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ABSTRACT 
The performance of automatic speech recognition (ASR) systems is seriously degraded in 
reverberant environments. We propose a method for assessing the reverberation level in 
speech that makes it possible to determine in real-time whether a speech signal is reverberant 
or not. Reverberation causes an increase in the variation of the energy and frequency of 
harmonics in speech. Speech with a variable pitch is especially affected by reverberation. To 
capture the effect of reverberation we measured six features on the harmonics of the speech 
signal, which represent energy and frequency variation in different ways. Speech from the 
Aurora database was artificially reverberated to demonstrate the validity of these features. Each 
feature predicted reverberation time for a different subset of the dataset. To test the overall 
separability of the speech samples using these features, speech from the dataset was 
automatically classified as being either inside or outside the reverberation radius. Most of the 
speech was correctly classified, which suggests that a reliable real-time classification algorithm 
can be developed to select good-quality speech. This algorithm can improve pre-processing 
methods, such as speech enhancement or voice activity detection, for more robust ASR. 
 
INTRODUCTION 
The conditions under which an ASR system is trained will not always match the conditions 
under which it is used. In real-world environments there may be background noise, other people 
talking, or effects from room acoustics. The effects from room acoustics are especially 
disturbing when the speaker does not use a close-talking microphone, and is situated in a 
reverberant enclosure. All these effects distort the input signal and lead to a degraded 
performance of the ASR system. 
 
One solution to deal with reverberant environments is to solve the mismatch between the 
training conditions and the operating conditions. In other words, the ASR system is trained on 
reverberant speech, and accordingly it will perform better in reverberant operating conditions 
[1]. However, the effects of room acoustics vary greatly for different environments. Different 
parameters, such as the size of the room, the material on the floor and walls, and the 
temperature, influence the acoustic characteristics [2]. Therefore, an ASR system requires 
training data that match the characteristics of the operating environment. Besides the 
inconvenience of having to know the operating conditions beforehand, the acquisition of the 
impulse response describing a room is not straightforward. 
 
Couvreur et al. [3, 4] propose a method where acoustic models are trained on speech under 
different, simulated reverberant conditions. During operation of the ASR system, the model that 
matches the operating conditions best is selected. They show an improved performance on 
simulated reverberated speech compared to an ASR system trained on clean speech. However, 
the improvement on real data is not as high, because of the discrepancy between real 
reverberant and simulated reverberant speech. 
 
Other methods try to recover the clean speech from the reverberant signal, for example through 
a filter that enhances the harmonic structure [5] or pitch-based speech segregation [6]. Although 
these methods are successful, they are limited to conditions with low levels of reverberation. 
Furthermore, they rely on the accuracy of the filter that estimates the room impulse response. 
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We propose a method that classifies speech in a monaural signal as either inside or outside the 
reverberation radius. Whereas most methods require knowledge of the room characteristics, 
either for training or filtering, our method allows for blind classification based on properties of 
the reverberant signal. Reverberation causes an increase in the variation of the energy and 
frequency of harmonics in speech. Hence, features that capture this variation can be used for 
real-time classification. We show the validity of six such features. 
 
METHOD 
Clean speech was artificially reverberated to enable a controlled experiment. The proposed 
method required different levels of reverberation for each speech sample, since we examined 
features that were expected to predict reverberation. Six features are measured in the 
reverberated speech, and automatic classification is used to test these features. 
 
Reverberation model 
A common measure for the level of reverberation is the reverberation time T60. The 
reverberation time is defined as the time for the sound energy level to decay 60 dB after the 
excitation has ended. We computed nine different levels of reverberation using the Eyring-
Norris equation [7, 8, 2]: 
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where V is the room volume in cubic meters; m is a vector with air absorption coefficients for the 
frequency bands; S is the total surface area; and 

ā
 is the mean wall absorption coefficient. We 

assumed a fixed room size of 10 by 12 by 3.5 meters and a constant temperature and humidity 
of respectively 20°C and 60%. Hence, the mean wall absorption coefficient was the only 
variable parameter. Values were assigned to this parameter such that the reverberation time 
intervals were approximately 200 milliseconds. 
 
The reverberation level can also be expressed by the reverberation radius or distance [2]. The 
reverberation radius is the distance of the speaker or microphone to the sound source for which 
the energy contribution of the direct sound and the echoes are equal. A more reverberant 
environment concurs with a smaller reverberation radius. Naturally, the reverberation radius is 
strongly correlated to the reverberation time. We also compute the reverberation radius so the 
sound samples can be labeled as either clean or reverberant. In this paper, we regard clean 
speech as speech inside the reverberation radius. 
 
The parameter values used in the Eyring-Norris equation were used as input to the shoebox 
model, which simulates an impulse response in a rectangular room, a shoebox. The shoebox 
model is an implementation of the image source method of Allen and Berkley [9]. The speaker 
and the listener or microphone are modelled as two points in space. Apart from the direct 
sound, specular reflections are computed using mirrored image sources. An impulse response 
is obtained for every image source. The final impulse response describing the room is 
computed by combining all individual impulse responses, which are received at different delay 
times. This impulse response is convolved with the speech signal, resulting in reverberant 
speech. The speech is processed using a cochleogram, a logarithmic time-frequency 
representation based on a transmission-line model of the human cochlea [10]. Figure 1 depicts 
a cochleogram of a clean speech sample on the left, and a cochleogram of a reverberant 
speech sample on the right. 
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Figure 1. - Cochleograms of '435' by a female speaker, clean and reverberant 
 
Measuring reverberation effects 
We expected that the effect of reverberation on speech can be measured directly in the speech 
signal. Since we want to develop a real-time speech classification system, the features used for 
the classification must have no parameters that require knowledge of the room characteristics. 
One prominent effect of reverberation on speech is the attenuated salience, that is, the 
attenuated stability in both the frequency and the energy, of the harmonics [11]. First, voiced 
speech was located based on the selection of harmonic complexes — a superposition of co-
occurring harmonics — in the cochleogram. Next, the fluctuation in energy and frequency of the 
first five harmonics of the harmonic complex was measured, because these harmonics are most 
robust in the cochleogram.  
 
The energy variation is measured through the number of peaks on the harmonic (1) and the 
energy variation of the harmonic compared to its smoothed version (2). Both values are 
expected to increase at higher reverberation levels. In addition, the energy contributions of 
echoes cause less distinct harmonics. This effect is captured by calculating the energy slope of 
the harmonics (3), and the width of the harmonic compared to an ideal sinusoid (4). The energy 
slope will be less steep in reverberant speech, and the harmonic will cover a broader frequency 
range. Reverberation effects can be found in the time-frequency plane as well. The short-time 
development of the harmonic is distorted by echoes, causing a less smooth harmonic track. 
Therefore, the track variation was measured compared to its smoothed version (5), and to an 
approximation of a clean harmonic track (6). These six features are summarized in figure 2. 
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harmonic energy salience
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(3) energy slopes

(4) width − width sinusoid
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(5) f(h) − smooth f(h)

 
 

Figure 2. - Features that indicate reverberation level on an harmonic (h) 
 
Figure 3 shows an example of the feature values measured on a single harmonic. The 
horizontal axis corresponds to the reverberation time in all plots, but the vertical axis is different 
for each plot, depending on what the feature represents. Note that segments correspond to filter 
frequency bands. Two of the plots depict two features, because they have similar values on the 
same dimension. The individual points are single measurements, and the lines are linear fits. 
For this harmonic, the linear relation between the features values and the reverberation time is 
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significant for all features except the energy variation, E(h) - smooth E(h). In general, not each 
feature of each sound sample will predict reverberation. Particular characteristics of the sound, 
such as stationarity or the formant frequencies, change the measurability of the features. 
However, it is likely that in each sound sample at least one feature can be measured that 
predicts reverberation, since the features are measured on five harmonics.  
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Figure 3. - Feature values of the first harmonic (h) of a short phrase 
 
Speech dataset 
Part of the Aurora database [12] was used to validate the six features. Artificial reverberation 
was added to 685 randomly selected clean sound samples, spoken by 214 different speakers, 
both male and female. The reverberation was computed at nine levels, equivalent to linear 
spread reverberation times between 0 and 1600 ms. As we expected, most of the 685 sound 
samples showed a significant correlation of at least one feature with the reverberation time. 
Only 6% did not show a relation for any of the features. However, the predictive strength of the 
features for individual sound samples is no direct indication for the general separability of the 
speech samples as either clean or reverberant. To test the separability, global thresholds need 
to be determined in a training set and used to classify a test set. 
 
Since the 685 speech samples were reverberated at nine levels, a total of 6165 samples could 
be used for classification. After the dismissal of unsound samples, that is, samples in which we 
could not measure one or more features, 5189 samples were left. All samples within the 
reverberation radius, the two lowest levels, were labeled as clean, and all samples outside the 
reverberation radius, the other seven levels, were labeled as reverberant. The data was split in 
a part for training (33%) and a part for testing (66%). In addition, continuous read speech of six 
speakers was recorded using a close-talking microphone. This data was split into samples of 
similar length to the Aurora database, and resampled to an equal sample frequency. The 
speech samples were artificially reverberated in the same way as the other data. Again, part of 
the data that was unfit was removed, and 2377 samples were left. These samples served as an 
extra test set, which can show the robustness of the features. 
 
Classification method 
Numerous methods exist to test the classification accuracy of features. We used a support 
vector machine (SVM) [13], since it is known to be less prone to problems of overfitting than 
some other methods [14]. Of course, we want our classifier to be as general as possible, 
because it should work in a variety of environments. In training, an optimal separating 
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hyperplane, or threshold boundary, is determined. The support vectors are the speech samples 
that are closest to the hyperplane, and hence are most difficult to classify. The mapping of the 
data to an higher-dimensional space is dependent on the type of kernel, that is, the mapping 
function, which can be defined by the user, or selected from one of the standards. For our data 
we use a standard linear kernel. The number of support vectors is an indication of the 
complexity of the classification. During the testing phase, the speech samples are mapped onto 
these support vectors. Since the test samples are labeled as well, the classification can be 
compared to the labels, resulting in a performance measure. 
 
RESULTS 
The speech samples from the Aurora database were split randomly into a training set of 1744 
samples and a test set of 3445 samples. The six features, measured in eight different ways (see 
figure 3), were computed on the first five harmonics, resulting in 40-dimensional data. The 
skewedness of the data — 22% of the speech samples was clean and 78% was reverberant, 
because the reverberation radius corresponds to a relatively low reverberation time of just over 
200 ms — is accounted for by using prior probabilities to weight the class error contributions. 
The SVM was trained on the training samples, resulting in a classifier with 363 support vectors. 
The rest of the speech samples of the Aurora database was tested on the trained classifier. The 
performance, or accuracy, of the classifier was 92%. The additional speech samples of our own 
recordings were also tested on the classifier, with a performance of 87%, only a few percent 
less. 
 
Different classification methods could be chosen for this problem, or different settings for the 
SVM. For example, if the size of the training set is increased, the performance on the other 
Aurora speech samples increases, but the performance on the extra test set decreases. We are 
not interested in optimizing the classifier on a particular dataset, but in the separability of any 
reverberant speech using the features. Hence, the classification with an SVM using a linear 
kernel gives an indicative performance result. 
 
CONCLUSIONS 
We discussed whether the reverberation level can be assessed in speech, without any 
knowledge of the room characteristics. Six features that were expected to reflect reverberation 
were measured in speech samples under different, simulated reverberant conditions. We 
showed that these six features can be used to classify speech as either clean or reverberant. 
Although the reverberation assessment was reduced to a two-class problem in this study, the 
predictive strength of the features indicate that a quantitative assessment is possible as well. 
The possibility of quantitatively determining the reverberation level will be investigated in a 
follow-up study. Furthermore, we will look into the effects of reverberation on higher harmonics, 
since the attenuated harmonicity will probably be quite evident there. 
 
So far, we used artificial reverberation to validate the features, which allows controlled 
measurements at different levels of reverberation. The next step is to test the performance on 
real reverberant data. When the general validity of the features is shown, we can improve the 
performance of ASR systems by selecting good quality speech. The comparable results of the 
two different test sets on the same classifier already suggest that the features are quite robust. 
Besides the possibility to select speech directly for ASR systems, the features can select 
speech for pre-processing methods as well, such as the speech enhancement methods 
discussed in the introduction [3, 4, 5, 6]. The thresholds can be changed depending on the 
possibilities of the next processing step. Once the applicable thresholds are determined, the 
classifier can operate real-time, without any knowledge of the operating environment, and 
without any extra demands on the ASR system. 
 
As mentioned in the introduction, ASR systems should be able to operate in reverberant and 
noisy environments. In the future, we will try to explicate the physical origin of reverberation 
effects. We already showed the predictive strength of the features we studied. If we can link 
specific effects of reverberation to specific features, we can separate the effects of 
reverberation and background noise, making it feasible to eliminate both. 
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