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This paper describes the uses of computer models in studying the avabiti
language. Language is a complex dynamic system that can bedstidiee level of
the individual and at the level of the population. Much of the dynamicsngtiéaye

evolution and language change occur because of the interaction ofwtbdsedls. It

is argued that this interaction is too complicated to study witkrapdrpaper analysis
alone and that computer models therefore provide a useful tool for undengta
language evolution. Different techniques are presented: direct ogtiiomz genetic

algorithms and agent-based models. Of each of these techniques, napieeia

briefly presented. Also, the importance of correctly measuring aesempting the
results of computer simulations is stressed.
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1. Introduction

People are fascinated by language, and love to talk and speculateitabdbenever
speakers of different languages or dialects get together, onlee dfavorite topics of
conversation is the comparison between their different languages. Smotaer, the
origins of the differences and possibly the origins of languagh sk be discussed.
Scientists, not different from other people, like to speculate on thmof language as
well, and the field of language evolution has seen a renewed interest over recnt year

Different questions about the evolution of language can be investigatesh td
language evolve? Which of our ancestors had language? Was itigelelate invention,
perhaps as late as 50 000 years ago when Homo sapiens apparergtarfest to make
artistic and symbolic artifacts? Or was it much earliat did Homo erectus, or perhaps
even the Australopithecines already have language? A relatedoguedtow fast language
has evolved. Anthow language did language evolve? Which evolutionary pressures played
a role, and what factors determined that humans ended up with langualge oter
animals did not? Apart from historical events and circumstanceg #ne more general
processes that determined the evolution of language. These can alsedbgated. How
much of language evolution is the result of purely biological evolutionhendmuch of it
is cultural? What other factors, besides biological evolution of indiVistuaans can have
played a role? What was the role of co-evolution between languagkeabhin? And that
of co-evolution between infants’ learning abilities and parenting belfaWtrat is the role
of self-organization, a process often encountered in complex dynastensy All these
questions have indeed been investigated by different researcherse.gseelurford,
Studdert-Kennedy and Knight, 1998; Knight, Studdert-Kennedy and Hurford, 2000; Wray,
2002).

Apart from being an undoubtedly interesting topic, language evolutiosasaalard
topic to investigate. Language is a complex phenomenon, and evolutionoispex
phenomenon, so their relation is by necessity also very complicatedevbhaion of
human language is also in part the evolution of the human brain. Agains thisery
complex organ, and investigating its evolution is correspondingly complen there is
the interaction between human culture, its evolution and the evolution oBlgagFinally,
evolution is a historical process. This means that it has beennodddy coincidences of
human history and environment. Unfortunately, our knowledge of the history ofnhuma
evolution is far from complete, and language itself does not leavalieest historical
records, except in the case of written language. However, widgtbgmage only goes back
an insignificant amount of time when compared to the time over whngulge must have
evolved. Therefore, physical evidence of the evolution of language isxqni€nly some
fossil hints about adaptation for speech exist (e.g. Kay, Carandl Balow, 1998;
MacLarnon and Hewitt, 1999).

A problem that is both fascinating and hard invites speculation. And inthesd,
has been no shortage of speculation about the origins of language. Unébyfumatst of
this speculation has been wholly unscientific. For this reason, thét&alg Linguistique
de Paris in 1866 explicitly forbade all speculation on the originsanguage. Still,
Jespersen published a book on (among other things) the origins of language2i
(Jespersen, 1922). In it, he found it necessary to debunk a number of theh tbewees
on the origins of language. However, the alternative he proposed, humangkragia
derived from song, was not founded any better scientifically. The proligmmuch of



this speculation was and is that it is trying to find one singadtof that caused language to
emerge in humans. However, as has been argued above, the process gélaugludion
is both complex and dependent on historical coincidences.

Can we do better today? Although the nature of the question has not chaunged,
knowledge pertinent to the evolution of language has increased enormaus864, the
idea of evolution was still very recent: Darwin had only publishadhe Origin of Species
(Darwin, 1859) seven years previously. The reality of evolution wé#sbsing hotly
debated. At the same time, most of linguistics consisted of shoehgnaimgnars of exotic
languages into the grammar of Latin. As for fossil or other palsxidence of language,
archeology and paleontology were only just getting off the ground. TteNfeanderthal
finds had only been made public in 1858 (Schaaffhausen, 1858). Since then, enormous
progress has been made in all fields relevant to the study olvdihatien of language.
Evolutionary theory has developed spectacularly since 1859. We now know dbotibise
pressures, sexual selection, group selection, cultural evolution and otteryfactors.
Because of advances in biochemistry, we also know about the moleaitapbheredity.
Our increased knowledge of biology, and of the related field of ethdlbgystudy of
animal behavior) has also helped to advance the understanding of the evolution
language. We now know about communication systems in other animals, andhebout
cognitive abilities of our nearest evolutionary relatives, thetgpeas. These advances in
biology and ethology have gone hand in hand with advances in the understandiag of t
neural mechanisms that underlie behavior. We have learnt which pahs ofain are
responsible for language and cognition and which parts in apes’ brairmmaogous to
these. This has made it possible to form hypotheses about the evolutienbodin. These
hypotheses, as well as hypotheses about the evolution of the geneyalyaaatl behavior
of humans can be tested objectively because of the paleontologicachadlagical finds
that have been made over the last century and a half. Although fodsihee will never be
abundant, we now have a much more accurate picture of human ancestolsit Lrast
least, our understanding of what language is and how it works has immpav&derably
since 1866. Much more is known about what the possibilities of human larayeadgéany
more languages have been described, and these descriptions are nonadiaysithout
reference to the grammar of Latin. Special cases of landuage also been described.
Pidgin and Creole languages, especially, have shed light on the wdgnwiages can be
formed by populations of speakers. With our more extensive knowledge pdsbibilities
of human language, we can make better theories about the specific hdagations for
language. This growth of our knowledge has made speculation about thnes aigi the
evolution of language more informed and more scientific.

But it is not just the increase of background knowledge that has mpaaoiesible to
make and test more scientific hypotheses of the origins and theienadiittanguage. In
this paper it will be argued that the use of computer models aistittites an advance in
methodology. Computer models allow researchers to investigate pieations of more
complicated hypotheses than would be possible with pen and paper alone. Kgreurat
of computer modeling in the study of language evolution will be expandéuke imext
section. Section 3 and 4 are more technical. In section 3 basic techfogueuilding
computer models of language evolution are presented, while in chapiesedtechniques
are illustrated with a few examples. These sections aredede for readers who are
interested in building their own simulations, and can be browsed througthyrapiless



“Population Level”

)
Snd|V|duaI level

Figure 1: Language can be considered at both the individual level (tHenowledge
and performance of an individual) and the population level (thelinguistic
conventions in a population). There are feedback loops betweendividuals'
language and language convention®f the population, making the whole

complex dynamic system.

technical readers. Section 5 discusses the implications of theidaes presented in this
paper, and presents some of the conclusions on language evolution that naneadeed
by computer modelers.

2. The Use of Computer Modeling

In order to understand the use of computer modeling in the study of theiavadiit
language, we need to understand that there are two levels to lanth&devel of the
individual and the level of the population. These two levels interact@étan important
factor in what makes the dynamics of language in a population so complicated.

At the individual level, language is made up of individual speakers’ kiogwlef
the language, of their limitations in production, of the speech ehreysnhake, of the way
in which they acquire language etcetera. This is the leveidhatated to what Chomsky
has calledperformance(Chomsky, 1965) and what De Saussure has caldle (De
Saussure, 1987). It is studied by psycholinguists who study such thirggcasir times in
retrieving words and limitations on short-term memory, by researdfespeech errors and
speech pathologies, by researchers using neuro-imaging techniques rasearghers of
language acquisition. Language at this level is intricatebtadlto the functioning of an
individual brain. Also, the language produced by each individual is slightly different.

On the level of the population, language is a conventionalized communication
system, with a vocabulary and a set of grammatical rules. Theléahgsvin the population
is uniform to such an extent that users of the language can comteumeanings and
intentions with it. This is the level that is related to whiabi@sky has calledompetence
and what De Saussure has caleague It is often assumed that the language at the level
of the population is uniform over space and time. It is also often coedids an abstract
system that exists in a sense separately from the indivighealkers. Language at the
population level is studied in historical linguistics and in genengluistics and is also
what is described and prescribed by language teachers.

Both perspectives are equally valid when studying language. It wouhdpassible
to reconstruct the history of a language if one had to take into adbeun¢havior of every
individual. It would also be impossible to study organization of languagie brain
without looking at the behavior of individuals. However, it is obvious thaethes levels
do not and cannot exist separately. This is illustrated in figuf@d population level is an
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Figure 2: Example of predatorprey dynamics in an ecological model. Tt
equations describing the system are Lotk3/olterra equations, and have bee
adapted from (Hastings and Powell, 1991)The left plot shows the dynamics of ¢
ecosystem containing plants and herbivores. Such an ecosystenowh cyclic
behavior. The right plot shows the dynamics of the ecosystem if a carnivorc
predator species is added. Suddenly and surprisingly, the dgmics becom
chaotic. Such phenomena would be almost impossible to investigatvithout
computer models.

abstraction of the collective behavior of a group of individuals. Behavitheomdividual
level is influenced by what individuals perceive of the language us#teipopulation of
which they are part. The interaction between these two leval$eisdback loop. Changes
in behavior of an individual can change the collective behavior and thigrincan
influence the behavior of individuals.

These feedback loops are by no means simple. The way languagmisatel the
way innovations spread through a population are complex processes. Sanis ya@tnot
be described in a mathematically simple way. In a technictiematical sense they are
non-linear systems. As has already been observed by Steels (199@)gkamg a complex
(non-linear) dynamic system. The behavior of such systems is yaioga®dict or even to
describe. If one makes hypotheses about such systems, they witrdredy hard to test
using pen and paper alone. An example of complex behavior is illusinategire 2. In
this figure the behavior of two ecosystems is compared. When ttensgses from two
species to three species, the dynamics become surprisingly more complex.

This is where computer models come to the rescue. Once describatfidgrent
detail, complex dynamic systems can be implemented as computeisn@a@puters can
then simulate the behavior of these models, and provide insights in howdheyWhen
one compares the behavior of the computer model with behavior of tleystsaah, one can
check whether the predictions of the theory correspond to what is fourdlity or not.
Without computer models it would be extremely hard even to check \wkaexact
predictions of the theory are. A common misunderstanding about computesrsothedt
they only produce what has been put in beforehand, and that they are ¢hareible to
produce any really surprising results. A complex dynamic systeatiavior is so difficult
to predict that the results of simulating it are often very surprising.

Another advantage of using computer models is that one can use themhatdb
experiments. When studying language evolution or other large and diffacidontrol



problems, it is often impossible to do controlled experiments. It isifdesto observe the
behavior of the system under study, but it is not possible to changeitthleconditions
and see what happens or to restart the system to see what hasetappn earlier phase.
Sometimes natural experiments happen, such as when a pidgin or lareplage is
formed, but there are always many factors that one does not conitbl.aVéomputer
model, however, one has complete control over all parameters and evetheoexact
dynamics. One can also run and rerun the model as often as one wamstéCanodels
therefore make it possible to do as many hypothetical experiments as one wants.

In many fields of science, computer models are indispensable toahwéstigating
natural systems. One such field is meteorology, and more spkgititenate modeling.
The earth’s atmosphere and its oceans also form a complex dyhsystean that would be
impossible to understand without computer models. Computer modeling allows us
investigate the long-term dynamics of this system and to peHgpothetical experiments
on it by changing parameters and investigating how they influence the model’s behavior.

Using computer models to investigate aspects of complex biologst#dms has
since 1989 been the domain of the field of artificial life (Langton, 1980jhis field,
mainly biological models are tested using computer simulations.eTimeglels can be
about behavior of ecosystems (as in the example above) but also algrattieof plants
(Prusinkiewicz and LindenMayer, 1990) or on such things as flocking in @Reigolds,
1987) or the emergence of ant trails (Colorni, Dorigo and Maniezzo, 196ih the
beginning, artificial life researchers have been interested iimg uomMputer models to
understand communication, but it wasn't until 1996 when the first confer@mce
evolution of language was held in Edinburgh, that the application of compotils to
the evolution of language got a real boost. Since then the number of papaymputer
modeling of language evolution has increased enormously.

Understanding how computer models are made and understanding how to interpret
the results from computer models requires understanding of how ancabgstem, such
as a computer model, and reality map onto each other. Because copopegeis limited,
and because our understanding of language is limited as well, buildmg@uter model
requires us to make abstractions and simplifications. This is pratbéem. Simplifications
and abstractions are necessary for any scientific theory. Fitltengght simplifications is
also the key to making successful models of other complex phenomenaassubb
example of the climate as mentioned above. However, we should reraam @ the kind
of simplifications we make. It is very important not too simpéfynodel too much, and
thus to remove all interesting dynamics. This sometimes happengstems that are
designed for mathematical analysis. Mathematical analysisocdy be done on the
simplest possible models, and the kinds of models we are interaséed generally not
solvable analytically.

Another possible pitfall is to compensate for necessary singildits in one part of
the model by making another part of the model more complicated. @iteoniy serves to
obfuscate the behavior of the system. It is important when modefagtiaular problem,
to analyze where the simplification bottlenecks of the model acdk,nat add unneeded
complexity elsewhere. We can then build a model that is as samplecessary and avoids
complexity that does not contribute to the realism of the model. Iga&sh of speech can
serve as an example: building a computer model with a verytiealeech synthesizer is
not useful if it does not have a correspondingly realistic model aepgon. In building



and describing a computer model, it is very important to make our pgsenm and
abstractions explicit.

When interpreting and presenting results from computer models, we sheuld
aware of how the results of the computer model map onto the linguitieomenon under
study. For a model of speech sounds this mapping is usually quitehtnaigrd. Such
models generally work with direct representations of physical piepeof the speech
sounds under study. For models of more abstract properties of languageaguing can
be quite intricate. Semantics (meaning) can serve as an exdvigdaings in computer
models are often implemented as simple numbers that are a en@aduwww strong the
association between a word and an object in the world is. Thisyigceasplement, but a
rather strong simplification of the complexities of semantndsuman language. Such more
abstract representations require an effort from the author tnptéseresults of the model
and from the reader to interpret them. It is therefore esseat@éarly communicate the
mapping between objects in the computer model and real linguistieg@ind to explain
how the results of a computer model shed light onto the real linguistic phenomena.

One should also be very careful not to use computer models to investigats aspe
language that they have not been designed for. For example, one can boittgpater
model for investigating certain properties of speech sounds that dobaveoa realistic
language acquisition component. It would then be disastrous to use this fapdel
investigating language acquisition. Although this is a very obvious @earmssumptions
and abstractions in a computer model can be extremely subtleaktydo forget the exact
nature of these assumptions, and the problem gets worse when a cangugethat one
researcher has designed is used by other researchers.

Deciding which abstractions and simplifications to use is one stepaking a
computer model. Another step is which computational techniques to use foorhputer
model. Sometimes the problem one is interested in and the siniicane has made
already determine which techniques can be used. Like the abstractibsgnplifications,
all different techniques have their advantages and disadvantages.

3. Computer Modeling Techniques

There are many different techniques that are suitable for modtimgevolution of
language. Most of these techniques can be divided in three categupiemization
techniques, genetic algorithms and agent-based models. Optimizatongtees define a
quality measure on (linguistic) systems and try to optimizé&sénetic algorithms are
techniques inspired by biological evolution that try to evolve a good limggigstem using
a population of candidate solutions. Agent-based models model (a populatiango@ge
users as simplified computer programs, and try to emulate howuigelanguage. These
categories provide a framework for presenting the different techsjidpue it should be
kept in mind that they are somewhat arbitrary. There are fisénclions that can be made
within the categories and the boundaries between categories are not always clea

3.1. Optimization
The hypothesis underlying optimization as a computer modeling technigbatisnany
linguistic structures are in a sense optimized. Different opétiun criteria are postulated
for different aspects of language. For speech sounds they could becadstisictiveness
and articulatory ease. For grammatical constructions, they coultkdoeability and



parsability. For semantic distinctions and categories, learryalaihti coverage of the
semantic domain could play a role. Cross-linguistic observations aruhglisguistic
studies have indeed shown that languages appear to be optimized, tat deesnsiderable
extent. This is relevant in two ways for the study of the evolutiomaofuage with
computer models. It can be investigated for which factors human langeadly is
optimized, and how the process of optimization is brought about in human languag
Optimization criteria can be investigated by generating @#ifiinguistic systems using
different optimization criteria and comparing these systemh wvgal human linguistic
systems. If there are important similarities, it is likéiat the optimization criterion also
plays a role in human language. If the systems are not sithidacriterion probably is not
relevant. The second perspective on optimization in language looksditféinent ways in
which linguistic structures have become optimized. This can have hapimeoadh for
example biological evolution or cultural evolution. Usually, either geragorithms or
agent-based models are used for this kind of research, so weeudl 6n the first kind
only in this section.

The basics of implementing optimization are relatively stréogivard. A computer
model is used to find the linguistic system with the highest gualitsome property. Three
things are needed for an optimization model. First, a representatibe lriguistic system
under study is needed. This can be a set of speech sounds, a gransystiéra or a
vocabulary of words with different meanings. It is crucial thasehepresentations can be
modified in small steps in order to optimize them. Second, a quadi&gune is needed that
determines how good a given linguistic system is for the task aneswo investigate. It is
advisable to use a function that is easy to calculate and tmabatls Ease of calculation is
important if one wants to make efficient computer models. Smoothoesa §uality
function is defined as the property that a function gives similaregaior similar inputs. In
the case of linguistic systems this means that similaesgs will have similar quality
values. This is important, because most optimization techniques do notwebriwvith
quality functions that are not smooth. The third element of an optimniodel is the
optimization algorithm. Both the representation of the linguistitesysand the quality
function depend on the problem one wishes to investigate. Most optimizigaithens,
however, are task-independent.

Optimization algorithms generally work by keeping track of the selsttion found
so far, by making small modifications to this solution and by replabie@ld best solution
whenever a new solution with higher quality is found. The main diffesebedween
different optimization algorithms are in the way new candidatatisos are generated. If
very little is known about the behavior of the quality function, the onlyilpdgsis often
to randomly explore the neighborhood of the best solution found so far. If one Kmatws
the quality function is smooth, one can use a technique called hilsngmnin which one
tries to follow the steepest path up the quality function. A partigulabust optimization
technique is simulated annealing (Kirkpatrick, Gelatt and Vecchi, 1Bi&8¢ one explores
random solutions in the neighborhood of the best solution found so far. Ovemtime,
shrinks the size of the neighborhood in which new solutions are searchedalikes the
algorithm to locate the approximate solutions of peaks in the quahttion first, and
subsequently climb up a promising peak. Both hill-climbing and simulatedating are
illustrated in figure 3.
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Figure 3: Two different ways of optimizing a quality function. On theleft the hill-
climbing algorithm is shown. It climbs up a peak inthe quality function using the
steepest ascent. On the right simulated annealing is illuated. It uses eve
decreasing random steps to find the best solution. Note thatll- climbing would
most likely get stuck on a sub-optimal peak in this complex landscape.

It is important to note that, except for the simplest possible prsbbnd quality
functions, optimization does not always find the best solution. This prabl#ionstrated in
figure 3, where the simulated annealing procedure does not find the thigges
Straightforward optimization is therefore not recommended when one wwafid thebest
possible solution to a problem. This is however, not usually the casguistic problems.
Human languages show a fair degree of variation for most if hptagerties, even though
they are usually close to optimal. An algorithm that managaadagar-optimal solutions
most of the time is therefore usually good enough.

Optimization is probably the technique that is least controversitd applications,
as its dynamics are relatively simple: there is an optimizecriterion and it results in
linguistic systems that are similar to human systems or metuBsion is possible about the
implementation and representation of the linguistic structure, aboqu#iiy function that
was used, or about the interpretation of the structures that are fourtte agtimization
process itself is not controversial. The simplicity of optim@atis also a disadvantage. It
can only be applied to relatively simple problems. As soon as mubigpiization criteria
interact, the optimization process becomes more difficult and desisiave to be made
about which solutions to investigate. However, optimization is a good tgmhrior
checking which criteria play a role in human languages. How théseiac have become
important and how the optimization process takes place in human populatishden
investigated with different techniques.

3.2. Genetic Algorithms

The second paradigm is that of genetic algorithms (GA’s). Tinetgealgorithm (e.g.
Goldberg, 1998) is a technique that is based on the way evolution worksiie. nastead

of keeping track of only one potential solution, the algorithm haspalationof potential
solutions. Just as in optimization, it has to be decided how these solutions are regiasent
the computer model. However, in a genetic algorithm there arestvetslof representation:
the level at which solutions are evaluated (which is similarh® representation in
optimization) and the level in which solutions are recombined and muigtdoe genetic
algorithm. This is analogous to the distinction in biology between theopee (the grown
individual) and the genotype (the individual’'s genes). Analogous to thisjos@un a
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Figure 4: Examples of coding of solutions in terms of genes (for example theesiz
shape and speed of an animal) and of mutation and crossover operators for
generating new genes

Example crossover

genetic algorithm must be representable in terms of artifieil@es. In most implementation

of genetic algorithms, simple bit strings are used for repregegenes. When needed,
these genes are converted into possible solutions to the problem at lingndstic
structures in the case of models of language). These solutionsecabet evaluated with a
fitness function. This fitness function is comparable to the quailtgtion in optimization.

It is a function that gives a high value for good solutions and a low value for bad solutions.

Just as in nature, solutions with a high fitness are allowed atecoéfspring, while
bad solutions are removed from the population. When solutions with high fiémess
selected, their genes are used to create new genes for offdptngill replace the bad
solutions that have been removed from the population. The idea is that wathi genes
coding for high quality solutions will multiply in the population, whilenge coding for
bad solutions will disappear.

In order to create offspring based on the parent solutions, combinatiblodset
inspired by nature are used. The most important operator is direahgopyost of the
time, offspring must be very similar to their parents. Another itaporoperator is
mutation. Mutation causes genes in offspring to be different frormpgenes. When
working with bit strings, mutation generally consists of flipping oh¢he bits in a gene.
Mutation should not be done too often otherwise solutions tend to deterioradtheA
important operator is crossover. In crossover, genes from two paremsnabined to form
offspring. With this operator one hopes to combine good properties from betliphut it
is equally possible that one would combine bad qualities. However, incdbe, the
resulting low-quality offspring will not be selected for trandfersubsequent generations.
Both mutation and crossover are illustrated in figure 4. As in opiioiz, the right fithess
function and the right coding of are essential for the proper functiooing genetic
algorithm.

Many different variants of genetic algorithms exist. There differences in the
exact implementation of the genes and the genetic operators.iQ&emportant to tailor
them to the problem that one wants to solve. Other differencesiexts¢ way one can
handle simultaneous optimization of different criteria. The clas&é only optimizes one
criterion, expressed in the fitness function. It is of course posgb®mbine multiple
criteria in one fitness function, but as a GA works with a populatisoliftions, it is also
possible to keep all solutions that are the best in each of tagacdhe wishes to optimize.
This procedure is called pareto-optimization. Making an effort to kedtiple different



solutions is in general a good strategy when using genetic algsritBecause of the
selection process, diversity tends to disappear from the populationiraeelf nothing is

done to preserve it. Diversity preserving schemes generallyt saldividuals for

procreation by taking into account fithess and how different the indivisifia@m the other
individuals with high fitness. If it is very similar, the probalilthat it will be chosen is
diminished. If it is different, the probability will be increased.

GA'’s are similar to straightforward optimization in that tredgo optimize on the
basis of an optimization criterion (the fitness function), but they aehmore flexible and
robust. Part of their strength lays in the fact that they kesgk tof multiple potential
solutions. They can therefore be used to model more complex optimipatiolems and
even problems in which the optimization criterion changes over tinsa, Ahe fact that
GA’s work with a population of solutions makes them more realistithe case of
language. Language is typically used in a group of individuals r#tlaer by a single
individual. Finally, genetic algorithms are modeled after Daamrevolution, and are as
such ideally suited for modeling real evolution.

Their resemblance to real biological evolution is possibly the bigggvantage of
genetic algorithms when used for research into the evolution of sggagcimodelers who
enthusiastically embrace genetic algorithms as their paradigchoice should be aware
that there are a large number of design decisions to be made dndgud GA for
investigating the evolution of speech. Decisions have to be made wdratdde as genes
and how to implement the fitness function. Another very important pothaisone should
not confuse biological evolution of the human faculty for speech and cudtwwhltion of
human languages. Historical relations between languages and histohange of
languages are often expressed in terms similar to those of bidlegutation. It is true that
there are definite and valid similarities between the procedse®logical evolution and
language change, but one should not confuse the two processes in one’s imeylakeT
clearly distinct and operate on totally different time scalégy do influence each other,
but this influence happens because the properties of a learned gistetanguage)
influence the fitness of individuals that have to learn it. Thisisngeresting subject of
investigation in itself, and is called the Baldwin effect (Baldwin, 1896).

Summarizing, genetic algorithms are a powerful means of optighrizomplex
systems. This requires selecting an appropriate fitness functidnaa appropriate
representation, both of the linguistic structures that are invesfigas well as their
representation as artificial genes. GA’s can also be usedudy #te mechanisms and
dynamics of biological and cultural evolution. However, some care muskés, both by
researchers and by readers of papers in which GA’s are used, caniftse these two
aspects.

3.3. Agent-based models
Both direct optimization and genetic algorithms assume that iharproperty of linguistic
systems that can be optimized. This can give interesting rasults is not always the case
that one can identify one easy criterion that is optimized in humgmnisgtic systems. Also,
optimization techniques ignore the fact that humans are not optimiaérsn humans
acquire or use a language, they do not optimize it. They try to corothe linguistic
behavior that they observe. This is an example of the feedback be¢hedadividual’s use
of a language and the use of it in a population. Apparently, over timerdbults in
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optimization of many properties of language, but how this optimizati@rgaa remains to
be explained.

This is where agent-based models find their use. In computer scege®s are
small computer programs that can act and interact independentyni Isnited domain.
They are able to perceive aspects of their environment and ar@oabt# on it. This
environment is usually simulated, although there are agents thah acn-simulated
environments. These are, for example, agents that can act on thetjndgents that can
interact with human computer users in a user interface, or evencraetits that can act
in the real world. Often the environment of an agent contains othatsagéh which it
needs to interact. In linguistic agent-based models, individual langisage are modeled.
These individuals are capable of some limited linguistic feafgerding on what they are
used for. Agents that are used for investigating speech soundseate pblceive, produce
and learn speech sounds. Agents that are used for investigating &ymntbie to produce,
parse and learn syntactically structured utterances. For egcistic question, specialized
agents can be designed. The agents then interact in some wayy byuakchanging
linguistic utterances, by observing their (shared) environment and bwiolgséhe non-
linguistic behavior of other agents. Depending on the interactions, émtsagan modify
their linguistic knowledge. The influence of the individual actions aretantions on the
linguistic systems can then be investigated.

There are more design decisions that need to be taken when constanctiggnt-
based model than when constructing an optimizing algorithm or a gafggithm. Apart
from the representation of the linguistic data, decisions have toalde about how the
agents interact and how they react to the interactions. On thactid@ side, decisions
must be taken about what aspects of human interaction must be moddl¢dei®ibe an
age structure in the population of agents? Will there be a staigture? Will there be a
spatial structure, such that agents that are far apartsaréiely to interact than those that
are close? Will agents only exchange linguistic information, itbitirere be non-linguistic
interaction as well? Will agents be able to mate with eabbrand produce offspring?
Some of the possible interactions in a population of agents are illustrated irbfigure



There are also many design decisions that need to be made whemnotiogstr
individual agents. First of all, it needs to be decided what linguisterances these agents
can produce and perceive. This is of course determined by what liogyuststions one
wants to investigate. These questions also determine what liogkmgtwledge must be
stored and how it can be learned. It needs to be decided as well mdnethgent will be
able to learn only one language, or whether it will be able ta Isalftiple languages. Part
of an agent’s implementation is determined by the interactigrexfiorms. Furthermore, it
should be decided how and if agents change when they become older and headhty
social status. Finally, if an agent-based model is combined vgémetic algorithm, so that
agents can produce offspring, it needs to be decided what genesrihéasgand how it
will mate with other agents. Although agent-based models can beectnemely
complicated, they are usually kept relatively simple. Making theoncomplex would
result in behavior that is difficult to describe and interpret.

There are two dominant paradigms in agent-based modeling. One patsasgm
been introduced by Steels (1995; 1997; 1998) and is called the languagejgaoexch.
The other paradigm has been introduced by Hurford and Kirby and is ta#iaterated
learning model (e.g. Kirby, 1999). Both paradigms can be used for intggjigay aspect
of language. In the language game paradigm, large populations of agenhvestigated.
These agents are typically egalitarian: there is no digtmbetween adults and children, or
between social classes of agents. It is also typical inpdriadigm that agents start out
without any linguistic knowledge, and that they “negotiate” a langubgaveen
themselves. Language games are typically used for investigailgal or “horizontal”
transmission. In the iterated learning paradigm, agents araltypiivided in adults and
infants. Adult agents produce linguistic utterances, but do not learrg wiféint agents
learn, but do not produce utterances themselves. At regular interdals,agents are
removed from the population, infants are turned into adults and new, emgmtysirsre
inserted. Populations are also typically small, often as smatina infant and one adult
agent. Iterated learning models are typically used for invésiighow languages change
when they are transmitted from one generation to the next, and wpeshdf language are
stable under such “vertical” transmission.

Although much has been said (Kirby, 2002; Steels, 2002) about the differences
between the two paradigms, they are really two extremes oootiteiuum of possible
agent-based models. If one considers the space of possible agenmastsl that vary
over both the number of agents in a model and the ratio between the mirhberontal
transmissions (within a generation) and the number of verticalntiasisns (across the
generations) one finds that typical language games are in ther eanere there number of
agents is large and there are horizontal transmissions exthisitgle typical iterated
learning models are in the corner where the number of agents entbwhere are vertical
transmissions exclusively. Between these two extremes, otlemt-bgsed models are
entirely possible, and have in fact been investigated.

3.4. Measures and statistics
Computer models, and especially genetic algorithms and agent-badets generate a lot
of data. In a simple model for investigating vowel systems (de, R6€0) there were 20
agents, each with up to ten vowels that each had three paramatdrsa 8iodel requires
600 parameters for its description, and this for every time step.|Mtds are used for



investigating more complex aspects of language generally hawe mmare parameters. As
simulations are run for tens of thousands of time steps, the amourtaajesteerated by a
complete run is immense. A human observer cannot interpret such amoudlats..olt is
therefore necessary to defineeasuren the model that give a reliable indication of its
performance. These measures serve as summaries of the model’s behavior over time

It is tempting to choose the optimization criterion used in an optignimodel or
the fitness function in a genetic algorithms as the measuresudowhis would be wrong.
By definition, these values will be optimized. Although the way in Wwhitds happens
might be interesting in itself (how long does it take, does it ooatio change, or does it
go to an asymptote etc.) other measures must be monitored in oldarncsomething
about the linguistic aspects of the model.

For clarity of description, it is important that measures as#lyeunderstandable by
linguists and other non-modelers. At the same time they must gifid ugormation about
the way the modeled linguistic system changes over time. ExampBich measures are:
average distinctiveness of sounds in a sound system, number of el@mantaguistic
system, success of communication between different agents or maherfethe linguistic
systems of different agents in a population. Although some measare®ee general than
others (size of the linguistic system, or coherence in the populat®mwery generally
applicable for example) special measures of performance need defined for each
model.

When these measures have been defined, it becomes necessary to gathe
statistically significant information about a model’'s behavior. iAs many models
randomness plays an important role, this needs to be modeled using theertsrpseudo
random number generator. A simulation can then be run many times figtterli initial
values for the random number generator. In this way, a distributioheoflifferent
possible outcomes of the model can be generated. Two things mustrbentakeccount in
this procedure. First of all, it must be ensured that a proper raneloenagor is used. Some
standard random generators are of low quality. Secondly, the kinds mibudishs that
emerge from simulations of linguistic phenomena are not often ngratatlibuted. One
should therefore be careful to apply the correct statistical analysis pragedure

4. Examples

In order to illustrate some of the concepts discussed above, thmaplesaof computer
models of language origins will be presented below. Each of thasepéss illustrates one
of the three basic techniques: optimization, genetic algorithmsgerd-bBased models. In
order to aid the comparison, all of them model sound systems.

4.1. Optimization: the Liljencrants and Lindblom model
One of the first computer models that was made to investigetersain the origins of
human language was made by Liljencrants and Lindblom (1972). This mcslétteraded
to investigate whether the universal tendencies of human vowel systanbe explained
as a result of optimization of acoustic distinctiveness. It hadfoeed by linguists that the
vowel systems of human languages show a number of regularities: \somels occur
more often than others, and some combinations also occur more often thesy othe
Lillencrants and Lindblom suspected that these regularities couleexbkained by
maximization of acoustic distinctiveness between all the vowela language’s vowel



1900

1700

1500

1300

F2 (Mel)

1100

900

700
300 400 500 600 700 800 900

F1 (Mel)

Figure 6. The acoustic space used by Liljencrants and Lindblom (1972Note
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repertoire. It was not possible to test this hypothesis analytisal it was decided to use a
computer model.

In this model, vowels were represented as points in an acoustic spacder for
the results to be relevant to linguistic, this space and the egpatisn of the vowels in it
had to be perceptually realistic. Phoneticians usually describeadibwstic properties
vowels using the first and second (and sometimes thHodpant Formants are the
resonance frequencies of the vocal tract, and most vowels are uitied) by the lowest
two resonances. When represented in a perceptually correct fregsealey(the Mel
frequency scale, for example) distances between vowels in the spélte first and the
second formant correspond to perceptual distances. Liljencrants and Lintidcafore
decided to represent the vowels in their model by their first andndeformants. As
humans are not able to articulate every possible combination of tmavrits, the space in
which vowels could occur was restricted to a roughly triangula. drlee vowel space is
illustrated in figure 6.

In this acoustic space, a variable number of vowels can exist. Intordalculate
optimal distinctiveness, Liljencrants and Lindblom consider them amets that repel
each other. The strength of the force with which they repel each isth@versely
proportional with the square of the distance. In this way, the sysésnpotential energy.
This potential energy is calculated with the following formula:

N i 1
E=22 ¢
i=1 j=1 Y
whereE is the energyN is the number of vowels ard is the distance between vowels
andj. Both the representation of vowels as points in a two-dimensionat,spiad the
quality of a vowel system as the potential energy in a group peflicy magnets are
important simplifications that are however linguistically acceptable.



Just as repelling magnets strive towards a situation with ralrpotential energy,
vowel systems can be minimized for potential energy. This is doneitlizing the
vowels to lie on a small circle in the center of the acoustic space. Ttieneael in turn is
moved away from this circle in order to decrease the potentiad\eriBhe optimization
procedure tries to shift the vowel in six different fixed directions avE00 Mel distance. It
keeps the new position that results in the largest decrease migod@ergy. When it is no
longer possible to move a given vowel away so that potential enecgyades, the next
vowel on the circle is tried. This process is repeated until no nedrgtion in potential
energy can be achieved. This particular optimization procedure imstéance ofhill
climbing For more details, the reader is referred to the original paper.

Lillencrants and Lindblom compare the systems that emerge freimojptimization
procedure with vowel systems that are found in human language, and fitioeihanodel
results in realistic vowel systems, especially for smallenbers of vowels (up to six). The
measure they use is the number of vowels that is different betives optimized vowel
systems and real human vowel systems, but because of the considaraien in human
vowel systems, this comparison is a bit impressionistic. As @épeesentation of vowel
systems in their optimization model is so close to the way ktguepresent vowels, the
mapping between their results and real vowel systems was straightforward.

4.2. Genetic Algorithms: the Redford model
As has been explained in section 3, optimization models work well whemgle criterion
needs to be optimized and when the optimization function is relativedpth. When a
problem does not have these properties, a genetic algorithm works $eglieble systems,
as tackled by Redforcet al (1998; 2001) have too many complex properties for
straightforward optimization, and were therefore modeled with a genetictltgori

Redfordet al wanted to investigate how properties of human syllable systems ca
be explained as the result of constraints on perception and productioral3teyanted to
know what the relevant constraints are. In their model, languagesnadeled as
collections of words. These words have only form, no meaning. Initiaflydlsvconsist of
random combinations of a small number of phonemes (i, a, u, p, t, k, s, |, n)nfiscalée
have a number of binary features, such that distances between theherafare between
words, can be calculated. The facts that meaning is not modeled dndoattos are
represented as strings of units are important abstractions in this model.

There are a number of perceptual and articulatory pressures amgo@de. First of
all, no two words can be identical. Because of ease of articulaimr words are
preferred. Also because of ease of articulation, simple consonatetrslase preferred over
complex consonant clusters. Word initial consonants are preferred awer fimal
consonants. Because of acoustic distinctiveness, words should be andiifem each
other as possible. Finally, because humans produce words by rhythrojaliyng and
closing their jaws (Redforét al call this the mandibular oscillation constraint) adjacent
phonemes must differ as much as possible in jaw opening. These niiffgessures
conflict. Preference for short words, for example, is in confliath wmaximal
distinctiveness. In different runs of their model, Redfetrdl tested different combinations
of constraints to check which ones are needed to produce the most humsyildikie
systems.



Words were the units of selection. As words already consistedrgfssof discrete
units, they did not need to be separately coded as genes. Crossover amohmvere
performed directly on the words themselves. In order to assignsfitoesvords in the
population, vocabularies consisting of 25 words were randomly selectedttieomthole
population. For each of these vocabularies fitness was calculatefitnélss of a word was
then set to the average of the fitness of all vocabularies inhwhigccurred. This is a
somewhat non-standard way of assigning fitness, but Redfoal use it in order to
determine the distinctiveness of words in the language. In a sénsesta way of
preserving diversity, as has been discussed in the description ofcgagetithms. The
fittest words were then selected and allowed to create aamgudge using crossover and
mutation.

Redfordet al compare the syllable systems that emerge with syllabterag found
in human languages and draw the conclusion that the constraints thiaavlkeanvestigated
are sufficient to explain human syllable systems, and thatpelkaps not necessary to
include both the mandibular oscillation constraint and the constrainhisagaonsonant
clusters. When operating without the other, both these constraintsinesatistic syllable
systems. On independent linguistic evidence (infant babbling) they conttiatlet is
probably the mandibular oscillation constraint that is the one that operates n realit

4.3. Agent-based models: the de Boer model
The last example that will be discussed is that of an ageattba®del that has been
investigated by the author himself (de Boer, 1997; de Boer and Vogt, 1986ede2000;
de Boer, 2001). It is in a sense a continuation of the work by Liljersceardt Lindblom
(1972). They provided an explanation of why vowel systems are the wagrthethey are
optimized for acoustic distinctiveness between the different voweldhe repertoire.
However, their model does not provide an explanationoaf these systems have become
optimized. Humans do not explicitly optimize the vowel systemsldan. The hypothesis
that was tested with the agent-based model was that the opiomimathe result of self-
organization under constraints of perception and production in a population o&deng
users.

The model most closely resembles Steels’ language gamegraré@ieels, 1997)
in that no generations of agents are modeled, but that horizontatiitesa(interactions
between agents in the same generation) are modeled. It consasfropiilation of agents
that can each produce and perceive vowels in a human-like way. Fputpase they are
equipped with a simple vowel synthesizer and a model of perceptionlikieain the
Liljencrants and Lindblom model, is based on formants. Perception of vowels
categorical: an acoustic signal is perceived as the neategbcy in an agent’s repertoire.
Agents are also able to learn new vowels and to modify vowelsinmréipertoire based on
the interactions they have with other agents.

These interactions are so-called imitation games. The gohéamitation game is
to imitate the other agents as well as possible. Imitationsel@sted as a simplification of
real linguistic interactions, as no notion of meaning is required,heusame functional
pressures as occur in real language are involved. In an imitatioe, ¢&o agents that have
been randomly selected from the population interact. One agentssalgotvel from its
repertoire, and the other agent tries to imitate it, using thelsowés own repertoire. As
the repertoires can be different, it is possible that the iontdhis agent produces sounds
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Figure 7: Example of emerged five vowel systems. The vowels aretted in the
space of the first (F1) and second (F2) formants, in the log#nmic Bark
frequency scale. Fiverowel systems that emerged from 33 different simulatic
runs are plotted. It can be observed that the vowel systemsrfeach simulatior
run are very similar, and that they are very close to the vowel system consist
of /i/, lel, /al, o/ and /ul, the vowel system that occurs mdsequently in human
languages. This particular fivevowel system occurs in 88% of languages tt
have five vowels.

quite different from the vowel that was originally produced. If tinst fagent hears the
imitated vowel as the same vowel it originally produced, the imitatimmegs successful, if
not, it is a failure. Depending on the outcome of the imitation gameattieipating agents
update their repertoire, such that the expected success of subsegtegian games is
increased. In these updates they can only make use of local infmrntaty cannot look
into other agents’ heads, nor can they do global optimization of theirvowal system.

For details on the agents and the imitation games, see (de Boer,d&9B8gr, 2000; de
Boer, 2001).

Agents start out empty, and develop a repertoire of vowels throughteeépea
interactions. As the agents live in a population, part of the challenge develop a
repertoire that is shared throughout the population. Experiments witmalkel have
shown that shared vowel systems emerge rapidly and reliably ipofndation. When
these systems were compared with human vowel systems, itowad that they are
extremely similar. An example of an emerged five-vowel system is showguie f¥.

Different measures were used to determine the performance ahdtel. One
measure was the Liljencrants and Lindblom energy of the emergeel ggstems. This
was shown to be significantly lower than that of randomly generaie@l systems and
close to the energy of explicitly optimized vowel systems. irdi&ates that optimization
IS an emergent property of the interactions in the population. Anothesumeewas the
imitation success of the emerged vowel systems, which was sloeuniversally high.
This is an indication that the emerged vowel systems weressfictéor imitation. A final
measure was the size of the emerged vowel systems, which terakeds large as possible



given the amount of noise that was put on the articulations. This toatesliemergence of
successful vowel systems. Given that the imitation game usegocaal perception, it
would have been trivial to achieve successful imitation with swoallel systems. Finally,
vowel systems were compared directly with human vowel systehis.wWas done in a
somewhat impressionistic way by comparing the emerged configngatif vowels with
the configurations that are found in human languages, and by checking wtiether
emerged vowel systems showed the same universal tendenciesea$otimak in human
languages. From both comparisons it followed that the emerged vosteimsy were
realistic.

On the basis of this simulation, a number of variants have been thede had
mostly to do with adding age structure to the agents, and with remolngnd adding
new (empty) agents to the population (de Boer and Vogt, 1999). These aiazhcadded
vertical transmission to the original model, thus making it reserniid iterated learning
model. It was shown that vowel systems could remain stable in cigapgpulations, and
that making it harder for old agents to learn increases syatiilthe vowel systems. This
example illustrates that once an agent-based model existyeityi easy to expand it to do
other experiments.

5. Conclusion
Computer models are a useful addition to studying the evolution of langlilagg can
provide insight in the factors that have played and still play aimoheaking language the
way it is, and they can simulate the complex dynamics of langonageopulation. Neither
pen-and-paper analysis nor mathematical analysis can so redgilyshe understand such
complex phenomena. Many different hypotheses on different aspects uddengave been
studied successfully with a range of techniques. The examplesalose only provide a
small taste of what has been done in the case of the sound sgstaumsan language. For
overviews of computational models for all aspects of languagepsegdmple (Cangelosi
and Parisi, 2002; Kirby, 2002; Christiansen and Kirby, 2003). Most of these srivaled
shown that cultural interactions, functional pressures and genarahtpanechanisms can
explain a lot more about language and language evolution than was previously assumed.

In the preceding sections, it has been shown that there are thierendibasic
techniques for building computer models of human language: optimizing mgeakstic
algorithms and agent-based models. In some cases these technigbescoabined, for
example when agent-based models are combined with a genetithalgtoimodel agent
evolution. As has been illustrated in the examples, these differeimigues can all be
applied successfully, depending on what it is exactly one wants tstigate. In building
simulations, it also needs to be decided what simplifications ancetosts to make. This
is the real art of modeling and useful and meaningful simplifinatican make the
difference between a usable and an unusable computer model. Findingglithe ri
simplifications takes a lot of creativity and effort. Another imt@ot aspect of modeling is
finding the right measures to describe the performance of a moedsigriing the right
measures takes creativity as well, but fortunately, measuesoften be reused for
different simulations.

Of course we should not get carried away by our enthusiasm for compadels.
Computer models are just an extra tool in understanding language @vole should be
careful to combine computer modeling with careful analysis of vhéadle data and with



knowledge and understanding of the available linguistic data. We shouldaskaot to
end up investigating the computer model itself, instead of using iuriderstanding
linguistic questions, unless, of course, one is interested in the naitba@naspects of the
model. Also, we should be careful not to use a computer model for undemngtandi
phenomena that it was not intended to model. This is especialk/\ahén using computer
models that have been developed by others. For example, the agent-basethadele
described above cannot be used for investigating realistic langiagges as real language
change is influenced by the phonetic context in which sounds occur, assvile! meaning

of the words in which they are used. Both aspects are missing in the model.

In any case, it is necessary that we carefully stateshiengtions and abstractions
that were made when constructing the computer model. The way in thkicasults of the
computer model map back onto real linguistic phenomena also need to tigededtis is
especially necessary, because many researchers of languaggoevare still quite
skeptical about the use of computer models. Partly this skeptgigrstified, as sometimes
too bold claims are made, but a large part of the skepticism iarcamwed and due to a
lack of understanding and appreciation of the way computer models work.

There is still a lot that can be done with computer models. A nuaibepen
problems remain, even though they have received ample attention froerermtiff
researchers. The problem of how combinatorial syntax can emengenén-combinatorial
systems has not been understood completely. Neither has the emergeas®inatorial
sound systems from holistic utterances. Together these problemspouilde insight into
the duality of patterning that is so characteristic for humarukg®y Another example of
an open problem is the co-evolution of the shape of the vocal tract amactbasing
number of distinctions that need to be made for more complex langUidgse problems
lay at the edge of the understanding of language evolution, and theamepfter models
is a promising way of solving these fascinating problems.
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