
 1

TEXT AREA MARKING

Stefan Renkema, 1297570, s.renkema@ai.rug.nl

Abstract: One of the difficulties facing handwriting recognition and writer identification software is

dealing with non-text objects in their input. Stains and paper edges for example can be
mistaken for actual text and thus lead to inaccurate results. I will propose a method for
dealing with such side-effects by reducing the area in which recognition and identification
will be performed to a rectangle slice, sized by the outer edges of the detected text. This
greatly reduces the influence of non-text objects present in the original document, as well as
objects added in the scanning process.

1. Introduction

Systems which allow users to automatically
identify the writer of a given handwritten
text, such as letter bombs, anthrax mail or
death threads, are of great use for law
enforcement agencies. Also there is a need
for a system allowing query based digital
searching through handwritten, and
perhaps historical documents, because the
traditional manner of manual search is too
much time consuming.
 Writer identification systems rely on a
very large volume of handwriting samples,
accessible through a database. These
samples are acquired from known
perpetrators and suspects and are then
stored digitally. In order to successfully
extract writer specific features from these
documents some sort of pre-processing has
to be performed beforehand. A possible way
to go about this is by doing these pre-
processing steps manually, but this would
be immensely costly in manpower and
would consume a large amount of time,
since there are so many documents on file
that require processing. This means the
prerequisites are there for an automatic
computer based solution.
 The goal of such a system is to be as
autonomous as possible. Preferably the
user should not be bothered with supplying
the system with one or perhaps several
parameters before adding a new document
to the database, a standardized text
handwritten by a suspected perpetrator.
And also posing an identification query, a
handwritten message found at a crime
scene, presumed to be from a perpetrator,
should be completely automatic.
 The same level of autonomous
behaviour is required for systems allowing
digital searching in handwritten documents,
since there are also very many of them.
Contrary to writer identification systems it
is very likely that documents to be added to

the database are of very poor quality, since
unlike their forensic counterparts the
historical documents are written on a less
quality medium with usually a very
aggressive ink that consumes it. Add to this
the wear and tear over many years, as well
as less than optimal storage conditions and
you end up with documents sometimes
barely readable even to the human eye.
 Especially for this type of deprecated
documents that text are marking is needed,
since the medium will not only contain the
desired text, but also an abundance of non-
text objects, black edges, stains and the
like. The non-text objects make the job of
handwriting recognition and writer
identification much more difficult. With
handwriting recognition non-text objects are
processed and falsely text is returned,
producing unreadable output, which is of
course an undesirable effect. Writer
identification software relies on handwriting
features which vary from person to person.
But when non-text features are included in
the input for the feature extractor, the
results are negatively influenced, since the
stains and other non-text objects do not
carry information about the writer. The
method I propose for dealing with these
non-text objects is by drawing a rectangle
around the actual text, allowing the
recognition and identification programs to
only consider the actual text by reducing
their analyses to the boundaries of this
rectangle.
 The correct location for these
boundaries are acquired from connected
components analysis performed on the
objects present in the input documents.
From these objects various ratios are
determined on which the judgement is made
to consider them text or non-text objects.
The outermost text objects define the
location of the boundary. At this time this
system does not function perfectly as there
is still some development to be done, but

 2

even though it already does a good job at
removing areas of the scanned image which
do not contain text.
 The system for which I developed the
text marking tool utilizes evolutionary
algorithms for optimising pre-processing.
This means that for every parameter added
to a pre-processing step there is another
degree of freedom extending the time it
takes for the evolution to converge to the
correct values.
 So the method proposed in this paper,
uses no other inputs besides the input
document.

2.Methods

This section describes the methods which
are needed in order to mark the text area in
a document.
 These methods include the section
selection mechanism, a mechanism which
divides the image into smaller sections.
After that two methods for pre-processing
the image, an initial way to rid the image of
non-text objects are described. Followed by
two methods gathering information about
the remaining candidate text objects,
connected components labelling and
boundary tracing. The section continues
with describing how this gathered
information is used to judge whether an
object is text or not.

2.1 Section selection mechanism

The section selection mechanism allows for
a localized approach to analysing the
document. The section selection mechanism
was initially in place to be able to deal with
the somewhat limited recursion depth the
used programming language provides. This
depth was reached by the connected
components method when processing large
components, and was found to be at a little
over 16.600. A way of dealing with this
problem was to divide the image into
sections which contain less than that
critical amount of pixels. This provided the
size of 129 by 129 pixels for the sections.
129 is a little under the square root of the
critical recursion depth, resulting in a
section that, even when filled completely by
a component, does not reach the critical
recursion depth. Later on another benefit of
this local approach was discovered
regarding thresholding, this is discussed in
section 2.2.2.
 The way in which the mechanism
selects the sections guarantees that a

section will always be of the desired size,
129 by 129 pixels, making sure that every
section contains the same amount of
information. This is necessary for the
thresholding function, as discussed in
section 2.2.2. A problem with dividing the
document into sections is that components
that lie on the edge of a sections get cut off,
making misjudgement more likely. To get rid
of this side effect the sections overlap. This
is achieved by moving the analysed section
along by shorter distance than the
dimensions of the section. The amount of
overlap that produces good results is 59
pixels. To realise this the 129 by 129 pixels
section is moved along horizontally and
vertically in steps of 80 pixels.
 The section selection mechanism has
four different modes of operation, one for
each of the sides of the rectangle being
established to mark the text area. They all
have in common that the search for the text
is started from the edge of the image, and
then works its way inwards, per row and
column until contact is made with the text.
Once an edge of the text area is detected no
sections beyond that edge will be analysed,
this reduces the amount of calculations that
have to be performed and thus decreases
the time required to process a document,
see figure 1 for a graphical representation.

Figure 1, a sample input image indicating the
step size, indicated by the grid lines, of the
section selection mechanism, as well as the
area, marked red, that can be excluded from
being analysed, since a wider edge was
already found.

 3

2.2 Pre-Processing

The pre-processing stage is the first stage at
which a separation is made amongst text
and non-text objects. This is done by
smoothing the background which consists
of non-text objects, this greatly reduces the
amount of objects that remain to be
analysed. Also at this stage the image is
binarized, this means that the fore- and
background are each assigned a different
brightness level, the background is turned
white, and the foreground is turned black.
The advantage of binarizing the image is
discussed in section 2.2.2.
 This binary image is then fed to the
connected components labelling method
which will identify individual objects and
determine their size. The individual objects
are then traced, determining the size of
their boundary. With this size and

Figure 2a: Greyscale version of the original
full colour input image.

Figure 2b: The high-pass filter applied to the
greyscale image, this is the type of input
from which sections are cut to analyse.

boundary information various calculations
are performed. The results of these calcu-
lations are then used to separate text from
non-text objects.

2.2.1 Filtering

The first pre-processing step is filtering. The
filtering method used is a high-pass filter. It
involves subtracting a blurred version of the
image from its original and then adding the
average greyscale level. This results in an
image in which small stains are blended
into the background. See figures 2a and 2b
for an example.

2.2.2 Thresholding

After filtering we are left with an image in
which the background is of a higher
brightness than the foreground. The
foreground consists of candidate text
objects. In order to get an image containing
only these candidate text objects a
threshold is applied. This means that all
pixels lighter than a certain brightness level
are turned into a full white, and pixels
under that level are turned black. This rises
the question at what level the threshold
should be.
 One particular thresholding method
developed by Otsu [Otsu, 1979] uses a
statistical analyses of the histogram of an
image to determine the level at which to put
the threshold and is parameter free.
 Applying the threshold to sections,
generated by the section selection
mechanism, has the advantage that faint
text objects are more accurately defined
compared to applying the threshold to the
entire image. This difference is indicated by
figure 2a and 2b, which feature the same
section as show in figure 2c with the only
difference being the global versus local
thresholding approach. The text objects,
particularly in the bottom left corner, are
more clearly defined when the threshold is
applied locally. This in turn allows for more
accurate separation between text and non-
text objects since the letters now consist of
one complete component, and not separate
tiny components which would be mistaken
for noise.

2.3 Gathering numerical data

With the image properly pre-processed it is
now possible to gather numerical data, this
data is retrieved from connected compo-
nents labelling, which will determine the

 4

Figure 3a: a section resulted from applying
Otsu threshold to the whole image.

Figure 3b: a section with Otsu thresholding
applied

Figure 3c: the original section.

size, the number of pixels defining the
object, and from boundary tracing, which
returns the length of the outline of an
object. Once this information is retrieved it
can be used to separate text from non-text
objects, as is discussed in section 2.4.

2.3.1 Connected Components
Labelling

In order to be able to decide from object to
object whether or not it is text, it is first
required to identify individual objects. A
common method for achieving this is
connected components labelling. What it
does is assigning a unique label, in this case
an integer value, to all pixels of an
individual component. A modification was
made to also count the number of pixels the
components is defined by, while labelling it.
 There are several variations available of
the connected components labelling
method. The variation used here is of the
four-connectivity recursive kind. Four-
connectivity means that only pixels directly
above, under and to the left and right are
accessible. With Eight-connectivity, another
common variation, the adjacent diagonals
are also accessible. The reason why I settled
for four-connectivity was quite simple. The
input images are of a high resolution, so
that weak links, diagonal connections
(figure 4a) do not occur in text objects.
Instead at high resolutions strong links,
connections one or multiple pixels wide
(figure 4b) will be far more abundant. The
inherent reduction in if-then rules benefits
the time required to process an image. The
connected components method returns an
image, or actually a two dimensional array,
with all the objects uniquely labelled by
integer numbers. This array provides the
input for the boundary tracing method, how
it is processed it described in the following
subsection.

2.3.2 Boundary tracing

Provided with a two dimensional array
containing the individual objects, each
labelled by a unique integer number, it is
now time to trace the boundary of each
object, retrieving the length of the objects
outline. This is done with a method
described in an image processing textbook
[Sonka et al, 1998], using the eight-
connectivity variant. The chosen variant has
the benefit that it reduces the amount of
memory the method requires, thus
optimising the speed at which the images
are processed.
 The lengths of the boundaries are
acquired by tracing the objects with the
unique label number as its target. Once an
object is done, the next label number is
located and the object traced, until all
objects are traced.

 5

Figure 4a: A weak link, at four connectivity
separate components will be labelled.

Figure 4b: A strong link, now the component
will be seen as a whole.

2.4 Separation among objects

Now having gathered information on the
size of the surface of an object, the total
number of pixels, and of the size of the
boundary, the number of pixels in its
outline, the next step is to use this
information to distinguish between text and
non-text objects.
 For this a series of fairly simple ratios
turn out to be surprisingly effective to
discriminate between objects, as the results
section will demonstrate. One has to note
that these ratios are based upon connected
components that are present within a
section. By no means this guarantees that a
large object, a line of connected handwriting
for example, completely lies within a
section. However, the piece of the object
that does fit in the section is able to
produce ratios that fit within the range of
text objects.
 Firstly there is the width versus height
ratio. The width of a connected component
is defined by the distance between the
leftmost and rightmost pixels. To efficiently
determine the width, these two extreme
pixels are searched for in the list containing
the pixels that define the objects boundary.
This list, especially for larger objects, will
contain far less items than a data structure

holding all pixels of an object. This is done
in a similar fashion for the topmost and
bottommost pixels. I found that the width
versus height ratio lies between 4.0 and 1.0
for text objects, present in a section. Testing
with these values indicated that they work
with different types of documents, from a
range of different hand-writings.
 Another ground for discriminating
amongst objects is the ratio between
the surface, the number of pixels defining
an object (as returned by the connected
components function) and the boundary
(the number of edge pixels found by the
tracing function). Figures 5a and 5b give an
example of the difference between ratios in
stains and letters. Here the difference
between height and width ratios aren’t
strong enough to discriminate amongst the
two, however there is enough difference
between the surface to boundary ratio.
Since the ratio between the height and
width of a small object, as well as the
surface to boundary ratio, tends to be close
to 1.0, a minimal size requirement is placed
upon candidate text objects. A minimal
width and height of 7 pixels is required, as
well as a minimum of 60 pixels defining the
boundary. These values have proved to be
effective for a large range of image reso-
lutions.

Figures 5a and 5b: A stain and a letter
respectively. The stain on the left has a
surface to boundary ratio of 4.54 and a
vertical to horizontal ratio of 0.788. The
letter has a surface to boundary ratio of 3.14
and a vertical to horizontal ratio of 0.735.
This sort of ratios are used to separate the
two.

 Dark edges, of the sort which may be
produced in the scanning of a document
may still sometimes be mistaken for text. To
get rid off these, long components that
extend to the full width or height of the
section are ignored, as they will most likely
not be text objects. If a text object does
extend for such a length, it will at one end
of it be judged to be text, since portions of
text objects can also be identified as text

 6

when only a piece of it is contained in the
currently selected section.
 Also when a section that has been
processed by the Otsu thresholding
function contains more than 40% black
pixels, it is very unlikely that it contains
text objects. This is of course not
necessarily true; it is possible that the
section still holds some text objects as well
as large stains or a piece of black border for
example. The overlap in the sections
mentioned earlier allows the text to get
another chance at being evaluated, so the
current, too dark, section is discarded.
 When the mechanism reaches a section
filled with text, it will look something like
figure 6.
 Even with a rather thick handwriting
the percentage of black pixels does not
exceed 30%. So it is very unlikely that the
40% threshold will misclassify actual text
holding sections.

Figure 6: This section (129 by 129 pixels)
contains a relatively large amount of black
pixels, and only text-objects. The percentage
of black pixels here equals 29.51%.

3. Results

In this section the results produced by the
proposed method for text area marking is
discussed. I will discuss some successes
and of course also some shortcomings of
this method, as there is still some work to
do to complete it. For this I have some
suggestions which are discussed in the next
section. In the first subsection I will
describe the results qualitatively, in the
subsection after that I will describe a way of
quantifying them.

3.1 Visual Results

In this subsection some results are

Figure 7a: A page with medieval handwriting
on a deprecated medium.

Figure 7b: A handwritten text, written by
myself on lineated paper.

 7

Figure 7c: Rotated 90 degrees clockwise for a
better fit of a scanned VOC logbook entry
with the text region too widely marked on the
top, right and bottom side.

discussed illustrated by actual output from
the text area marking method. This gives an
intuitive insight in the performance the
method displays.
 To start off lets begin with a seemingly
tricky image, demonstrated by figure 6a,
with which the program deals pretty well. It
is a page from a book written in a medieval
style with a (by today’s standards at least)
very decorative handwriting. Notice how the
rectangle appears to be too far to the left,
this is due to the fact that there is some
writing which is exceptionally far to the left
side, but since it may contain valuable
information, it is included.
 Another image, figure 7b, which shows
good results, is a page of my own
handwriting. It isn’t a scanned image, but
actually a photograph.
 These results seem promising, however
this does not apply to every type of input.
Some documents are polluted with stains
that, even when thresholded and processed
by the high-pass filter resemble text-
objects. Unfortunately there are some types
of documents, for which the historical
document program is intended, that do
contain this type of non-text objects. An
example of this is illustrated in figure 7c, a
very old logbook entry from a VOC-captain.

 Objects in the paper edges are misiden-

Figure 8a: The object responsible for mis-
judging the top edge.

Figure 8b: The object misjudged to be a text
object on the right side.

Figure 8c: The diagonally oriented object
is mistaken for a text object on the
bottom.

tified as text objects, for the top, right and
bottom edges. A closer look at the actual
sections presented to the program will shed

 8

some light as to why this happened. Figures
8a to 8c show where things went wrong for
the top, right and bottom side respectively.
The objects responsible are shown black.
Firstly the top and bottom objects. Ideally
the ratio between the width and the height
of the object would disqualify these as text,
but these objects are somewhat tilted, so
the way in which the height and width are
defined, the distance between the most far
apart pixels, is unsuitable, even for the
slightest rotation. The discussion section
describes an alternative method to cope
with this problem.
 The object mistaken for a text object on
the right side is by far the toughest to
distinguish. With some imagination it could
very well have been an actual letter. A
profile, as discussed in the next section, of
the component still would not be sufficient
to base a judgement upon. However there
are more techniques that can be applied,
these are described in the discussion
section.
 The current discriminating features in
place are apparently not enough to
successfully mark the text region for all
scanned documents Therefore the program
displays a bias. This bias is a false positive
bias, since at no time during trials text was
wrongly cut off by the drawn rectangle.
Instead the method tends to place the
rectangle too widely around the text,
including undesired non-text objects within
it.
 This bias is preferable to a false negative
bias, which will result in discarding text,
and thus throwing away information.

3.2 Quantifying the results

After having reviewed the actual output of
the method the next step is to analyse this
output in a quantitative manner.
 An obvious way of quantifying the
results would be to run the text area
marking method on a wide range of
scanned documents and then measure how
far off the rectangle is per document. But
what lies at the base of accurately drawing
the rectangle is correctly separating text
from non-text objects, per object. A way to
analyse this is by running the method on a
batch of documents and then inspect the
sections the method judges to contain text
on actually containing text.
 A test run with documents from a
variety of handwritings a total of 726
sections were judged to contain text, after
manual inspection it was found that in 82

of those sections there was no text present.
This means that the proposed method
exhibits a 11.29 % false positive bias. The
false negative bias, text mistaken for non-
text, would be another good measure to
express the performance of the method, but
since in none of the test cases the text area
was too narrowly drawn the only drawback
of significance here is the false positive bias.

4. Discussion

In this section I will point out some
improvements that could be done to the text
area marking program. Firstly I will discuss
some improvements that could be applied to
parts already in place, and secondly I will
discuss how other research that has been
done on the subject of text detection may be
used to extend the method I propose in this
paper, to further increase the accuracy, and
reduce the false positive bias.

4.1 Internal improvements

This subsection discusses a number of
possible improvements on elements already
in place in the proposed method, which due
to time restraints are not yet implemented.
 The current manner in which the
section selection mechanism works is
probably not the most efficient one. Because
currently for every column, horizontally,
and row, vertically, contact has to be made
with the text, starting from the edge of the
document. This means that a lot of sections,
which most likely will not contain text have
to be analysed. An optimisation would be to
only let the first contact with the text be
made in this way, and then do a trace
around the text, in a similar way as the
boundary tracing method, but on a larger
scale. This would significantly reduce the
amount of sections that the system would
have to analyse. For an example see figure
9.
 As mentioned in the previous section,
fairly straight non-text objects tend to be
identified as text objects because of the way
the width and height are determined. A
more intelligent approach would take the
orientation of the objects into account. This
could be done by finding the two contour
pixels that are farthest apart and
determining the orientation. The object
could then be placed in a buffer and rotated
so that it would be up right and then the
traditional calculation could be performed.
Or it could be left in its current orientation
and the width be determined by finding the

 9

pixels that lie farthest apart from each
other, perpendicular to the orientation line,
as illustrated in figure 9. The latter method
would be preferable if the profiling method
discussed in the next subsection would also
be implemented. This should take care the

Figure 9: An example of an optimal pathway
the section selection mechanism could follow
by tracing the text area.

Figure 10: The object responsible for
misjudging the bottom edge, enlarged and
with marked orientation and perpendicular
width measurement.

objects pointed out in figures 8a and 8c.
 A way of dealing with objects the type of

8b remains to be found.
 Arguably the width and height ratio will
misclassify individual letters such as ‘l’ and
‘i’, since those letters also consist of fairly
straight lines. Two properties of hand-
written text help the proposed system to be
accurate. Firstly, handwritten letters, which
are supposed to be straight, tend to be
written somewhat curved, this is due to the
fact that most people rest their hand on the
paper they write on, thus creating an
articulation point much like a pair of
compasses used in math class. The second
property is the fact that most handwritten
texts are written in columns. This means
that unless all of the sentences start, or
end, with the letters ‘i’ or ‘l’ and are
misclassified, another, different letter at the
same vertical position will ensure the
correct position of the edge of the text area
marking rectangle.
 The current implementation of the
program is written in Python, an easy to
learn and widely applicable programming
language, but unfortunately for some
purposes extremely slow. A solution would
be to write an implementation in the C
programming language. A typical image, 20
mega pixels, takes around five minutes to
process, typically C programs are at least a
hundred times faster. Fortunately Python
offers good C integrating capabilities.
 Right now the system demands the
resolution of the input to lie within a certain
interval, full size images between three and
twenty mega pixels have proven to be
suitable, as well as portions of these images.
Ideally no such demands would be laid
upon the user with regard to the input. It is
however imaginable that for a system a
standard scanner would be used, resulting
in the input being of the desired resolution,
and thus supply the system with images of
the desired resolution.
 The current system only works on
greyscale images. Support for colour images
supplies a wealth of extra information, on
which judgements can be based. It is not
hard to imagine that in most cases stains
and actual ink are of a different colour. A
tool that would first search for a definite
text object, and then set its colour as the
target colour for the rest of the system
would be a very valuable asset.

4.2 Improvements based on other
research.

This section discusses some of the research

 10

performed in the area of text detection
which may be adapted to be beneficial for
the method proposed in this paper to
increase the performance.
 A lot of research has been done in the
text detection area for the benefit of
detecting machine written text. Some of the
ideas this research produced could prove to
be useful for detecting handwritten text as
well.
 Text has at least two distincting
characteristics [Wu, Manmatha, Riseman
1997]. In this research the characteristics
were discovered for machine written text,
but to some extend the principles also apply
to handwritten text. Firstly text has a
certain frequency and orientation. This
means that text could be regarded as a
texture, and so a texture segmentation
algorithm is used to find the location of the
text. To deal with the variety of font sizes it
can come across in a single image, it is
processed at several resolutions. The
results from this are called chips, areas
containing text. These chips are then
assimilated to hold text lines on the same
strip. The authors admit that their method
only works for documents as clean as
newspapers, but perhaps it would be
possible to combine ideas from the method I
propose in this paper and the finding text in
images method and create a version that
can also cope with deprecated handwritten
documents.
 An application similar to the historical
document searching program mentioned in
the introduction uses profile features of
complete words [Toni, Rath, Manmatha,
Lavrenko 2004]. Figure 10 shows a
graphical representation of the profile of the
word “Alexandria” as was demonstrated in
their paper. The authors propose a method
for

Figure 10: The upper and lower profile
features of the word “Alexandria”

searching in historical documents without
using a handwriting recogniser, instead
profiles from a transcribed set of pages are
matched with profiles found in the very
large amount of untranscribed pages. I
think that this profiling could also be used
for determining whether or not an object is
text or not. A function that collects profiles

from a large set of handwritten texts without
noise could be used to learn what sort of
profiles belong to text. Then for example a
neural network could be used to go about
classifying detected objects in an input
image.

5. Conclusion

The method proposed in this paper has
proven that by benefiting from local analysis
and simple features it is possible to do a
fairly good job on detecting text. However,
there remain documents that the current
program cannot completely satisfactory
process. The proposed improvements could
help deal with the majority of the remaining
documents that for now are too much of a
challenge.
 Greatly reducing the number of non-text
objects in scanned documents the proposed
method can still fulfil a niche in handwriting
recognition and writer identification
programs. Even though it is not yet perfect,
it helps these programs concentrate their
efforts on the actual text and thus increase
their overall effectiveness.
 Because of the consistent false positive
bias the program exhibits it is also
imaginable to tighten the current conditions
placed upon candidate text objects and so
increase the accuracy with which the text
area is marked. However bear in mind that
changing the ratios and other values means
running extensive tests on a wide variety of
input images as to assure that the text area
marking program remains free of user
provided parameters.

6. References

Sonka, M, Hlavac, V, Boyle, R (1998). Image
Processing, Analyses, and machine
vision.

Wu, V., Manmatha, R.,Riseman, E.
Finding Text in Images. (1997) 20th
Int'l ACM SIGIR Conf. Research and
Development in Information
Retrieval, pp. 3–12, 1997.

Otsu, N. (1979) A threshold selection
method from grey level histograms.
IEEE Trans. Systems, Man and
Cybernetics. Volume 9 p62-66.

Toni, M, Rath, R, Manmatha, Lavrenko, V
(2004). A search engine for historical
manuscript images. Proceedings of
the 27th annual international ACM
SIGIR conference on Research and

 11

development in information retrieval,
July 25-29, 2004 Sheffield, UK

