
Reducing the time complexity of Minkowski sum

based similarity calculations by using geometric

inequalities

Henk Bekker1, Axel Brink1

1Institute for Mathematics and Computing Science, University of Groningen,
P.O.B. 800 9700 AV Groningen, The Netherlands. bekker@cs.rug.nl,

a.a.brink@student.rug.nl

Abstract. The similarity of two convex polyhedra A and B may be
calculated by evaluating the volume or mixed volume of their Minkowski
sum over a specific set of relative orientations. The relative orientations
are characterized by the fact that faces and edges of A and B are parallel
as much as possible. For one of these relative orientations the similarity
measure is optimal. In this article we propose and test a method to reduce
the number of relative orientations to be considered by using geometric
inequalities in the slope diagrams of A and B. In this way the time
complexity of O(n6) is reduced to O(n4.5). This is derived, and verified
experimentally.

1 Introduction: Minkowski-sum based similarity

measures

Because shape comparison is of fundamental importance in many fields of com-
puter vision, in the past many families of methods to calculate the similarity
of two shapes have been proposed. Well-known families are based on the Haus-
dorff metric, on contour descriptors and on moments of the object, see [1] for
an overview. Recently, a new family of methods has been introduced, based on
the Brunn-Minkowki inequality and its descendants. The central operation of
this method is the minimization of a volume or mixed volume functional over a
set of relative orientations [2]. It is defined for convex objects, and can be used
to calculate many types of similarity measures. Moreover, it is invariant under
translation and rotation, and when desired, under scaling and reflection. The
methods may be used in any-dimensional space, but we will concentrate on the
3D case. Experiments with these methods have been performed on 2D polygons
and 3D polyhedra [3,4], and show that for polygons the the time consumption is
low. However, already for 3D polyhedra of moderate complexity in terms of the
number of faces, edges and vertices the time consumption is prohibitive. In this
article we present a method to reduce the time complexity of these calculations
by reducing the number of relative orientations to be considered.

The structure of this article is as follows. In this section we introduce the
Minkowski sum, the notion of mixed volume, the Brunn-Minkowski inequali-
ties, and derive some example similarity measures. In section two we introduce

the slope diagram representation of convex polyhedra, define the set of critical
orientations to be considered, present the current algorithm to calculate a sim-
ilarity measure, and discuss its time complexity. In section three we introduce
and test the new and more efficient algorithm, and we derive its theoretical time
complexity.

Fig. 1. Two polyhedra A and B and their Minkowski sum C. C is drawn on half the
scale of A and B.

Let us consider two convex polyhedra A and B in 3D. The Minkowski sum
C of two polyhedra A and B is another polyhedron, generally with more faces,
edges and vertices than A and B, see figure 1. It is defined as

C ≡ A ⊕ B ≡ {a + b | a ∈ A, b ∈ B}. (1)

This definition does not give much geometrical insight how C is formed from A

and B. To get some feeling for that, we separately look at two properties of C,
namely its shape and its position. The shape of C may be defined by a sweep
process as follows. Choose some point p in A, and sweep space with translates
of A such that p is in B. C consists of all points that are swept by translates
of A. The same shape C results when A and B are interchanged. The position
of C is roughly speaking the vectorial sum of the positions of A and B. More
precise, the rightmost coordinate of C is the sum of the rightmost coordinates of
A and B, and analogously the leftmost, uppermost and lowermost coordinates
of C. In this article only the shape of C plays a role, not its position. Obviously,
the shape and volume of C depend on the relative orientation of A and B.

The volume of C may be written as

V (C) = V (A ⊕ B) = V (A) + 3V (A, A, B) + 3V (A, B, B) + V (B). (2)

Here, V (A) and V (B) are the volumes of A and B, and V (A, A, B) and V (A, B, B)
are the mixed volumes, introduced by Minkowski [6]. Geometrically it is not ob-
vious how the volume of A and B and the mixed volumes add up to the volume
of C. However, it can be shown that V (A, A, B) is proportional to the area of
A and the linear dimension of B, and V (A, B, B) is proportional to the linear
dimension of A and the area of B.

As an example we derive two typical similarity measure expressions, based
on the following two theorems [3,6]:

Theorem1: For two arbitrary convex polyhedra A and B in R3,

V (A, A, B)3 ≥ V (A)2V (B) (3)

with equality if and only if A = B.
Theorem2: For two arbitrary convex polyhedra A and B in R3,

V (A ⊕ B) ≥ 8V (A)
1

2 V (B)
1

2 (4)

with equality if and only if A = B.
From these theorems the similarity measures σ1 and σ2 respectively may be

derived in a straightforward way,

σ1(A, B) ≡ max
R∈R

V (A)2/3V (B)1/3

V (R(A), R(A), B)
(5)

σ2(A, B) ≡ max
R∈R

8V (A)
1

2 V (B)
1

2

V (R(A) ⊕ B)
. (6)

Here R denotes the set of all spatial rotations, and R(A) denotes a rotation of
A by R. Because the volumes in these equations are always positive, σ1 and
σ2 are always positive and ≤ 1, with equality if and only if A = B. Besides the
inequalities in theorem1 and theorem2 many other inequalities exist, some based
on the volume of the Minkowski sum, some on the mixed volume, some on the
area of the Minkowski sum or the mixed area. From every of these inequalities a
similarity measure may be derived. In this article we concentrate on computing
σ1 because the technique presented in this article to speed up this computation
may be applied to other Minkowski sum based similarity calculations as well.

2 Calculating the similarity measure straightforward

To find the maximum in (5), in principle an infinite number of orientations of A

have to be checked. That would make this similarity measure useless for practical
purposes. Fortunately, as is shown in [3], to find the maximum value only a finite
number of relative orientations of A and B have to be checked. Roughly speaking
these orientations are characterized by the fact that edges of B are as much as
possible parallel to faces of A. To formulate this more precise we use the slope
diagram representation (SDR) of polyhedra.

We denote face i of polyhedron A by Fi(A), edge j by Ej(A), and vertex k

by Vk(A). The SDR of a polyhedron A, denoted by SDR(A), is a subdivision
on the unit sphere. A vertex of A is represented in SDR(A) by the interior of a
spherical polygon, an edge by a spherical arc of a great circle, and a face by a
vertex of a spherical polygon, see figure 2. To be more precise:

– Face representation. Fi(A) is represented on the sphere by a point SDR(Fi(A)),
located at the intersection of the outward unit normal vector ui on Fi(A)
with the unit sphere.

– Edge representation. An edge Ej(A) is represented by the arc of the great
circle connecting the two points corresponding to the two adjacent faces of
Ej(A).

– Vertex representation. A vertex Vk(A) is represented by the interior of the
polygon bounded by the arcs corresponding to the edges of A meeting at
Vk(A).

Some remarks. From this description it can be seen that the graph representing
SDR(A) is the dual of the graph representing A. SDR(A) is not a complete
description of A, it only contains angle information about A. Obviously, when A
is rotated by a rotation R, the slope diagram representation rotates in the same
way, i.e., SDR(R(A)) = R(SDR(A)). In the following, when speaking about
distance in an SDR we mean spherical distance, i.e. the length of an arc on the
unit sphere. Because the angle between two adjacent faces of a polyhedron is
always < π, the length of the arcs in a SDR is always < π.

Fig. 2. (a): A polyhedron A. (b): The slope diagram representation of A. The orienta-
tions of A and SDR(A) are the same, so with some patience it should be possible to
see how they are related.

The slope diagram representation is useful to represent situations where faces
and edges of A are parallel to faces and edges of B. It is easily verified that
the faces Fi(A) and Fj(B) are parallel when in the overlay of SDR(A) and
SDR(B) the point SDR(Fi(A)) coincides with the point SDR(Fj(B)). Also,
an edge Ei(B) is parallel to Fj(A) when the point SDR(Fj(A)) lies on the arc
SDR(Ei(B)). The description given earlier, stating that (5) obtains its maximum
value when edges of B are as much as possible parallel to faces of A can now be
made more precise in terms of their slope diagrams:

Theorem3: When σ1 is maximal then three points of SDR(R(A)) lie on
three arcs of SDR(B).

This theorem is derived in [3]. Unfortunately, this theorem does not tell
for which three points in SDR(R(A)) and which three arcs in SDR(B) σ1 is
maximal, thus to find the maximum, all rotations R have to be considered for
which three points of SDR(R(A)) lie on three arcs of SDR(B). So, for three given
points p1, p2, p3 in SDR(A) and three arcs a1, a2, a3 in SDR(B), an algorithm
is needed that calculates a spatial rotation R for which holds that R(p1) lies on

a1, R(p2) lies on a2 and R(p3) lies on a3. We developed such an algorithm [5],
and implemented it in the function tvt(). It takes as argument three points and
three arcs and calculates a rotation R. It is called as tvt(p1, p2, p3, a1, a2, a3,
R). The function tvt() first calculates a rotation R with the property that R(p1)
lies on c1, R(p2) lies on c2 and R(p3) lies on c3, where c1, c2, c3 is the great
circle carrying the arc a1, a2, a3 respectively. When R(p1) lies on a1, R(p2) lies
on a2 and R(p3) lies on a3, tvt() returns ”true”, else it returns ”false”. The time
complexity of tvt() is constant. Notice that the rotation returned by the call
tvt(p1, p2, p3, a1, a2, a3, R), is the same as the rotation returned by the calls
tvt(p1, p3, p2, a1, a3, a2, R), tvt(p2, p1, p3, a2, a1, a3, R), tvt(p3, p1, p2, a3,
a1, a2, R), tvt(p3, p2, p1, a3, a2, a1, R) and tvt(p2, p3, p1, a2, a3, a1, R). That
is because the the order of the statements ”R(p1) lies on a1, R(p2) lies on a2,
R(p3) lies on a3” is irrelevant. In the implementation this observation may be
used to gain a factor of six. Now calculating σ1(A, B) consists of running through
all triples of points in SDR(A) and all triples of arcs in SDR(B), to calculate
for every combination the rotation R, and to evaluate σ1 for every valid R. The
maximum value is the similarity measure σ1(A, B). Assuming that SDR(A) and
SDR(B) have been calculated, this results in the following algorithm outline,
called algorithm1.

for all points p1 // of SDR(A)

for all points p2 > p1

for all points p3 > p2

for all arcs a1 // of SDR(B)

for all arcs a2

for all arcs a3

if (tvt(p1, p2, p3, a1, a2, a3, R)){

sigma1=Vol(A)^{2/3} Vol(B)^{1/3}/Vol(R(A),R(A),B)

if(sigma1>sigma1_max){sigma1_max=sigma1}

}

return sigma1_max;

In the implementation it is assumed that the arcs and points are stored in
a linearly ordered data structure. In this data structure, the variable p1 runs
through all points, the variable p2 runs through all points greater than p1, and
the variable p3 runs through all points greater than p2. In this way irrelevant
permutation evaluations are avoided.

The time complexity of algorithm1 is easily derived. We assume that A and
B are approximately of the same complexity, i.e. have approximately the same
number of vertices, edges and faces. We denote the number of faces of A and B
as f , the number of edges of A and B as e. So, the number of points in SDR(A)
equals f , and the number of arcs in SDR(B) equals e. Because e is proportional
to f , the inner loop is evaluated O(f6) times. For polyhedra of small and medium
complexity the time consumption of tvt() by far exceeds the timeconsumtion of
calculating the mixed volume, so the time complexity of the complete algorithm
is O(f6).

3 Using geometric inequalities to skip orientations

As explained before, the function tvt() calculates a rotation R with the property
that R(p1) lies on a1, R(p2) lies on a2 and R(p3) lies on a3. However, without
calling tvt(), it is possible to detect cases where no such R exists. As an example,
let us look at two points p1 and p2 with a spherical distance d(p1, p2), and at
two arcs a1 and a2, where dmin(a1, a2) and dmax(a1, a2) are the minimal
and maximal distance between the arcs. Here, dmin(a1, a2) is defined as the
minimum distance of the points q1 and q2 where q1 lies on a1 and q2 lies on a2,
i.e., dmin(a1, a2) ≡ {min(d(q1, q2))|q1 on a1, q2 on a2}. Dmax(a1,a2) is defined
analogously. Obviously, only when dmin(a1, a2) ≤ d(p1, p2) ≤ dmax(a1, a2), p1

can lie on a1 while at the same time p2 lies on a2, see figure 3. This observation
may be used to skip calls of tvt(). Of course, the same principle may be used for
the other two pairs of points and arcs, i.e, tvt() should only be called when

dmin(a1, a2) ≤ d(p1, p2) ≤ dmax(a1, a2) and (7)

dmin(a2, a3) ≤ d(p2, p3) ≤ dmax(a2, a3) and (8)

dmin(a3, a1) ≤ d(p3, p1) ≤ dmax(a3, a1). (9)

p1

p2
p3

a1

a2

a3

Fig. 3. (a): SDR(A) with three marked points p1, p2, p3. (b): SDR(B) with three
marked arcs a1, a2, a3. SDR(A) may be rotated so that in the overlay R(p2) lies on a2

and R(p3) lies on a3, but clearly then R(p1) can not lie on a1.

In the implementation we calculate the distance between all pairs of points of
SDR(A) in a preprocessing phase, and store these distances in a table indexed
by two points. In the same way we store the minimal and maximal distance
between all arcs in SDR(B) in tables indexed by two arcs. Now we can give
algorithm2.

fill_distance_tables()

for all points p1 // of SDR(A)

for all points p2 > p1

for all points p3 > p2

for all arcs a1 // of SDR(B)

for all arcs a2

for all arcs a3

if (dmin(a1, a2) <= d(p1,p2) <= dmax(a1, a2) and

dmin(a2, a3) <= d(p2,p3) <= dmax(a2, a3) and

dmin(a3, a1) <= d(p3,p1) <= dmax(a3, a1)){

if (tvt(p1, p2, p3, a1, a2, a3, R)){

sigma1=Vol(A)^{2/3} Vol(B)^{1/3}/Vol(R(A),R(A),B)

if(sigma1>sigma1_max){sigma1_max=sigma1}

}

}

return sigma1_max;

Obviously, the number of calls of tvt() in algorithm2 is less than the number
of calls in algorithm1. Moreover, as the complexity of B increases, the arcs in
SDR(B) get smaller. The smaller the arcs, the smaller the range of distances
between them and thus the smaller the probability that a pair of points will fit
between them, resulting in a higher probability that combinations are skipped.
I.e. the improvement is not simply a constant factor but is stronger for more
complex polyhedra. In the following section we present the experimental time
complexity of algorithm1 and algorithm2 , and we derive a first order approxi-
mation of the time complexity of algorithm2.

.1e5

1e+05

1e+06

1e+07

1e+08

1e+09

nc

5. .1e2 .2e2

number of faces (f)

Fig. 4. The results of the experiments with algorithm1 (upper dots) and algorithm2
(lower dots), plotted logarithmically on both axes. In this plot, the results of both
algorithms are linear, indicating that the time complexity is of the form nc = fe,
where nc is the number of calls of tvt(), f is the number of faces of A and B, and e

the exponent. A least square fit in this plot gives e = 6.0 for algorithm1, and e = 4.57
for algorithm2. So, the experimental time complexity of algorithm1 is O(f6) and of
algorithm2 O(f4.57).

4 Results and complexity analysis

We tested algorithm1 and algorithm2 on randomly generated polyhedra, rang-
ing in complexity from 4 to 46 faces. The polyhedra A and B were of the same
complexity in terms of the number of faces, edges and vertices. To generate
polyhedra of the same complexity, for every test we generated a random polyhe-
dron A, and generated random polyhedra until a polyhedron was found with the
same number of faces, edges and vertices as A. This polyhedron was assigned
to B. For the pair A, B we used algorithm1 and algorithm2 to determine the
number of calls of tvt(). In figure 4 the logarithm of the number of calls nc of
tvt() is plotted as a function of the logarithm of the number of faces. From this
plot it can be seen that algorithm2 is significantly faster than algorithm1. For
polyhedra with 10 faces algorithm2 is ≈ 10 times faster than algorithm1, and
for polyhedra with 46 faces it is ≈ 60 times faster, see figure 5. In the log-log
plot, the results of algorithm1 and algorithm2 are both linear, indicating that
both algorithms have a time complexity of the form nc = a.fe where nc is the
number of calls of tvt(), f the number faces, and a and e constants. Fitting a
line through these points with a least squares method gives for algorithm1 e=6,
and for algorithm2 e=4.57. So, the experimental time complexity of algorithm1
is O(f6) and of algorithm2 O(f4.57).

0

1e+09

2e+09

3e+09

4e+09

5e+09

6e+09

nc

10 20 30 40 50

number of faces (f)
a

0

2e+07

4e+07

6e+07

8e+07

nc

10 20 30 40 50

number of faces (f)

b

0

1e+09

2e+09

3e+09

4e+09

5e+09

6e+09

nc

10 20 30 40 50

number of faces (f)
c

Fig. 5. a: The results of algorithm1. The measured performance is represented by
points, and the function f6 is given as a curve. b: The results of algorithm2. The
measured performance is represented by points, and the function f4.57 is given as a
curve. c: The graphs from a and b in one figure, showing the difference in performance
of algorithm1 and algorithm2 on a linear scale.

Now we will derive a first order approximation of the time complexity of
algorithm2. The polyhedra used in our experiments are random polyhedra. For
these polyhedra it holds that the number of edges is proportional to the number
of vertices, and the number of faces is proportional to the number of vertices. In

the slope diagram a similar property holds: the number of points, arcs and faces
are proportional to each other. In the derivation we use the easily verified fact
that the average arc length in the slope diagram is proportional to 1√

(f)
.

Fig. 6. Four spheres with an arc a1, and regions (black) consisting of all points with
a spherical distance d of 1.5, 0.58, 0.25, 0.1 respectively to a1. In the last two figures
the arc is (partially) covered by the black area. When a second arc a2 (not shown) has
no point in common with the black region then there are no points q1∈ a1 and q2∈ a2
with the property that d(q1, q2)=d. I.e., for two points p1 and p2 with d(p1, p2)=d,
the call tvt(p1,p2,..,a1,a2,..) will return false. So, for this situation the call may be
skipped.

Let us now look at the following situation. On the unit sphere we draw a
small arc a1 with length |a1|, and we draw the region consisting of all points
with a distance d to a1. See figure 6. The region consists of a belt with an average
width proportional to |a1|. So, the area of the belt is proportional to |a1|, which
is proportional to 1√

(f)
. Now we draw an arc a2 on the sphere at a random

place. Because A and B are approximately of the same complexity it holds that
|a1| ≈ |a2|. When a2 has no point in the black region there are no points q1 ∈ a1
and q2 ∈ a2 with the property that d(q1, q2)=d. I.e., for two points p1 and p2
with d(p1, p2)=d, the call tvt(p1,p2,..,a1,a2,..,R) will return false. So, for this
situation the call of tvt() may be skipped. The number of arcs in a slope diagram
is ∝ f , and the area of the belt is 1√

(f)
, so, for a given arc a1 the number of

arcs lying (partially) in the belt is ∝
√

(f). Therefore, summed over all arcs a1,
the number of calls of tvt() ∝ f1.5. More precise, when a1 and a2 run through
all arcs of SDR(B), and p1 and p2 run through all points in SDR(B), then
the number of times that it holds that dmin(a1, a2) ≤ d(p1, p2) ≤ dmax(a1, a2)
is proportional to f1.5. This holds for one pair of points and one pair of arcs.
Algorithm2 runs through three pairs of arcs and points, so the the number of calls
of tvt() will be proportional to (f1.5)3 = f4.5 This agrees reasonably well with
our experimental result of f4.57. That our experimental result differs slightly from
the theoretical result may be caused by the fact that in our experiments we also
used some polyhedra with few faces. In figure 4 it can be seen that the slope of
the curve of algorithm2 decreases slightly for more complex polyhedra. Leaving
out in this figure the first ten data points and fitting a line to the remaining

points gives an exponent of 4.52. So, for polyhedra of medium complexity, our
experimental complexity corresponds very well with the theoretical complexity.

5 Discussion and conclusion

The method presented in this article reduces the number of relative orientations
to be considered by using geometric distance inequalities. When, for a given set
of arcs a1, a2, a3 and points p1, p2, p3, the distance inequalities are not fulfilled
then there is no rotation R such that R(p1) lies on a1, R(p2) lies on a2 and
R(p3) lies on a3. However, when all three inequalities are fulfilled that does not
mean such a rotation exists. That is because, for example, the angle defined by
the points p1, p2, p3 does not correspond with the range of angle defined by the
arcs a1, a2, a3. Analogous to the distance inequalities, we can give three angle
inequalities. We expect that, by combining distance inequalities with angle in-
equalities, we can reduce the time complexity of Minkowski-sum based similarity
calculations even further.

In this article we presented a method to speed up the search for the relative
orientation that minimizes the mixed volume of two convex polyhedra. However,
because the volume of the Minkowski sum consists of two mixed volumes (and
the orientation independent volumes V(A) and V(B)), the method may also
be used to speed up the search for the relative orientation that minimizes the
volume of the Minkowski sum. I.e. it may be used for speeding up Minkowski
sum based similarity calculations in general.

Literature
[1] Veltkamp, R.C. Shape Matching: Similarity Measures and Algorithms. Shape
Modeling International 2001: 188-196
[2] Heijmans, H. J. A. M., and Tuzikov, A. Similarity and symmetry measures
for convex shapes using Minkowski addition. IEEE Trans. Patt. Anal. Mach.
Intell. 20, 9 (1998), 980–993.
[3] Tuzikov, A. V., Roerdink, J. B. T. M., and Heijmans, H. J. A. M. Similarity
measures for convex polyhedra based on Minkowski addition. Pattern Recogni-
tion 33, 6 (2000), 979–995.
[4] Roerdink J.B.T.M. ,Bekker H. Similarity measure computation of convex
polyhedra revisited. LNCS vol. 2243, (2001) Springer Verlag.
[5] Bekker, H., and Roerdink, J. B. T. M. Calculating critical orientations
of polyhedra for similarity measure evaluation. In Proc. 2nd Annual IASTED
International Conference on Computer Graphics and Imaging, Palm Springs,
California USA, Oct. 25-27 (1999), pp. 106–111.
[6] Sangwine-Yager, J.R. Mixed volumes. Chapter 1.2 of: Handbook of convex
geometry. (1993) Eds. Gruber, P.M., Wills, J.M. Elsevier science publishers B.V.

