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Abstract: One of the difficulties facing handwriting recognition and writer identification software is 

dealing with non-text objects in their input. Stains and paper edges for example can be 
mistaken for actual text and thus lead to inaccurate results. I will propose a method for 
dealing with  such side-effects by reducing the area in which recognition and identification 
will be performed to a rectangle slice, sized by the outer edges of the detected text. This 
greatly reduces the influence of non-text objects present in the original document, as well as 
objects added in the scanning process. 

 

1. Introduction 

 

Systems which allow users to automatically 
identify the writer of a given handwritten 
text, such as letter bombs, anthrax mail or 
death threads, are of great use for law 
enforcement agencies. Also there is a need 
for a system allowing query based digital 
searching through handwritten, and 
perhaps historical documents, because the 
traditional manner of manual search is too 
much time consuming. 
 Writer identification systems rely on a 
very large volume of handwriting samples, 
accessible through a database. These 
samples are acquired from known 
perpetrators and suspects and are then 
stored digitally. In order to successfully 
extract writer specific features from these 
documents some sort of pre-processing has 
to be performed beforehand. A possible way 
to go about this is by doing these pre-
processing steps manually, but this would 
be immensely costly in manpower and 
would consume a large amount of time, 
since there are so many documents on file 
that require processing. This means the 
prerequisites are there for an automatic 
computer based solution. 
 The goal of such a system is to be as 
autonomous as possible. Preferably the 
user should not be bothered with supplying 
the system with one or perhaps several 
parameters before adding a new document 
to the database, a standardized text 
handwritten by a suspected perpetrator. 
And also posing an identification query, a 
handwritten message found at a crime 
scene,  presumed to be from a perpetrator, 
should be completely automatic. 
 The same level of autonomous 
behaviour is required for systems allowing 
digital searching in handwritten documents, 
since there are also very many of them. 
Contrary to writer identification systems it 
is very likely that documents to be added to 

the database are of very poor quality, since 
unlike their forensic counterparts the 
historical documents are written on a less 
quality medium with usually a very 
aggressive ink that consumes it. Add to this 
the wear and tear over many years, as well 
as less than optimal storage conditions and 
you end up with documents sometimes 
barely readable even to the human eye. 
 Especially for this type of deprecated 
documents that text are marking is needed, 
since the medium will not only contain the 
desired text, but also an abundance of non-
text objects, black edges, stains and the 
like. The non-text objects make the job of 
handwriting recognition and writer 
identification much more difficult. With 
handwriting recognition non-text objects are 
processed and falsely text is returned, 
producing unreadable output, which is of 
course an undesirable effect. Writer 
identification software relies on handwriting 
features which vary from person to person. 
But when non-text features are included in 
the input for the feature extractor, the 
results are negatively influenced, since the 
stains and other non-text objects do not 
carry information about the writer. The 
method I propose for dealing with these 
non-text objects is by drawing a rectangle 
around the actual text, allowing the 
recognition and identification programs to 
only consider the actual text by reducing 
their analyses to the boundaries of this 
rectangle.  
 The correct location for these 
boundaries are acquired from connected 
components analysis performed on the 
objects present in the input documents. 
From these objects various ratios are 
determined on which the judgement is made 
to consider them text or non-text objects. 
The outermost text objects define the 
location of the boundary. At this time this 
system does not function perfectly as there 
is still some development to be done, but 
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even though it already does a good job at 
removing areas of the scanned image which 
do not contain text. 
 The system for which I developed the 
text marking tool utilizes evolutionary 
algorithms for optimising pre-processing. 
This means that for every parameter added 
to a pre-processing step there is another 
degree of freedom extending the time it 
takes for the evolution to converge to the 
correct values. 
 So the method proposed in this paper, 
uses no other inputs besides the input 
document.  
 

2.Methods 
 

This section describes the methods which 
are needed in order to mark the text area in 
a document.  
 These methods include the section 
selection mechanism, a mechanism which 
divides the image into smaller sections. 
After that two methods for pre-processing 
the image, an initial way to rid the image of 
non-text objects are described. Followed by 
two methods gathering information about  
the remaining candidate text objects, 
connected components labelling and 
boundary tracing. The section continues 
with describing how this gathered 
information is used to judge whether an 
object is text or not. 
 

2.1 Section selection mechanism 
 

The section selection mechanism allows for 
a localized approach to analysing the 
document. The section selection mechanism 
was initially in place to be able to deal with 
the somewhat limited recursion depth the 
used programming language provides. This 
depth was reached by the connected 
components method when processing large 
components, and was found to be at a little 
over 16.600. A way of dealing with this 
problem was to divide the image into 
sections which contain less than that 
critical amount of pixels. This provided the 
size of 129 by 129 pixels for the sections. 
129 is a little under the square root of the 
critical recursion depth, resulting in a 
section that, even when filled completely by 
a component, does not reach the critical 
recursion depth. Later on another benefit of 
this local approach was discovered 
regarding thresholding, this is discussed in 
section 2.2.2. 
 The way in which the mechanism 
selects the sections guarantees that a 

section will always be of the desired size, 
129 by 129 pixels, making sure that every 
section contains the same amount of 
information. This is necessary for the 
thresholding function, as discussed in 
section 2.2.2. A problem with dividing the 
document into sections is that components 
that lie on the edge of a sections get cut off, 
making misjudgement more likely. To get rid 
of this side effect the sections overlap. This 
is achieved by moving the analysed section 
along by shorter distance than the 
dimensions of the section. The amount of 
overlap that produces good results is 59 
pixels. To realise this the 129 by 129 pixels 
section is moved along horizontally and 
vertically in steps of 80 pixels. 
 The section selection mechanism has 
four different modes of operation, one for 
each of the sides of the rectangle being 
established to mark the text area. They all 
have in common that the search for the text 
is started from the edge of the image, and 
then works its way inwards, per row and 
column until contact is made with the text. 
Once an edge of the text area is detected no 
sections beyond that edge will be analysed, 
this reduces the amount of calculations that 
have to be performed and thus decreases 
the time required to process a document, 
see figure 1 for a graphical representation. 
 

 
Figure 1, a sample input image indicating the 
step size, indicated by the grid lines, of the 
section selection mechanism, as well as the 
area, marked red, that can be excluded from 
being analysed, since a wider edge was 
already found. 
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2.2 Pre-Processing 
 

 

The pre-processing stage is the first stage at 
which a separation is made amongst text 
and non-text objects. This is done by 
smoothing the background which consists 
of non-text objects, this greatly reduces the 
amount of objects that remain to be 
analysed. Also at this stage the image is 
binarized, this means that the fore- and 
background are each assigned a different 
brightness level, the background is turned 
white, and the foreground is turned black. 
The advantage of binarizing the image is 
discussed in section 2.2.2.  
 This binary image is then fed to the 
connected components labelling method 
which will identify individual objects and 
determine their size. The individual objects  
are then traced, determining the size of 
their boundary. With this size and  

 

 
Figure 2a: Greyscale version of the original 
full colour input image. 
 

 
Figure 2b: The high-pass filter applied to the 
greyscale image, this is the type of input 
from which sections are cut to analyse. 

 

boundary information various calculations 
are performed. The results of these calcu-
lations are then used to separate text from 
non-text objects.  
 

2.2.1 Filtering 
 
 

The first pre-processing step is filtering. The 
filtering method used is a high-pass filter. It 
involves subtracting a blurred version of the 
image from its original and then adding the 
average greyscale level. This results in an 
image in which small stains are blended 
into the background. See figures 2a and 2b 
for an example.  
 

2.2.2 Thresholding 
 

After filtering we are left with an image in 
which the background is of a higher 
brightness than the foreground. The 
foreground consists of candidate text 
objects. In order to get an image containing 
only these candidate text objects a 
threshold is applied. This means that all 
pixels lighter than a certain brightness level 
are turned into a full white, and pixels 
under that level are turned black. This rises 
the question at what level the threshold 
should be. 
 One particular thresholding method 
developed by Otsu [Otsu, 1979] uses a 
statistical analyses of the histogram of an 
image to determine the level at which to put 
the threshold and is parameter free. 
 Applying the threshold to sections, 
generated by the section selection 
mechanism, has the advantage that faint 
text objects are more accurately defined 
compared to applying the threshold to the 
entire image. This difference is indicated by 
figure 2a and 2b, which feature the same 
section as show in figure 2c with the only 
difference being the global versus local 
thresholding approach. The text objects, 
particularly in the bottom left corner, are 
more clearly defined when the threshold is 
applied locally. This in turn allows for more 
accurate separation between text and non-
text objects since the letters now consist of 
one complete component, and not separate 
tiny components which would be mistaken 
for noise. 
 

2.3 Gathering numerical data 
 

With the image properly pre-processed it is 
now possible to gather numerical data, this 
data is retrieved from connected compo- 
nents labelling, which will determine the  
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Figure 3a: a section resulted from applying 
Otsu threshold to the whole image. 

 

 
Figure 3b: a section with Otsu thresholding 
applied  
 

 
Figure 3c: the original section. 
 

size, the number of pixels defining the 
object, and from boundary tracing, which 
returns the length of the outline of an 
object. Once this information is retrieved it 
can be used to separate text from non-text 
objects, as is discussed in section 2.4. 

2.3.1 Connected Components 
Labelling 
 

In order to be able to decide from object to 
object whether or not it is text, it is first 
required to identify individual objects. A 
common method for achieving this is 
connected components labelling. What it 
does is assigning a unique label, in this case 
an integer value, to all pixels of an 
individual component. A modification was 
made to also count the number of pixels the 
components is defined by, while labelling it. 
 There are several variations available of 
the connected components labelling 
method. The variation used here is of the 
four-connectivity recursive kind. Four-
connectivity means that only pixels directly 
above, under and to the left and right are 
accessible. With Eight-connectivity, another 
common variation, the adjacent diagonals 
are also accessible. The reason why I settled 
for four-connectivity was quite simple. The 
input images are of a high resolution, so 
that weak links, diagonal connections 
(figure 4a) do not occur in text objects. 
Instead at high resolutions strong links, 
connections one or multiple pixels wide 
(figure 4b) will be far more abundant.  The 
inherent reduction in if-then rules benefits 
the time required to process an image. The 
connected components method returns an 
image, or actually a two dimensional array, 
with all the objects uniquely labelled by 
integer numbers. This array provides the 
input for the boundary tracing method, how 
it is processed it described in the following 
subsection.  
 

2.3.2 Boundary tracing 
 

Provided with a two dimensional array 
containing the individual objects, each 
labelled by a unique integer number, it is 
now time to trace the boundary of each 
object, retrieving the length of the objects 
outline. This is done with a method 
described in an image processing textbook 
[Sonka et al, 1998], using the eight-
connectivity variant. The chosen variant has 
the benefit that it reduces the amount of 
memory the method requires, thus 
optimising  the speed at which the images 
are processed. 
 The lengths of the boundaries are 
acquired by tracing the objects with the 
unique label number as its target. Once an 
object is done, the next label number is 
located and the object traced, until all 
objects are traced. 
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Figure 4a: A weak link, at four connectivity 
separate components will be labelled. 

 

 
Figure 4b: A strong link, now the component 
will be seen as a whole. 

  

2.4 Separation among objects 
 

Now having gathered information on the 
size of the surface of an object, the total 
number of pixels, and of the size of the 
boundary, the number of pixels in its 
outline, the next step is to use this 
information to distinguish between text and 
non-text objects. 
 For this a series of fairly simple ratios 
turn out to be surprisingly effective to 
discriminate between objects, as the results 
section will demonstrate. One has to note 
that these ratios are based upon connected 
components that are present within a 
section. By no means this guarantees that a 
large object, a line of connected handwriting 
for example, completely lies within a 
section. However, the piece of the object 
that does fit in the section is able to 
produce ratios that fit within the range of 
text objects. 
 Firstly there is the width versus height 
ratio. The width of a connected component 
is defined by the distance between the 
leftmost and rightmost pixels. To efficiently 
determine the width, these two extreme 
pixels are searched for in the list containing 
the pixels that define the objects boundary. 
This list, especially for larger objects, will 
contain far less items than a data structure 

holding all pixels of an object. This is done 
in a similar fashion for the topmost and 
bottommost pixels. I found that the width 
versus height ratio lies between 4.0 and 1.0 
for text objects, present in a section. Testing 
with these values indicated that they work 
with different types of documents, from a 
range of different hand-writings.  
 Another ground for discriminating 
amongst objects is the ratio between                       
the surface, the number of pixels defining 
an object (as returned by the connected 
components function) and the boundary 
(the number of edge pixels found by the 
tracing function). Figures 5a and 5b give an 
example of the difference between ratios in 
stains and letters. Here the difference 
between height and width ratios aren’t 
strong enough to discriminate amongst the 
two, however there is enough difference 
between the surface to boundary ratio. 
Since the ratio between the height and 
width of a small object, as well as the 
surface to boundary ratio, tends to be close 
to 1.0, a minimal size requirement is placed 
upon candidate text objects. A minimal 
width and height of 7 pixels is required, as 
well as a minimum of 60 pixels defining the 
boundary. These values have proved to be 
effective for a large range of image reso-
lutions. 
 

   
Figures 5a and 5b: A stain and a letter 
respectively. The stain on the left has a 
surface to boundary ratio of 4.54 and a 
vertical to horizontal ratio of 0.788. The 
letter has a surface to boundary ratio of 3.14 
and a vertical to horizontal ratio of 0.735. 
This sort of ratios are used to separate the 
two.  
 
 Dark edges, of the sort which may be 
produced in the scanning of a document 
may still sometimes be mistaken for text. To 
get rid off these, long components that 
extend to the full width or height of the 
section are ignored, as they will most likely 
not be text objects. If a text object does 
extend for such a length, it will at one end 
of it be judged to be text, since portions of 
text objects can also be identified as text 
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when only a piece of it is contained in the 
currently selected section. 
 Also when a section that has been 
processed by the Otsu thresholding 
function contains more than 40% black 
pixels, it is very unlikely that it contains 
text objects. This is of course not 
necessarily true; it is possible that the 
section still holds some text objects as well 
as large stains or a piece of black border for 
example. The overlap in the sections 
mentioned earlier allows the text to get 
another chance at being evaluated, so the 
current, too dark, section is discarded. 
 When the mechanism reaches a section 
filled with text, it will look something like 
figure 6.  
 Even with a rather thick handwriting 
the percentage of black pixels does not 
exceed 30%. So it is very unlikely that the 
40% threshold will misclassify actual text 
holding sections. 
 

 
Figure 6: This section (129 by 129 pixels) 
contains a relatively large amount of black 
pixels, and only text-objects. The percentage 
of black pixels here equals 29.51%. 

 

3. Results 
 

In this section the results produced by the 
proposed method for text area marking is 
discussed. I will discuss some successes 
and of course also some shortcomings of 
this method, as there is still some work to 
do to complete it. For this I have some 
suggestions which are discussed in the next 
section. In the first subsection I will 
describe the results qualitatively, in the 
subsection after that I will describe a way of 
quantifying them. 
 

3.1 Visual Results 
 

In this subsection some results are 

 
Figure 7a: A page with medieval handwriting 
on a deprecated medium. 
 

 
Figure 7b: A handwritten text, written by 
myself on lineated paper. 
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Figure 7c: Rotated 90 degrees clockwise for a 
better fit of a scanned VOC logbook entry 
with the text region too widely marked on the 
top, right and bottom side. 
 

discussed illustrated by actual output from 
the text area marking method. This gives an 
intuitive insight in the performance the 
method displays. 
 To start off lets begin with a seemingly 
tricky image, demonstrated by figure 6a, 
with which the program deals pretty well. It 
is a page from a book written in a medieval 
style with a (by today’s standards at least) 
very decorative handwriting. Notice how the 
rectangle appears to be too far to the left, 
this is due to the fact that there is some 
writing which is exceptionally far to the left 
side, but since it may contain valuable 
information, it is included. 
 Another image, figure 7b, which shows 
good results, is a page of my own 
handwriting. It isn’t a scanned image, but 
actually a photograph. 
 These results seem promising, however 
this does not apply to every type of input. 
Some documents are polluted with stains 
that, even when thresholded and processed 
by the high-pass filter resemble text-
objects. Unfortunately there are some types 
of documents, for which the historical 
document program is intended, that do 
contain this type of non-text objects. An 
example of this is illustrated in figure 7c, a 
very old logbook entry from a VOC-captain. 

 Objects in the paper edges are misiden-  

 
Figure 8a: The object responsible for mis-
judging the top edge. 

 

 
Figure 8b: The object misjudged to be a text 
object on the right side. 
 

 
Figure 8c: The diagonally oriented object 
is mistaken for a text object on the 
bottom. 
 
tified as text objects, for the top, right and 
bottom edges. A closer look at the actual 
sections presented to the program will shed 
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some light as to why this happened. Figures 
8a to 8c show where things went wrong for 
the top, right and bottom side respectively. 
The objects responsible are shown black. 
Firstly the top and bottom objects. Ideally 
the ratio between the width and the height 
of the object would disqualify these as text, 
but these objects are somewhat tilted, so 
the way in which the height and width are 
defined, the distance between the most far 
apart pixels, is unsuitable, even for the 
slightest rotation. The discussion section 
describes an alternative method to cope 
with this problem.  
 The object mistaken for a text object on 
the right side is by far the toughest to 
distinguish. With some imagination it could 
very well have been an actual letter. A 
profile, as discussed in the next section, of 
the component still would not be sufficient 
to base a judgement upon. However there 
are more techniques that can be applied, 
these are described in the discussion 
section.  
 The current discriminating features in 
place are apparently not enough to 
successfully mark the text region for all 
scanned documents Therefore the program 
displays a bias. This bias is a false positive 
bias, since at no time during trials text was 
wrongly cut off by the drawn rectangle. 
Instead the method tends to place the 
rectangle too widely around the text, 
including undesired non-text objects within 
it.  
 This bias is preferable to a false negative 
bias, which will result in discarding text, 
and thus throwing away information.  
 

3.2 Quantifying the results 
 

After having reviewed the actual output of 
the method the next step is to analyse this 
output in a quantitative manner. 
 An obvious way of quantifying the 
results would be to run the text area 
marking method on a wide range of 
scanned documents and then measure how 
far off the rectangle is per document. But 
what lies at the base of accurately drawing 
the rectangle is correctly separating text 
from non-text objects, per object. A way to 
analyse this is by running the method on a 
batch of documents and then inspect the 
sections the method judges to contain text 
on actually containing text. 
 A test run with documents from a 
variety of handwritings a total of 726 
sections were judged to contain text, after 
manual inspection it was found that in 82 

of those sections there was no text present. 
This means that the proposed method 
exhibits a 11.29 % false positive bias. The 
false negative bias, text mistaken for non-
text, would be another good measure to 
express the performance of the method, but 
since in none of the test cases the text area 
was too narrowly drawn the only drawback 
of significance here is the false positive bias. 
 

4. Discussion 
 

In this section I will point out some 
improvements that could be done to the text 
area marking program. Firstly I will discuss 
some improvements that could be applied to 
parts already in place, and secondly I will 
discuss how other research that has been 
done on the subject of text detection may be 
used to extend the method I propose in this 
paper, to further increase the accuracy, and 
reduce the false positive bias. 
 

4.1 Internal improvements 
 

This subsection discusses a number of 
possible improvements on elements already 
in place in the proposed method, which due 
to time restraints are not yet implemented. 
 The current manner in which the 
section selection mechanism works is 
probably not the most efficient one. Because 
currently for every column, horizontally, 
and row, vertically, contact has to be made 
with the text, starting from the edge of the 
document. This means that a lot of sections, 
which most likely will not contain text have 
to be analysed. An optimisation would be to 
only let the first contact with the text be 
made in this way, and then do a trace 
around the text, in a similar way as the 
boundary tracing method, but on a larger 
scale. This would significantly reduce the 
amount of sections that the system would 
have to analyse. For an example see figure 
9. 
 As mentioned in the previous section, 
fairly straight non-text objects tend to be 
identified as text objects because of the way 
the width and height are determined. A 
more intelligent approach would take the 
orientation of the objects into account. This 
could be done by finding the two contour 
pixels that are farthest apart and 
determining the orientation. The object 
could then be placed in a buffer and rotated 
so that it would be up right and then the 
traditional calculation could be performed. 
Or it could be left in its current orientation 
and the width be determined by finding the 
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pixels that lie farthest apart from each 
other, perpendicular to the orientation line, 
as illustrated in figure 9. The latter method 
would be preferable if the profiling method 
discussed in the next subsection would also 
be implemented. This should take care the  
 

 
Figure 9: An example of an optimal pathway 
the section selection mechanism could follow 
by tracing the text area. 

  

  
Figure 10: The object responsible for 
misjudging the bottom edge, enlarged and 
with marked orientation and perpendicular 
width measurement. 
 

objects pointed out in figures 8a and 8c. 
 A way of dealing with objects the type of 

8b remains to be found. 
 Arguably the width and height ratio will 
misclassify individual letters such as ‘l’ and 
‘i’, since those letters also consist of fairly 
straight lines. Two properties of hand-
written text help the proposed system to be 
accurate. Firstly, handwritten letters, which 
are supposed to be straight, tend to be 
written somewhat curved, this is due to the 
fact that most people rest their hand on the 
paper they write on, thus creating an 
articulation point much like a pair of 
compasses used in math class. The second 
property is the fact that most handwritten 
texts are written in columns. This means 
that unless all of the sentences start, or 
end, with the letters ‘i’ or ‘l’ and are 
misclassified, another, different letter at the 
same vertical position will ensure the 
correct position of the edge of the text area 
marking rectangle. 
 The current implementation of the 
program is written in Python, an easy to 
learn and widely applicable programming 
language, but unfortunately for some 
purposes extremely slow. A solution would 
be to write an implementation in the C 
programming language. A typical image, 20 
mega pixels, takes around five minutes to 
process, typically C programs are at least a 
hundred times faster. Fortunately Python 
offers good C integrating capabilities. 
 Right now the system demands the 
resolution of the input to lie within a certain 
interval, full size images between three and 
twenty mega pixels have proven to be 
suitable, as well as portions of these images. 
Ideally no such demands would be laid 
upon the user with regard to the input. It is 
however imaginable that for a system a 
standard scanner would be used, resulting 
in the input being of the desired resolution, 
and thus supply the system with images of 
the desired resolution.  
 The current system only works on 
greyscale images. Support for colour images 
supplies a wealth of extra information, on 
which judgements can be based. It is not 
hard to imagine that in most cases stains 
and actual ink are of a different colour. A 
tool that would first search for a definite 
text object, and then set its colour as the 
target colour for the rest of the system 
would be a very valuable asset.  
 

4.2 Improvements based on other 
research. 
 

This section discusses some of the research 
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performed in the area of text detection 
which may be adapted to be beneficial for 
the method proposed in this paper to 
increase the performance. 
 A lot of research has been done in the 
text detection area for the benefit of 
detecting machine written text. Some of the 
ideas this research produced could prove to 
be useful for detecting handwritten text as 
well. 
 Text has at least two distincting 
characteristics [Wu, Manmatha, Riseman 
1997]. In this research the characteristics 
were discovered for machine written text, 
but to some extend the principles also apply 
to handwritten text. Firstly text has a 
certain frequency and orientation. This 
means that text could be regarded as a 
texture, and so a texture segmentation 
algorithm is used to find the location of the 
text. To deal with the variety of font sizes it 
can come across in a single image, it is 
processed at several resolutions. The 
results from this are called chips, areas 
containing text. These chips are then 
assimilated to hold text lines on the same 
strip. The authors admit that their method 
only works for documents as clean as 
newspapers, but perhaps it would be 
possible to combine ideas from the method I 
propose in this paper and the finding text in 
images method and create a version that 
can also cope with deprecated handwritten 
documents. 
 An application similar to the historical 
document searching program mentioned in 
the introduction uses profile features of 
complete words [Toni, Rath, Manmatha, 
Lavrenko 2004]. Figure 10 shows a 
graphical representation of the profile of the 
word “Alexandria” as was demonstrated in 
their paper. The authors propose a method 
for 

 

 
Figure 10: The upper and lower profile 
features of the word “Alexandria” 

 
searching in historical documents without 
using a handwriting recogniser, instead 
profiles from a transcribed set of pages  are 
matched with profiles found in the very 
large amount of untranscribed pages. I 
think that this profiling could also be used 
for determining whether or not an object is 
text or not. A function that collects profiles 

from a large set of handwritten texts without 
noise could be used to learn what sort of 
profiles belong to text. Then for example a  
neural network could be used to go about 
classifying detected objects in an input 
image.  
 

5. Conclusion 
 

The method proposed in this paper has 
proven that by benefiting from local analysis 
and simple features it is possible to do a 
fairly good job on detecting text. However, 
there remain documents that the current 
program cannot completely satisfactory 
process. The proposed improvements could 
help deal with the majority of the remaining  
documents that for now are too much of a 
challenge.  
 Greatly reducing the number of non-text 
objects in scanned documents the proposed 
method can still fulfil a niche in handwriting 
recognition and writer identification 
programs. Even though it is not yet perfect, 
it helps these programs concentrate their 
efforts on the actual text and thus increase 
their overall effectiveness. 
 Because of the consistent false positive 
bias the program exhibits it is also 
imaginable to tighten the current conditions 
placed upon candidate text objects and so 
increase the accuracy with which the text 
area is marked. However bear in mind that 
changing the ratios and other values means 
running extensive tests on a wide variety of 
input images as to assure that the text area 
marking program remains free of user 
provided parameters. 
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