However, this ability  thus far eludes our technical abilities1. Automatic sound recognition has 
important applications in fields as diverse as environmental noise monitoring, robotics, security 
systems, content-based indexing of multi-media files, and even modern human-system 
interfaces. Most sound recognition research is aimed at improving one aspect of these application 
domains, such as speech recognition or music genre detection. These limited domain solutions 
can rely  on domain dependent assumptions that simplify the problem considerably. For example, 
within music classification2 or speech recognition3 it  is typically  assumed that the input does not 
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contain multiple uncorrelated streams of sonic evidence. As a consequence, stream segregation 
and other problems are defined out of the problem-space and are not addressed scientifically. 
In contrast to domain specific solutions, a general sound recognition system should be robust to 
the complexities of unconstraint soundscapes, such as strong and varying transmission effects 
and concurrent sources. To handle real-world complexities, human perception relies on signal-
driven processing, but also on contextual knowledge and reasoning4. Therefore, a general sound 
recognition system should comprise an interaction of signal-driven techniques and interpretation 
of the context.
This paper focuses on the development of a tool to facilitate real-world sound annotation for 
training and benchmark purposes. It uses a set of simple algorithms to detect  sonic events and to 
classify  these events. The interaction between semantic content, in the form of annotations, and 
signal-based evidence forms the basis of future, more general, sound recognition systems. 
The annotation of everyday  sounds must lead to an adequate description of the content of a 
sound-file in terms of the interval in which an event occurred. Annotation is a time-consuming, 
and knowledge intensive task, which is usually quite boring as well. This is probably the reason 
why there is currently  only a single annotated database of sounds in realistic everyday 
conditions5. Carefully selected everyday sounds in benign conditions have been used in other 
studies6,7. However for these sounds the annotation problem is trivialized, because the data sets 
contain single sound events in a single file.
There are many difficulties associated with real-world sound annotation: 
• The great within class diversity of sounds (e.g. cars at different distances and speeds) in 

combination with the co-occurrence of other classes makes it difficult to interpret a visual 
rendering of the signal as spectrogram and to annotate the visual representation without 
listening to the sounds in context. Visual inspection of spectro-temporal representations is an 
important aid for annotation, but attentive listening to the sound is essential.

• Sonic events are often difficult to recognize using sound as the only modality. It is important 
to annotate the sound during, or soon after, recording. The use of video information can be 
very helpful whenever the sound sources are clearly visible and easily attributable (which is 
often not the case). 

• Anecdotic evidence suggests that annotation by someone who was not present when the 
sound was recorded is much more error-prone and often many sounds cannot be annotated in 
detail. For example, the difference between cars, truck, busses, and even motorcycles is 
usually not at all obvious. 

• The co-occurrence of multiple qualitatively different sonic events and sound producing 
processes can lead to very complex signals, e.g. coffee-making in a lively kitchen. In these 
cases it is difficult to track multiple uncorrelated processes and describe each in detail. One 
might aim to annotate the so-called foreground or, alternatively, the events that attract 
attention. However, this creates the new problem of determining what attracts attention or 
what to assign to the foreground.  

• The large number of individually distinguishable events of a similar kind, such as singing 
birds in a forest, entails a lot of repetitive work.  



• Realistic environments contain many barely audible events, e.g. distant speakers, which 
might or might not be included in the annotation. Not including these might unjustly punish a 
detection system that detects the valid, but unannotated, events. Conversely, including even 
the faintest events is both time-consuming and prone to classification errors. 

• Finally, the determination of the precise moment of the start and end of audible events is 
subject to similar difficulties as those in the previous point. Especially the detection of the 
on- or offset of a gradually developing event, like a passing car in a complex environment, is 
often quite arbitrary. If the measure of success of a recognition system is based on 
determining the intervals in which events occur, the system is punished for any deviation of 
this arbitrary choice.

The difference between annotators who were present and who were not, suggests that the sonic 
evidence may often be insufficient (for the human listener). This poses a fundamental problem 
for each sound-only annotation or recognition system, whether human or machine; a correct 
recognition result may  simply  be impossible. Hence, a perfect ground-truth is not a realistic goal 
for a real-world sound recognition system. Instead, a performance equivalent to human 
performance when not present during recording is more appropriate. 
The current paper focuses on an annotation tool that helps to provide more insight in these 
problems and helps to alleviate a number of them. It assists a human annotator by  reducing the 
number of repetitive actions by automatically suggesting annotations based on previous 
annotations. This allows for the human annotator to accept the suggested annotation simply as an 
instance of the proposed class, instead of having to select it  from a (long) list of possible classes. 
Within the annotation system we try to maximize the probability that the true event class is on 
top of the list. Initially this list is simply  alphabetic. During manual annotation the class list is 
reordered according to the estimated probability that a certain event is an instance of the most 
likely classes.  
In the next section, we will give an overview of the annotation system. Furthermore, we present 
the data on which it  is tested. In the third section we will give the results of a pilot-experiment on 
a set of real-world recordings. The paper ends with a short discussion of the annotation process. 

2. METHODS
In this section we first  describe the data set that is used to test the annotation system. This system 
is based on processing sound in the spectro-temporal domain. Therefore, the sound signal is first 
pre-processed, which will be explained in part B. Subsequently, we describe how the sound is 
segmented into regions that are likely  to include the most energetic spectro-temporal evidence of 
the main sources. In part D we show how these regions are described in terms of a feature vector, 
and how this feature vector is used to classify  the regions. The section is concluded with a 
system overview, which is shown in Figure 1. 

A. Dataset
The dataset was collected under different weather conditions on a number of days in March 2009 
in the town of Assen (65,000 inhabitants, in the north of the Netherlands). The recordings were 
made by six groups of three students as part of a master course on sound recognition. Each group 
made recordings of three minutes at six different locations: a railway  station platform, a 
pedestrian crossing with traffic lights, a small park-like square, a pedestrian shopping area, the 



edge of a forest near a cemetery, and a walk between two of the positions. Recordings were made 
using M-Audio Microtrack-II recorders with the supplied stereo microphone at 48 kHz and 24 
bits stereo. This data, with annotations by the students, will be made available on http://
daresounds.org.

B. Preprocessing
Conversion to the time-frequency domain is performed by  a gamma-chirp  filter-bank8 with 100 
channels. The filters are given by:

 hgc = a tN-1 e-2 π b B(fc)t ej(2πfc t + c log(t))

with N = 4, a = 1, b = 0.71 and c = -3.7. fc is the channel center frequency. The center 
frequencies are equidistant on a logarithmic axis between 67 Hz and 4000 Hz. The channel 
bandwidth B(fc) is given by:

 B(fc) = 24.7 + 0.108 fc

The output of the filter is squared and leaky-integrated with a channel-dependent time-constant: 
τc = max(5, 2/fc) ms. The resulting time-energy  representation is down-sampled to 200 Hz and 
converted to the decibel domain. The resulting matrix of 100 channels with time-energy values is 
termed ‘cochleogram’.
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Figure 1. Overview of the assisted annotation system. The two gray blocks are the only places of human 
intervention.



This cochleogram representation shows minimal biases towards certain frequencies or points in 
time. For example, unlike an FFT-based representation a cochleogram does not show frequency 
dependent spectral leakage, which occur due to windowing effects when excited by a sine-sweep. 
This entails that visible details reflect signal properties and not processing artifacts. A 
cochleogram shows a combination of sinusoidal/tonal (horizontal), pulse-like (vertical), and 
noisy components, depending on the sound signal. While channel-dependent shapes characterize 
pulses and tones, noise is characterized by  channel-dependent energy fluctuations that are 
normally distributed. 
Many sources produce predominantly  sinusoidal (harmonic) or pulse-like sounds (impact 
sounds)7. Thus measuring the local strength of tonal and pulse-like cochleogram contributions is 
informative of source identity  and may be used in a feature vector. The local tonal and pulse-like 
contributions correlate to the height of the local energy value compared to neighboring values. 
These are called the peaks-above-surrounding (PAS) values9,10 and can be computed for both 
sinusoidal (PAS_S) and pulse-like (PAS_P) contributions. Both measures are expressed in terms 
of the standard deviation of noise. Strongly positive or negative values (e.g. more that three 
standard deviations from the mean of the noise) indicate values that are unlikely to originate 
from noisy (broadband) components. 
Local PAS values are calculated through channel dependent filtering of the cochleogram (see 
figure 2). The filter for tones is designed by measuring the width of the energy-peak of a pure 
tone (in the frequency  direction). This width is asymmetric, which is taken into account. The 
width is measured at  an energy value corresponding to two standard deviations of white noise 
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Figure 2. The left panels show two cochleograms of pure tones, in clean situations (upper) and in 0 dB white noise 
(lower). The middle and right panels show the energy profile at t=0.5 s. The upper panel show the derivation of the 

filter width (sb1 and sb2) at ths times the standard deviation σn of white noise below the energy maximum. The 
lower panel shows the application of the filter in noisy conditions. The difference between the mean energy at sb1 

and sb2, and the energy at the TF point is the PAS_S.



under the energy maximum. Filtering corresponds to averaging the energy at the filter-width on 
both sides of the time-frequency  point and subtracting the average from the energy value at the 
center. This value is normalized with the local standard deviation of white noise to yield the local 
PAS_S value. The computation of the pulse-like local contribution, PAS_P, is identical, except 
that the local width of a perfect pulse (in the temporal domain) is used.

C. Segmentation
The segmentation strategy is fairly basic. It is aimed at the inclusion of spectro-temporal maxima 
in the form of blobs in the spectral and/or temporal direction. These blobs become prominent by 
subtracting a strongly smoothed cochleogram from the original. The cochleogram is smoothed in 
the temporal direction through leaky integration with a time-constant τ = 5 s. The time constant τ 
determines the separation between fast, typically  foreground, sonic events and slow, typically 
background, events. The leaky integration operation corresponds to a delay  in the expression of 
mean energy values that  is corrected by time-shifting the resulting values backwards with the 
time-constant. This time-shift leads to a delay  equal to the time-constant, which is not 
problematic for off-line processing, but that is not desirable for online and real-time processing. 
The temporal smoothing of time-series x(t) to yield xs(t) is defined by:

 xs(t) = x(t-Δt) e(-Δt /τ) + x(t) (1-e(-t/τ))

Δ denotes the frame step of 5 ms. In addition to temporal smoothing, the cochleogram is also 
smoothed in the frequency  direction by taking a moving average over 7 channels. The difference 
between the original cochleogram and the smoothed cochleogram can be termed a fast-to-slow-
ratio and is expressed in dB.
The regions with a fast-to-slow-ratio of more than 2 dB are assigned a unit value in a binary 
mask. This mask is smoothed with a moving average in both the temporal direction (25 ms) and 
the spectral direction (5 channels). The final mask is obtained by selecting average mask values 
greater than 0.5, which smoothens region perimeters and reduces the number of supra-threshold 
time-frequency points in the inner-regions of the mask that lead to small holes in the mask. The 
final segmentation step is the estimation of individual coherent regions in the mask and to assign 
a unique number to each region. The smallest bounding box that contains the whole region is 
used to represent the region graphically (see figure 3). There are no special safeguards to ensure 
either that each region represents information of a single source, or that all information of the 
source is included in the regions. For example, when two cars pass at approximately the same 
time, a single region will represent both. Alternatively, sounds that are partially masked by 
(slowly developing) background sounds tend to break up into a number of smaller regions, that 
are each less characteristic of the source. Nevertheless, the current  settings seem able to include 
important source information of a wide range of sources.  

D. Feature vectors
The feature vectors must describe the source information represented by the regions. The 37-
dimensional feature vector represents properties related to the physics of the source. Note that 
normal approaches to environmental sound feature estimation11 make no effort to include source 
physics other than representing frequency content. The use of the PAS-values allows us to 



attribute signal energy to tonal, pulse-like, or noisy contributions, which result from either source 
limitations or transmission effects. Table 1 describes the feature vector.
The feature vector reflects the channel contributions per region, the fast-to-slow ratio, and the 
distribution of tonal (PAS_S) and pulse-like (PAS_P) contributions. These signal descriptors are 
represented by 7 different percentile values from the histogram of the local indicators. Different 
percentile values might be indicative for different classes. For example, the 90 and 95 percentile 
values might be highly indicative for footsteps in noise, while the other percentiles might not 
discriminate from a the noisy contribution in a car passage.

Table 1:  Region feature vector description

Feature Dim Percentile or range Description
Size 1 > 0.02 Fraction of spectro-temporal area equivalent to 1 s

Channel mean 1 1 - 100 Average channel number (1 is highest, 100 is lowest). This 
corresponds to average log-frequency contribution.

Channel std 1 < 50 Provides a single number indication of the channel spread. 

Fast-to-Slow-Ratio 7 [ 5 10 25 50 75 90 95 ] The distribution of Fast-to-Slow-percentiles provides information 
about the distribution of strong foreground values

PAS_S 7 [ 5 10 25 50 75 90 95 ] The distribution of PAS_S values provides information about the 
distribution of strong sinusoidal contributions. 

PAS_P 7 [ 5 10 25 50 75 90 95 ] The distribution of PAS_P values provides information about the 
distribution of strong pulse-like contributions. 

Channel distribution 7 [ 5 10 25 50 75 90 95 ] The channel distribution provides more detailed information about 
the pattern of contributing channels. 

Channel spread 3 5-95, 10-90, 25-75
Provides more detailed information about the channel spread as 
the difference in channel numbers between three percentile pairs 
of the channel distribution

Frame spread 3 5-95, 10-90, 25-75
Provides more detailed information about the temporal spread as 
the difference in frame numbers between three percentile pairs of 
the frame distribution

E. Classification
Classification of regions based on the feature vector must lead to proposed classes for regions 
similar to annotated regions. The classifier should function in an on-line fashion and must not 
require long re-training phases. Additionally, the classifier should be able to function with 
minimal training data. This combination of demands suggests a simple k-nearest-neighbor (kNN) 
classifier12. Such a classifier stores all training feature vectors in a matrix. It classifies each 
region by  calculating the Euclidian distance d to all vectors in the training matrix and selecting 
the k  closest training examples which each represent an example of a single class. A simple 
majority  voting system is used to determine the best class for the region. To create a distribution 
over multiple classes we count the number of occurrences a class in the top k = 5 and divide this 
by (k * d / Σ d) to get a number indicating the match.

F. System overview
An overview of the annotation system is given in Figure 1. The system loads, pre-processes, and 
segments the data of a single file and presents the result  to the user. First, the user selects a 
region. The selected region can be played as sound and a matching class can either be selected 
from a class-list or added to the class-list. Initially the list is ordered alphabetically, but when 
sufficiently matching examples of the class have been encountered, the top-positions on the list 
will be ordered according to class-likelihood. After class assignment, the kNN training matrix is 



extended with the feature vector of the region. If the match of a class exceeds a threshold (here 
set to p>0.04), it is automatically classified as that class. If the match exceeds 0.01, the region 
will be conditionally classified, which entails that the user has to accept the classification before 
it is included in the kNN training matrix. Regions that end up without annotation are discarded 
after the user decides that the file is annotated in sufficient detail.
To measure the performance of the system we track the class-rank of manually annotated 
regions, the number of automatically annotated regions, and the number of accepted regions. The 
number of discarded regions is a measure for the performance of the segmentation. The final 
output of the system is a list of classes assigned to regions.

3. RESULTS AND DISCUSSION
Measuring the performance of the system in meaningful numbers is difficult. A sensible measure 
is the time saved by this system compared to full manual annotation of start and stop times of the 
sound events. However each annotation session will result in different annotations due to the 
reasons formulated in the introduction. This makes a fair comparison difficult. Furthermore the 
current system is not yet sufficiently user-friendly  to allow a good comparison. Alternatively  we 
measured how often the correct class was suggested by the kNN classifier. The results are shown 
in table 2. When a class is either not annotated yet or misclassified, it is marked as 
“alphabetical”, otherwise it  is ranked as first or second. Without automated annotations one 
expects an average rank equal to half the number of classes. Note that  with k = 5 it is possible to 
have 5 different classes in the list, but third, fourth or fifth ranked classes did not  occur in the 
test.
The current system is a first  installment of the annotation tool. Its initial performance is 
encouraging, but each aspect can and must  be improved before it is truly useful. The further 
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improvement of the tool will depend strongly  on an improved understanding of the annotation 
process, which in turn is a special form of listening. Initial experience with assisted annotation 
indicates that the annotator does not analyze the file from start to end, but instead prefers to focus 
either on individual environmental processes or on individual auditory streams. This allows 
maximal benefit  from process/stream dependent  knowledge. It is possible that everyday 
listening13 reflects this so that at most one stream is analyzed with all available knowledge: the 
focus of auditory attention. All other streams are analyzed in less detail. This observation in 
combination with and the annotation problems formulated in this paper suggest that  the question 
“What do we do when we listen” should become a focus of active research. 
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