
Speeding up the 
omputation of similaritymeasures based on Minkowski addition in 3DAxel BrinkApril 2004

Master's thesisSupervisor: Henk Bekker
S
ienti�
 Visualization and Computer Graphi
sDepartment of Mathemati
s and Computing S
ien
e



Abstra
tThe shape of two obje
ts 
an be 
ompared by a 
omputer program using sim-ilarity measures. The family of similarity measures based on Minkowski addi-tion provides a well-founded way to do this. In pra
ti
e, they are restri
ted to
omparing the shapes of 
onvex polyhedra. We des
ribe two variants of thesemeasures. The �rst variant uses the volume of the Minkowski sum, and these
ond variant uses the so-
alled mixed volume of the Minkowski sum.Current implementations have the disadvantage that they are very time-
onsuming: their time 
omplexity is proportional to n6, where n is proportionalto the 
omplexity of the polyhedra. We developed, implemented and testedimproved algorithms for both variants. These algorithms proved to redu
e thetime 
omplexity to n4:5.
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Chapter 1Introdu
tionOne of the subje
ts of 
urrent resear
h is obje
t re
ognition by ma
hines. This
an for example be applied in business: it enables automati
ally determiningwhether an obje
t is in store, when somebody holds a dupli
ate of it in front ofa 
amera.This obje
t re
ognition requires three steps: �rst, an input devi
e (a 
ameraor a laser beam) observes a real-world obje
t and stores the visually per
eivedinformation. Se
ond, the three-dimensional shape of the real-world obje
t isinferred from the visual information, and is represented as a three-dimensionalobje
t in the 
omputer. Third, the shape of this obje
t is 
ompared to a databaseof known obje
ts, in order to determine whi
h obje
t was held in front of theinput devi
e.When two obje
ts are 
ompared, the result is a number that indi
ates towhat degree the obje
ts are similar. This number is 
omputed by a fun
tion
alled a similarity measure. Many similarity measures exist; ea
h is based on aspe
i�
 prin
iple.1.1 Similarity measures based on Minkowski ad-ditionIn this thesis, we des
ribe similarity measures based on Minkowski addition.This is a kind of addition that allows us to add two obje
ts, resulting in a newobje
t. This new obje
t is referred to as the Minkowski sum of the originalobje
ts. Minkowski addition is explained in 
hapter 2, along with other basi

on
epts.Tuzikov et al. [6℄ re
ently suggested that the Minkowski sum of two three-dimensional obje
ts has some properties that 
an be used to 
reate a similaritymeasure. These properties in
lude both its volume and its mixed volume. Whilethe volume of an obje
t is an ordinary 
on
ept, its mixed volume is quite ab-stra
t. In 
hapter 3, we des
ribe these two properties and how they 
an ea
hbe used for a spe
i�
 similarity measure.Given two obje
ts, their similarity 
an be 
omputed using either one of thesesimilarity measures. However, it is not possible to 
ompare any two obje
tsusing similarity measures based on Minkowski addition. It is only known howto 
ompute the similarity of 
onvex polyhedra. We qui
kly explain the terms3



Figure 1.1: Two 
onvex polyhedra (left, middle), whi
h 
an be 
ompared, andtheir Minkowski sum (right)\polyhedron" and \
onvex". A polyhedron is a three-dimensional solid, whi
hhas a surfa
e 
onsisting of 
at pie
es, 
alled fa
es. The fa
es are 
onne
tedby line segments, 
alled edges. Polyhedra thus do not have a 
urved surfa
e.However, a 
urved surfa
e 
an be approximated by a large number of smallfa
es. Furthermore, a polyhedron is 
onvex, in short, when it has no dents.Convex polyhedra are des
ribed into more detail in 
hapter 2.In some way it is possible to 
ompare polyhedra that are not 
onvex. Convexversions of these polyhedra 
an be derived before they are 
ompared. This isdone by 
omputing their 
onvex hull. In the newly formed obje
ts, all dents ofthe original obje
ts are 
overed by fa
es, just like all dents of a gift are 
overedwhen it is wrapped in paper.1.2 Program outlineIn order to des
ribe how a 
omputer program 
an 
ompare two 
onvex polyhe-dra, we �rst des
ribe how humans 
ompare obje
ts in daily life. Consider forexample two 
ups, one standing straight up and one lying on its side. A humanwould pi
k up the lying 
up and rotate it to align its handle with the handle ofthe other 
up. After this, he is able to judge the similarity of the 
ups.Noti
e that it would not make any di�eren
e to the human whether the 
upswere lying or standing straight up from the beginning; that has no in
uen
eon the human's judgement on the similarity of the 
ups. In other words, thesimilarity of the two obje
ts is not dependent on their orientation. This is 
alledrotation invarian
e.We des
ribe an algorithm that follows the same pro
edure with 
onvex poly-hedra. It rotates one of the two polyhedra while keeping the orientation of theother 
onstant. For ea
h rotation, a value spe
i�
 for a similarity measure is
omputed. In this way, all relative orientations of two 
onvex polyhedra areevaluated, sear
hing for the best mat
h. The best mat
h is the orientation thatyields the highest value. This value is the similarity value of the two 
onvexpolyhedra.1.3 Criti
al orientationsComputing a similarity value for ea
h relative orientation would be impossible,be
ause an in�nite number of relative orientations exist. However, it was shown[6℄ [4℄ that the highest similarity value 
an be found in a set of relative orien-tations that is limited: the set of 
riti
al orientations. These orientations are
hara
terised by a 
ertain 
ombination of edges and fa
es of both obje
ts that4



must be parallel. In 
hapter 3, we explain how exa
tly edges and fa
es need tobe parallel. It suÆ
es to sear
h only through this limited set of orientations, so
omputing a similarity value in �nite time is possible.Currently, the �rst algorithms implementing similarity measures based onMinkowski addition 
onstru
t a set of 
riti
al orientations by �rst 
onstru
tinganother set. This set 
ontains 
ombinations of edges and fa
es of the obje
ts.For ea
h of those 
ombinations, it is tried to rotate one of the obje
ts in order toget the edges and fa
es parallel in the 
orre
t way. Bekker et al. [2℄ designed analgorithm to �nd one or more su
h rotations, given a 
ombination of edges andfa
es. Sometimes this su

eeds, in whi
h 
ase the found rotation (or rotations)is a 
riti
al orientation. In the other 
ases, su
h a rotation doesn't exist.The set of 
ombinations grows very fast when the 
omplexity of the polyhe-dra in
reases, be
ause 
omplex polyhedra by de�nition have a lot of edges andfa
es. Furthermore, Bekker's algorithm takes a lot of time. The 
ombination ofthese two aspe
ts 
auses that 
urrent algorithms are very slow.1.4 Improved methodWe present a method to speed up those algorithms. The idea of the method isthat for some of the 
ombinations of edges and fa
es, it 
an be dete
ted thatthey 
an never be
ome parallel. This saves a 
all to Bekker's algorithm, whi
hwould otherwise try to �nd an orientation that doesn't exist.
Figure 1.2: A polyhedron and its SDRIn order to dete
t whi
h edges and fa
es 
annot be
ome parallel, the poly-hedra are transformed into a new representation: the slope diagram representa-tion (SDR). An SDR looks like a sphere 
overed with 
onne
ted ar
s. The ar
ssomehow des
ribe angles between edges and fa
es of the original polyhedra. By
omparing distan
es between ar
s and endpoints of ar
s, 
ombinations of edgesand fa
es that 
annot be
ome parallel 
an be identi�ed. These distan
es onlyneed to be 
omputed on
e, so this is done in a prepro
essing step, before thebest mat
h is sear
hed. We des
ribe the method into more detail in 
hapter 4.1.5 SummarySummarising, 
urrent algorithms that 
ompute a similarity measure based onMinkowski addition are very slow. We introdu
e an improved algorithm thatdoes the following:1. Compute distan
es on the SDRs of the polyhedra2. Create a set of 
ombinations of edges and fa
es5



3. Dete
t 
ombinations that 
annot lead to 
riti
al orientations by 
omparingdistan
es on the SDRs4. Find 
riti
al orientations by 
alling Bekker's algorithm for ea
h the re-maining 
ombinations5. Compute a similarity value for ea
h 
riti
al orientation6. Yield the highest similarity valueIn this algorithm, item number 3 des
ribes the improvement to 
urrent algo-rithms. For this improvement, distan
es on SDRs are 
ompared in item number1. Be
ause SDRs are spheres, measuring these distan
es boils down to measur-ing distan
es on the surfa
e of a sphere. This is not trivial. A great deal ofour work was dedi
ated to determining how those distan
es 
an be 
al
ulated.Chapter 5 des
ribes how it 
an be done.We did two series of speed tests: one for the volume measure and one forthe mixed volume measure. Chapter 6 presents the results. Chapter 7 dis
ussesthese results and 
on
ludes the thesis.
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Chapter 2PreliminariesThe shape of 
onvex polyhedra is 
ompared using similarity measures based onMinkowski addition. To 
ompute su
h a measure, a set of 
riti
al orientationsmust be run through, whi
h 
an be found using the slope diagram represen-tations (SDRs) of the polyhedra. They 
onsist of ar
s 
overing a unit sphere.The 
omparison 
an be speeded up when some distan
es in an SDR have been
omputed in advan
e.This 
hapter introdu
es basi
 
on
epts, whi
h are needed by the other 
hap-ters: 
onvex polyhedra, Minkowski addition, obje
ts on a sphere, the slopediagram representation and distan
es in an SDR.2.1 Convex polyhedraA polyhedron is a three-dimensional solid whi
h has a surfa
e 
onsisting of 
atpie
es, 
alled fa
es. The fa
es are polygons, 
onne
ted at their edges, whi
hare the line segments where two fa
es meet. The points where three or more ofthese edges meet, are 
alled verti
es.A polyhedron is 
onvex, in short, when it has no dents. More pre
isely, apolyhedron is 
onvex if the interse
tion of every line with the polyhedron iseither empty or only a single line segment.
Figure 2.1: Convex polyhedron (left) and non-
onvex polyhedron (right)One property of a polyhedron is its volume. The volume of a polyhedron Ais denoted by V (A). It 
an be 
omputed by standard methods, for example bydividing the polyhedron in pyramids, ea
h having a fa
e as base, and summingthe volumes of all pyramids.
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2.2 Minkowski additionMinkowski addition allows us to add two polyhedra, resulting in a new polyhe-dron:
Figure 2.2: Cube (left), pyramid (middle) and their Minkowski sum (right)

Figure 2.3: Two arbitrary 
onvex polyhedra (left, middle) and their Minkowskisum (right)The Minkowski sum operation is denoted by the symbol �. Formally, theMinkowski sum of obje
ts A and B is de�ned as:A�B � fa+ b : a 2 A; b 2 Bg (2.1)Let's take a 
loser look at this de�nition, in order to understand what hap-pens. It states that we 
an �nd the Minkowski sum C by adding all ve
tors inA to all ve
tors in B. Consider a ve
tor a to some point in A. Now add all(in�nitely many) ve
tors in B to a. The resulting ve
tors de�ne a set of pointsthat together form a dupli
ate of B, translated by the ve
tor a. All these pointsbelong to C. Now repeat this pro
ess for all (in�nitely many) 
hoi
es of a in A.The resulting shape C is the Minkowski sum of A and B.A few properties of the Minkowski sum are worth mentioning:� A � B is a polyhedron, so it is possible to 
ompute its volume, denotedby V (A�B).� A�B � B �A.� When A and B are 
onvex, then A�B is also 
onvex.� The positions of A and B determine the position of A � B, but not itsshape.
8



2.3 Obje
ts on a sphereThe slope diagram representation (SDR) of a 
onvex polyhedron looks like asphere 
overed with ar
s. Before we explain SDRs exa
tly, we �rst need to in-trodu
e some 
on
epts. In this se
tion we de�ne \obje
ts" that 
an be identi�edon a sphere: sphere points, great 
ir
les and ar
s. Some of the 
hara
teristi
s ofthese obje
ts are also des
ribed.2.3.1 Sphere pointsA sphere point is a ve
tor of length 1. It thus points to a position on a unitsphere.2.3.2 Great 
ir
lesA great 
ir
le is a 
ir
le on a unit sphere, with radius 1. Consequently, its 
entury
oin
ides with the 
entre of the unit sphere. We introdu
e some notions aboutgreat 
ir
les:� The plane of a great 
ir
le is the unique plane that 
ontains the great
ir
le.� Two great 
ir
les are perpendi
ular if the planes that 
ontain them areperpendi
ular. That is, V ?W ) CV ? CW , where V and W are planesthat 
ontain the 
ir
les CV and CW , respe
tively.� The poles of a great 
ir
le C, are the two unique points that are de�nedby the inward and and outward unit normal ve
tors of the plane of C.
Figure 2.4: A great 
ir
le (left) and an ar
 (right)2.3.3 Ar
sWe de�ne an ar
 to be a pie
e of a great 
ir
le. An ar
 
onsists of two endpointsen
losing an in�nite number of interior points. We introdu
e a 
ouple of notionsinvolving ar
s:� The plane of an ar
 is the unique plane that 
ontains the ar
.� The poles of an ar
 A are the two unique points that are de�ned by thepositive and and negative unit normal ve
tors of the plane of A.9



� The inverse of an ar
 A, A�1, is the ar
 formed by proje
ting it throughthe 
entre of the unit sphere onto the other side of it. In other words, A�1is the ar
 that results when applying the inversion symmetry operation(x; y; z)! (�x;�y;�z) to all points of A.� The lune of an ar
 A, LUNE(A), is the region on the sphere that 
on-tains A and is bounded by two planes that 
ontain the poles of A, ea
h
ontaining one of the endpoints of A.� The antilune of an ar
 A, ALUNE(A), is the lune of the inverse ofA. That is, ALUNE(A) � LUNE(A�1). Furthermore, LUNE(A) ��ALUNE(A).
Figure 2.5: The lune (left, dotted) and antilune (right, dotted) of an ar
2.4 Slope diagram representationA slope diagram representation (SDR) is a partial des
ription of a 
onvex poly-hedron. The slope diagram of a 
onvex polyhedron A is denoted by SDR(A).It 
onsists of a 
olle
tion of sphere points, 
alled SDR points, and ar
s, 
alledSDR ar
s. They 
over a unit sphere in a parti
ular way.

Figure 2.6: A 
ube and its SDRAll SDR ar
s are 
onne
ted to other SDR ar
s; they meet at SDR points.In this way, the SDR ar
s divide the surfa
e of the sphere in regions, 
alledspheri
al polygons. As su
h, an SDR is a subdivision of a unit sphere. Therelation between an obje
t and its SDR is as follows:� An SDR point is a sphere point that represents a fa
e of the obje
t. It isthe endpoint of the outward unit normal ve
tor of the fa
e it represents.Be
ause any unit ve
tor has length 1, an SDR point is a point on thesurfa
e of a unit sphere. 10



Figure 2.7: An arbitrary polyhedron and its SDR� An SDR ar
 is an ar
 between two SDR points, representing the edgebetween the two fa
es in the obje
t that are represented by the two SDRpoints. The angle between these endpoints is equal to the angle betweenthe 
orresponding fa
es.� The ar
s en
lose spheri
al polygons; ea
h 
orresponds to a vertex of thepolyhedron. This is the vertex where the edges meet to whi
h the en
losingar
s in the SDR 
orrespond. In our implementation, SDR polygons are notstored as a separate stru
ture, however, be
ause they 
an be 
omputedfrom the SDR points and ar
s. Besides, our method doesn't use SDRpolygons.Two observations about SDRs are worth mentioning:� an SDR ar
 is uniquely identi�ed by its endpoints In spe
ial 
ases, twosphere points e1, e2 do not uniquely identify an ar
 that 
onne
ts thesepoints. This is the 
ase when \(e1; e2) = 0 or when \(e1; e2) = �. In these
ases, there are an in�nite number of ar
s 
onne
ting the sphere points.We prove that this 
annot happen with the endpoints of SDR ar
s.Proof The endpoints e1, e2 of an ar
 A represent adja
ent fa
es of a
onvex polyhedron. The angle between two adja
ent fa
es in a polyhe-dron is always less than �. Consequently, \(e1; e2) < �. Furthermore,endpoints of an SDR ar
 must be distin
t, so \(e1; e2) > 0.One unique great 
ir
le C through e1 and e2 exists. When C is 
ut at e1and e2, then A is the unique pie
e of C of whi
h the angle between theendpoints is less than �. Thus, an SDR ar
 is uniquely identi�ed by itstwo endpoints. �This allows a de�nition of the word \between": a sphere point p is betweenthe endpoints of an SDR ar
 when it is on the SDR ar
.� SDRs 
an be used to dete
t parallelness of fa
es and edgesThe SDRs of two polyhedra 
an be overlayed. The overlay may be usedto dete
t parallelness of fa
es and edges. For example, if fa
es in A and Bare parallel, then the 
orresponding SDR points of SDR(A) and SDR(B)
oin
ide. Similarly, if an edge in A is parallel to a fa
e in B, then an SDRar
 of SDR(A) 
oin
ides with an SDR point in SDR(B).11



2.5 Distan
es in a slope diagram representationThe improved method skips 
ertain 
ases, based on distan
e inequalities whi
hrequire that some distan
es in SDRs are 
omputed in advan
e. Be
ause SDRsare unit spheres, all our distan
e 
al
ulations 
on
ern unit spheres. We will referto the unit sphere by simply sphere. There are four kinds of distan
es we wantto measure: the distan
e between two sphere points, between a sphere pointand a great 
ir
le, between a point and an ar
 and between two ar
s.
Figure 2.8: From left to right: distan
e between two sphere points, between asphere point and a great 
ir
le, between a point and an ar
 and between twoar
sThe distan
e between two sphere points d(p1; p2) is de�ned as the length ofthe shortest path between them, following the surfa
e of the unit sphere. Inthe literature, this distan
e is also 
alled \geodesi
 distan
e". This path is asegment of a great 
ir
le, thus an ar
. Con
luding, the distan
e between twopoints is equal to the length of the ar
 between these points. Note that thedistan
e is measured in radians.Apart from the distan
e between two sphere points, the other three distan
es
annot be formulated in a single number. A range of distan
es exists, boundedby a minimum distan
e and maximum distan
e. We denote these distan
es by:� dmin(p; C) and dmax(p; C) for a sphere point and a great 
ir
le;� dmin(p;A) and dmax(p;A) for a sphere point and an ar
;� dmin(A1; A2) and dmax(A1; A2) for two ar
s.In 
hapter 5, we show how these four kinds of distan
es 
an be 
omputed.Summary This 
hapter introdu
ed some basi
 
on
epts, whi
h are needed bythe other 
hapters: 
onvex polyhedra, Minkowski addition, obje
ts on a sphere,the slope diagram representation and distan
es in an SDR.
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Chapter 3Similarity measuresWhen two obje
ts are 
ompared, the result is a number that indi
ates to whatdegree the obje
ts are similar. This number is 
omputed by a fun
tion 
alled asimilarity measure. The fun
tion yields by 
onvention a number between 0 and1, where 1 indi
ates exa
t resemblan
e. In the literature, sometimes the notiondissimilarity measure is used for a fun
tion that works the same but yields 0 forexa
t resemblan
e.Many similarity or dissimilarity measures exist [7℄. For instan
e, the mostwell-known dissimilarity measure is the Hausdor� distan
e. We �rst des
ribethis measure for illustrative purposes. Then we des
ribe the family of similaritymeasures based on Minkowski addition.3.1 Hausdor� distan
eThe Hausdor� distan
e between two point sets A and B is de�ned as follows:H(A;B) � max(~h(A;B);~h(B;A))where ~h(A;B) denotes the dire
ted Hausdor� distan
e whi
h is de�ned as fol-lows: ~h(A;B) � maxa2Afminb2Bfd(a; b)ggwhere d denotes any distan
e fun
tion of two points a and b, for example,Eu
lidean distan
e. So the dire
ted Hausdor� distan
e ~h(A;B) is the distan
ebetween two spe
ially 
hosen points a and b. a is the point in A that hasmaximum distan
e to all points in B, and b is the point in B that has minimumdistan
e to a. Similarly, ~h(B;A) 
an be 
omputed by inter
hanging A and B.Summarising, the general Hausdor� distan
e H(A;B) is the maximum oftwo distan
es, ea
h between two points. This 
auses an important disadvantageof this (dis)similarity measure: it is very sensitive to noise. For instan
e, whenone of the obje
ts is modi�ed su
h that it 
ontains a \hair", it is probable thata or b in one of the dire
ted Hausdor� distan
es gets into this hair. In that 
ase,the measure 
an produ
e a 
ompletely di�erent result.A 
hara
teristi
 of the Hausdor� distan
e is that the similarity of two obje
tsdepends on three fa
tors:1. shape 13



2. relative orientation3. relative positionThus, apart from the shape, the similarity value 
hanges when one of the obje
tsis moved or rotated. This phenomenon is often not wanted when only the shapeof the obje
ts has to be 
ompared. Therefore, it is needed to try all orientationsand positions of the obje
ts, sear
hing for the best mat
h. The best mat
h isthat relative orientation and position, for whi
h the Hausdor� distan
e produ
esthe lowest value.3.2 Measures based on Minkowski additionTuzikov et al. [6℄ re
ently introdu
ed similarity measures based on Minkowskiaddition for three-dimensional 
onvex polyhedra. Be
ause the shape of theMinkowski sum of two obje
ts is not dependent on their position, these similaritymeasures are naturally independent on the relative position of the obje
ts. Inother words, they are translation invariant, whi
h is a great advantage. Thus,in order to �nd the best mat
h, only relative orientations have to be sear
hed.Furthermore, it was shown [6℄ [4℄ that the best mat
h for 
onvex polyhedra 
anbe found in a set of relative orientations that is limited. Thus �nding the exa
trelative orientation that produ
es the best mat
h, is possible.We des
ribe two variants of similarity measures based on Minkowski addi-tion. The �rst variant is based on the volume of the Minkowski sum of the two
ompared obje
ts; we name it the volume measure. The se
ond variant is basedon its mixed volume; we name it the mixed volume measure.3.2.1 Volume measureThe volume measure of two obje
ts A and B makes use of a known relationbetween the volume of A�B and the individual volumes of A and B:V (A�B) � 8V (A) 12V (B) 12 (3.1)This formula is derived from the Brunn-Minkowski inequality [5℄[6℄. Gen-erally inequality holds, ex
ept for the spe
ial 
ase where A and B have thesame shape and orientation. In that 
ase, the left-hand side is equal to theright-hand side. This observation suggests dividing the right-hand side by theleft-hand side, yielding a starting point for a similarity measure:8V (A) 12V (B) 12V (A�B) (3.2)This formula is 
alled the volume fun
tion. It yields a number between 0and 1, in
lusive: it yields at most 1, be
ause the denominator is greater thanor equal to the numerator; it yields at least 0, be
ause volumes are involved,and volumes 
annot be negative. Note also that be
ause only the volumes of A,B and their Minkowski sum are involved, relative position plays no role. Theformula thus establishes translation invarian
e.However, the Minkowski sum of A and B 
hanges when A or B is rotated, asdoes its volume. So the volume fun
tion (3.2) does not satisfy independen
e of14



the relative orientation of A and B, or rotation invarian
e. It is thus required tosear
h through all relative orientations to �nd the best mat
h. The best mat
his in this 
ase the relative orientation for whi
h the volume fun
tion yields thehighest value. Any relative orientation 
an be established by rotating obje
t Bwhile keeping the rotation of obje
t A 
onstant. We thus obtain the followingformula: �1(A;B) � maxR2< 8V (A) 12 V (B) 12V (A�R(B)) (3.3)< denotes the set of all rotations in R3. There are an in�nite number ofrelative orientations, so this formula would be useless. However, Tuzikov et al.[6℄ [4℄ proved that the maximum value in formula (3.3) 
an be found in only alimited set of relative orientations. This set 
onsists of all relative orientationsof A and B su
h that one of the following 
onditions holds:� Three edges of A are parallel to three fa
es of B� Two edges of A are parallel to two fa
es of B, and one fa
e of A is parallelto one edge of B� One edge of A is parallel to one fa
e of B, and two fa
es of A are parallelto two edges of B� Three fa
es of A are parallel to three edges of BThe set of all relative orientations for whi
h one of these 
onditions holds,is 
alled the set of 
riti
al orientations for the volume measure. In order to�nd the maximum spe
i�ed by formula (3.3), it is only required to evaluate thevolume fun
tion (3.2) for ea
h of these relative orientations. Chapter 5 des
ribeshow all these 
riti
al orientations 
an be found eÆ
iently.3.2.2 Mixed volume measureThe mixed volume measure is based on the so-
alled \mixed volume" of twoobje
ts. This 
on
ept was introdu
ed by Minkowski [3℄. It allows an alternativeway of 
omputing the volume of the Minkowski sum:V (A�B) � V (A) + 3V (A;A;B) + 3V (A;B;B) + V (B)This formula is based on Minkowski's theorem on mixed volumes, appliedto the 
ase of two three-dimensional obje
ts, see [6℄. The terms V (A;A;B) andV (A;B;B) denote mixed volumes. These mixed volumes are quantities thatsomehow 
ontribute to the volume of A�B, but this 
on
ept is quite abstra
t.We will not try to give a 
on
rete 
lari�
ation. However, quoting [1℄, it 
an beshown that V (A;A;B) is proportional to the area of A and the linear dimensionof B. Similarly, V (A;B;B) is proportional to the linear dimension of A and thearea of B.A relation between the mixed volume V (A;A;B) and the volumes of A andB is known: V (A;A;B) � V (A) 23 V (B) 13 (3.4)15



This inequality was also derived from the Minkowski inequality. It is possibleto use this inequality to 
reate a mixed volume fun
tion, just like the volumefun
tion we des
ribed for the volume measure:V (A) 23 V (B) 13V (A;A;R(B)) (3.5)The similarity measure then be
omes:�2(A;B) � maxR2< V (A) 23V (B) 13V (A;A;R(B)) (3.6)It has been shown [4℄ that the maximum of this similarity measure 
an alsobe found in a limited set of orientations; this is the set of 
riti
al orientationsfor the mixed volume measure. It 
onsists of all relative orientations of A andB su
h that the following 
ondition holds:� Three edges of A are parallel to three fa
es of BThis 
ondition is equal to one of the 
onditions for the 
riti
al orientationsfor the volume measure, whi
h we des
ribed before. Thus, the volume measureand the mixed volume measure are very similar. In order to �nd the maximumspe
i�ed by formula (3.6), it is only needed to evaluate the mixed volume fun
-tion (3.5) for ea
h of the 
riti
al orientations of the mixed volume measure. Thenext 
hapter des
ribes how all these 
riti
al orientations 
an be found eÆ
iently.Summary We des
ribed two similarity measures: the volume measure andthe mixed volume measure. They 
an both be 
omputed by sear
hing for themaximum of a fun
tion that is evaluated for a limited number of 
riti
al orien-tations.

16



Chapter 4MethodWhen the shapes of two 
onvex polyhedra are 
ompared, the result is a numberthat indi
ates to what degree the shapes are similar. This number is 
alleda similarity value. To 
ompute this value, a fun
tion must be evaluated for alimited set of 
riti
al orientations. The orientation that yields the highest valueof this fun
tion, is 
alled the best mat
h. The similarity value of the 
onvexpolyhedra is the fun
tion value of this best mat
h.The 
riti
al orientations are 
hara
terised by 
ombinations of edges and fa
esin the polyhedra that must be parallel, as des
ribed in 3.2.1 and 3.2.2. In this
hapter, we �rst dis
uss a primitive method, and then an improved method.The primitive method is dis
ussed in order to have a referen
e to 
omparethe improved method to. It sear
hes for 
riti
al orientations by treating all ofthe 
ombinations of edges and fa
es. For ea
h 
ombination, it tries to rotate oneof the polyhedra su
h that the edges and fa
es in the 
ombination get parallel.The improved method �nds the 
riti
al orientations faster, be
ause it skipssome of the 
ombinations. That 
an be done be
ause for these 
ombinations, it
an be determined that it is not possible to get the edges and fa
es parallel.4.1 Primitive method
Figure 4.1: The 
riti
al orientations are the relative orientations of A and Bsu
h that in the overlay of SDR(A) and SDR(B) three ar
s in SDR(A) 
oin
idewith three SDR points in SDR(B).The 
riti
al orientations are 
hara
terised by 
onditions about parallel fa
esand edges. These orientations 
an be identi�ed using the slope diagram repre-sentation (SDR). When the SDRs of 
onvex polyhedra A and B are overlayed,17



parallelness of fa
es and edges in A and B appears as SDR points 
oin
idingwith SDR ar
s.The primitive method has two variants, one for the volume measure and onefor the mixed volume measure. The variants treat di�erent kinds of 
ombina-tions of ar
s and SDR points, be
ause the volume measure and the mixed volumemeasure have di�erent parallelness 
onditions. We �rst des
ribe the variant forthe mixed volume measure, be
ause it has only one parallelness 
ondition. Afterthat, we des
ribe the volume measure, whi
h is basi
ally an extension to thevariant for the mixed volume measure.4.1.1 Mixed volume measureWhen using slope diagram representations, the 
ondition for the mixed volumeas des
ribed in 3.2.2 be
omes:� Three SDR ar
s of SDR(A) 
oin
ide with three SDR points of SDR(B)Note that this 
ondition also in
ludes the spe
ial 
ase that SDR points ofSDR(A) 
oin
ide with SDR points of SDR(B), be
ause an SDR points areendpoints of SDR ar
s.A straightforward approa
h to �nding all orientations satisfying the above
ondition, is treating all 
ombinations of three SDR ar
s of A and three SDRpoints of B. Ea
h 
ombination looks like a six-tuple (aA1 ; aA2 ; aA3 ; pB1 ; pB2 ; pB3 ),where aAi are ar
s in SDR(A) and pBi are points in SDR(B), and ea
h aAi must
oin
ide with pBi . For ea
h of these 
ombinations, we have to try to rotate Bsu
h that the points fall on the ar
s. If we managed to �nd su
h a rotation R,we have to evaluate the mixed volume fun
tion (3.5). We repeat this pro
essfor all 
ombinations, sear
hing for the maximum of the mixed volume fun
tion.This maximum is the similarity of the 
ompared polyhedra.Finding a rotation R su
h that three SDR points pB1 ; pB2 ; pB3 of R(SDR(B))
oin
ide with three ar
s aA1 ; aA2 ; aA3 of A 
an be done using an algorithm devel-oped by Bekker [2℄, 
alled tvt. It uses numeri
al approximation te
hniques toyield zero or more rotations R.The primitive method is implemented by the following algorithm:� = 0for all aA1for all aA2 > a1for all aA3 > a2for all pB1for all pB2for all pB3R = tvt(aA1 ; aA2 ; aA3 ; pB1 ; pB2 ; pB3 )�R = V (A) 23 V (B) 13V (A;A;R(B))if �R > � then � = �RAlgorithm 1a: primitive method for the mixed volume measureThere are two reasons why this algorithm is slow:1. The fun
tion tvt is quite slow: on 
urrent home PCs, it 
an be exe
utedonly about 1000 times per se
ond.18



2. There are a lot of 
ombinations, so tvt is 
alled many times.Small optimisations Note that it does not matter in whi
h order we say \aA1
oin
ides with pB1 ", \aA2 
oin
ides with pB2 " and \aA3 
oin
ides with pB3 ". So forexample, (aA1 ; aA2 ; aA3 ; pB1 ; pB2 ; pB3 ) is equivalent to (aA2 ; aA1 ; aA3 ; pB2 ; pB1 ; pB3 ). Thereare six of those equivalent permutations. In this algorithm, the permutationsof SDR ar
s are omitted. In this way, a 
onstant fa
tor of six is gained. This isestablished by the >'s; they use the fa
t that SDR ar
s are linearly ordered inour implementation.There are other 
ombinations of SDR ar
s and SDR points that 
an be leftout. Those are the 
ombinations for whi
h one of the following 
onditions hold:� pB1 = pB2 = pB3� aA1 = aA2 = aA3� pBi = pBj while aAi = aAjFor these 
ombinations always an in�nite number of 
riti
al orientations exist.For example, the �rst 
ondition 
orresponds to the 
ase that the three 
hosenpoints are equal. We show that this 
ombination 
an be left out.pB1 = pB2 = pB3 means that there is e�e
tively only one SDR point of Bthat is restri
ted in its position, leaving an in�nite number of satisfying relativeorientations. Let M denote the set of these relative orientations. In anotheriteration of the nested for-loops, a 
ombination will o

ur for whi
h two of thep's are the same as before, and the third di�erent. Let N denote the set ofrelative orientations satisfying this 
ombination. N is a subset of M , be
ause it
ontains the orientations that satisfy the same 
ondition and one extra 
ondi-tion. So these orientations will not result in a lower value of the (mixed) volumefun
tion. �All 
ombinations of SDR ar
s and SDR points that satisfy the above 
ondi-tions, are left out in our implementation of the primitive method. However, it
an be argued that these 
ombinations should not be left out in the primitivemethod, be
ause the primitive method wouldn't be primitive anymore.4.1.2 Volume measureUsing the slope diagram representation, the 
riti
al orientations of the volumemeasure 
an be de�ned as the set of orientations satisfying one of the following
onditions:� Three SDR ar
s of SDR(A) 
oin
ide with three SDR points of SDR(B);� Two SDR ar
s of SDR(A) 
oin
ide with two SDR points of SDR(B), andone SDR point of SDR(A) 
oin
ides with one ar
 of SDR(B);� One SDR ar
 of SDR(A) 
oin
ides with one SDR point of SDR(B), andtwo SDR points of SDR(A) 
oin
ide with two ar
s of SDR(B);� Three SDR points of SDR(A) 
oin
ide with three SDR ar
s of SDR(B).19



The primitive method works essentially the same for the volume measure asfor the mixed volume measure. For ea
h of the 
onditions, the primitive methodhas six nested for-loops:� = 0for all aA1for all aA2 > aA1for all aA3 > aA2for all pB1for all pB2for all pB3R = tvt(aA1 ; aA2 ; aA3 ; pB1 ; pB2 ; pB3 )�R = 8V (A) 12 V (B) 12V (A�R(B))if �R > � then � = �Rfor all aA1for all aA2 > aA1for all pA3for all pB1for all pB2for all aB3R = tvt(aA1 ; aA2 ; pA3 ; pB1 ; pB2 ; aB3 )�R = 8V (A) 12 V (B) 12V (A�R(B))if �R > � then � = �Rfor all aA1for all pA2for all pA3for all pB1for all aB2for all aB3R = tvt(aA1 ; pA2 ; pA3 ; pB1 ; aB2 ; aB3 )�R = 8V (A) 12 V (B) 12V (A�R(B))if �R > � then � = �Rfor all pA1for all pA2for all pA3for all aB1for all aB2for all aB3R = tvt(pA1 ; pA2 ; pA3 ; aB1 ; aB2 ; aB3 )�R = 8V (A) 12 V (B) 12V (A�R(B))if �R > � then � = �RAlgorithm 1b: primitive method for the volume measure
20
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Figure 4.2: It is not always possible to rotate B su
h that three SDR points ofSDR(B) 
oin
ide with three SDR ar
s of SDR(A). This 
ombination of SDRar
s and SDR points 
an thus be skipped. This observation is the essen
e ofthe improved method.4.2 Improved method4.2.1 Mixed volume measureFinding 
riti
al orientations for the mixed volume measure requires rotatingB su
h that three SDR points of SDR(B) 
oin
ide with three SDR ar
s ofSDR(A). In some 
ases there is no su
h orientation. Consider for example�gure 4.2. It is 
lear that the marked SDR points of SDR(B) 
an never fallon the marked ar
s of SDR(A). Points p1 and p2 
ould �t on a1 and a2, butthen p3 
annot fall on a3, be
ause p3 is 
lose to p2 while a3 is not 
lose to a2.Generally speaking, the distan
es do not agree.There is no need to 
all the slow fun
tion tvt with this 
ombination, be-
ause we already know that tvt 
annot �nd a rotation for it. Skipping this
ombination saves time. When the distan
es between SDR ar
s in SDR(A) anddistan
es between SDR points in SDR(B) are known, the remaining 
ombina-tions are identi�ed by the following 
ondition:dmin(aA1 ; aA2 ) � d(pB1 ; pB2 ) � dmax(aA1 ; aA2 ) anddmin(aA2 ; aA3 ) � d(pB2 ; pB3 ) � dmax(aA2 ; aA3 ) anddmin(aA1 ; aA3 ) � d(pB1 ; pB3 ) � dmax(aA1 ; aA3 ) (4.1)These inequalities are 
alled distan
e inequalities. The following algorithmskips 
ombinations for whi
h these distan
e inequalities do not hold:� = 0for all aA1for all aA2 > aA1for all aA3 > aA2for all pB1for all pB2for all pB3if dmin(aA1 ; aA2 ) � d(pB1 ; pB2 ) � dmax(aA1 ; aA2 ) anddmin(aA2 ; aA3 ) � d(pB2 ; pB3 ) � dmax(aA2 ; aA3 ) anddmin(aA1 ; aA3 ) � d(pB1 ; pB3 ) � dmax(aA1 ; aA3 ) thenR = tvt(aA1 ; aA2 ; aA3 ; pB1 ; pB2 ; pB3 )�R = V (A) 23 V (B) 13V (A;A;R(B))if �R > � then � = �RAlgorithm 2: improved method for the mixed volume measure21



Summarising, in order to determine whi
h 
ombinations 
an be skipped,the distan
es between the SDR points of SDR(B) must be 
ompared to thedistan
es between the SDR ar
s of SDR(A). These distan
es 
an be 
omputedand stored in tables during a prepro
essing step. In 
hapter 5, it is explainedhow these distan
es 
an be 
omputed.4.2.2 Volume measureFor the volume measure, similar improvements 
an be done based on distan
einequalities. The inequalities in formula (4.1) are appli
able again for the�rst nesting of for-loops in algorithm 1b. The distan
es between three SDRar
s of SDR(A) are 
ompared to the distan
es between three SDR points ofSDR(B). This 
ombination of SDR ar
s and SDR points 
an be written as(aA1 ; aA2 ; aA3 ; pB1 ; pB2 ; pB3 ). Similar inequalities apply to the the fourth nesting,but this time the SDR points 
ome from SDR(A) and the SDR ar
s 
ome fromSDR(B).For the se
ond and third nesting, the 
ombinations are more 
ompli
ated.The 
ombinations of the se
ond nesting are of the form (aA1 ; aA2 ; pA3 ; pB1 ; pB2 ; aB3 ).For su
h 
ombinations, also distan
es between an SDR point and an SDR ar
must be 
ompared. For these 
omparisons, it must be tested whether the rangesof distan
es overlap:dmin(aA1 ; aA2 ) � d(pB1 ; pB2 ) � dmax(aA1 ; aA2 ) anddmax(pA3 ; aA2 ) � dmin(pB2 ; aB3 ) anddmin(pA3 ; aA2 ) � dmax(pB2 ; aB3 ) anddmax(pA3 ; aA1 ) � dmin(pB1 ; aB3 ) anddmin(pA3 ; aA1 ) � dmax(pB1 ; aB3 )The 
ombinations of the third nesting are of the form (aA1 ; pA2 ; pA3 ; pB1 ; aB2 ; aB3 ),and are thus similar to the 
ombinations for the se
ond nesting.All mentioned distan
e inequalities 
an be easily plugged into the primi-tive method for the volume measure by adding if-statements. The resultingimproved method is not printed.Summary We introdu
ed a primitive and an improved method for 
omputingthe similarity of two 
onvex polyhedra. The improved method is faster be
ause ittakes distan
e inequalities in a

ount. Both methods 
an 
ompute two variantsof similarity measures based on Minkowski addition: the volume measure andthe mixed volume measure.
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Chapter 5Distan
e 
omputationsIn this 
hapter we explain how the distan
e between two sphere points and thedistan
e between two ar
s 
an be 
omputed. Computing the distan
e betweentwo points will prove to be simple, but 
omputing the distan
e between two ar
srequires more work. We explain how to 
ompute the distan
e between two ar
sin four steps. The �rst step is the distan
e between two sphere points. Thenwe 
onsider the distan
e between a sphere point and a great 
ir
le, the distan
ebetween a sphere point and an ar
, and �nally the distan
e between two ar
s.5.1 Distan
e between two points
Figure 5.1: Distan
e between two pointsThe distan
e between two sphere points p1 and p2 is equal to the length ofthe ar
 D between these points. The length of D is proportional to the angle �between p1 and p2. Be
ause sphere points lie on the surfa
e of the unit sphereand we measure in radians, the length of D is equal to the angle between p1 andp2. Computing this angle in Cartesian 
oordinates 
an be done using the innerprodu
t: � = 
os�1(p1 � p2). Thus:d(p1; p2) � 
os�1(p1 � p2)5.2 Distan
e between a point and a great 
ir
leNow that we know how to 
ompute the distan
e between two sphere points, wego to the next step: 
omputing the minimum and maximum distan
e between23



a sphere point p and a great 
ir
le C. First, we sear
h for the points on Cthat are the 
losest to and the farthest from p. We 
all these points qmin andqmax, respe
tively. The minimum distan
e between p and C is then equal tothe distan
e between p and qmin. Thus, dmin(p; C) = d(p; qmin). Similarly,dmax(p; C) = d(p; qmax). We �rst des
ribe how to �nd qmin, and then qmax.5.2.1 Minimum distan
e
Figure 5.2: Minimum distan
e between a point and a great 
ir
le (left); 
urvesof equal (minimum) distan
e to a great 
ir
le (right). The great 
ir
le is drawnthi
k.qmin is the point on C that has minimum distan
e to p. This distan
e isequal to the length of the ar
 D between p and qmin.Theorem 5.2.1 D ? CProof Without loss of generality, we de�ne an orthogonal set of base ve
torssu
h that the 
entre of the unit sphere is in the origin, C is in the xz-planeand p is in the xy-plane. For ea
h d 2 (0; �), the points on the sphere havingdistan
e d to the point p de�ne a 
ir
le CD(d). When d in
reases, starting from0, there is a unique point where CD(d) �rst tou
hes C. This is the point qmin.p, qmin, and the ar
 D between them, are all in the xy-plane. This plane isperpendi
ular to the xz-plane, whi
h is the plane of C. Be
ause the planes ofD and C are perpendi
ular, D ? C. �From D ? C it follows that qmin 
an be found by moving from p along thesurfa
e of the sphere to C, perpendi
ularly to C. This 
an be done 
omputa-tionally by a proje
tion: �rst, p is proje
ted orthogonally to the plane of C.Two distin
t ve
tors e1 and e2 in the plane of C are needed for the proje
tion.The proje
tion 
an now be done using the following formula:p0 = (e1 � p)e1 + (e2 � p)e2The resulting point p0 is on the interse
tion line of the planes of C and D. Next,p0 is normalised, yielding qmin: qmin = p0jp0jA problem arises when p is a pole of A, be
ause then p0 is the origin of thesphere and jp0j = 0. This ve
tor 
annot be normalised. However, we do not needa proje
tion in this 
ase be
ause the minimum distan
e between an equator andits pole is known to be 12�. 24



5.2.2 Maximum distan
e
Figure 5.3: Maximum distan
e between a sphere point and a great 
ir
le (left);
urves of equal maximum distan
e to a great 
ir
le (right). The great 
ir
le isdrawn thi
k.qmax is the point on C that has maximum distan
e to p. We now prove thatqmax is exa
tly on the other side on C with respe
t to qmin.Theorem 5.2.2 qmax = �qminProof Like in the proof in the former se
tion, we in
rease d, but now 
ontinu-ing from the distan
e where we stopped then. The interse
tion of CD(d) and Cthen 
onsists of two points, until these points meet in the point the farthest fromp: this is qmax. Like qmin, this point is in the xy-plane and on C. The xy-planeinterse
ts C at exa
tly two points, whi
h are ea
h other's inverse be
ause C is
entred at the origin. These are the points qmin and qmax, so qmax = �qmin. �Summary Computing the minimum and maximum distan
e between a spherepoint p and a 
ir
le C �rst requires �nding the points qmin and qmax. These 
anbe 
omputed using a proje
tion and a normalisation. Then, the distan
es 
anbe 
omputed as distan
es between sphere points: dmin(p; C) = d(p; qmin) anddmax(p; C) = d(p; qmax).5.3 Distan
e between a point and an ar
Now that we have found the minimum and maximum distan
e from a pointto a great 
ir
le, we 
an use this information to 
ompute the minimum andmaximum distan
e between a sphere point p and an ar
 A. The ar
 A is partof a great 
ir
le CA. We 
ompute the points qmin and qmax on the 
ir
le CA asdes
ribed in se
tion 5.2. The endpoints of A serve as ve
tors de�ning the planeof C, needed for the proje
tion. We �rst 
onsider the minimum distan
e, andthen the maximum distan
e.5.3.1 Minimum distan
eIf qmin happens to be an interior point of A, then this point of A must be the
losest to p, be
ause qmin is the point on CA that is 
losest to p, and A is a partof CA. This happens when p 2 LUNE(A). The minimum distan
e between pand A is then equal to the distan
e between the points p and qmin. Thus:qmin 2 A) dmin(p;A) � d(p; qmin):25



Figure 5.4: Minimum distan
e between a sphere point and an ar
. In the leftpi
ture, the point is in the lune of the ar
; in the right pi
ture, it is not.If qmin is not an interior point of A, then there is no interior point of A thathas minimum distan
e to p. So one of the endpoints of A must have minimumdistan
e to p. When a1 and a2 are the endpoints of A, we 
an 
ompute thedistan
e of ea
h to p and take the minimum:qmin =2 A) dmin(p;A) � min(d(p; e1); d(p; e2))Determining whether qmin 2 A 
an be done using the following formula:(e1 � qmin) � (qmin � e2) > 0 and(e1 � qmin) � (e1 � e2) > 0 �) qmin 2 AThe �rst part is true if and only if qmin is a ve
tor between the endpoints ofA, or between their negative 
ounterparts. The se
ond part is true if and onlyif qmin is not between the negative 
ounterparts.
Figure 5.5: Curves of equal minimum distan
e to an ar
, and its lune. Frontview (left) and ba
k view (right). The ar
 is drawn thi
k.Figure 5.5 shows 
urves of equal minimum distan
e to an ar
 A. The 
urveshave a di�erent shape in the lune of A than outside the lune. Inside the lune,the shape is like a part of the shape of the 
urves of minimum distan
e to thegreat 
ir
le 
arrying A. This shows that the minimum distan
e from a point pin L(A) is equal to the minimum distan
e between the sphere points p and qmin,the point on the 
ir
le 
ontaining A that has minimum distan
e to p.5.3.2 Maximum distan
eSimilarly, if qmax is an interior point of A, then the maximum distan
e betweenp and A is equal to the distan
e between p and qmax. This happens whenp 2 ALUNE(A). Otherwise, the maximum distan
e is equal to the distan
ebetween p and one of the endpoints of A:26



Figure 5.6: Maximum distan
e between a sphere point and an ar
. In the leftpi
ture, the point is in the antilune of the ar
; in the right pi
ture, it is not.qmax 2 A) dmax(p;A) � d(p; qmax)qmax =2 A) dmax(p;A) � max(d(p; a1); d(p; a2))Determining whether qmax 2 A now be
omes:(e1 � qmin) � (qmin � e2) > 0 and(e1 � qmin) � (e1 � e2) < 0 �) qmax 2 A
Figure 5.7: Curves of equal maximum distan
e to an ar
, and its antilune. Frontview (left) and ba
k view (right). The ar
 is drawn thi
k.Figure 5.7 shows 
urves of equal maximum distan
e to an ar
 A. It is 
learthat the distan
e 
urves in the antilune have the same shape as a part of the
urves of maximum distan
e to a great 
ir
le; the great 
ir
le of whi
h A is apart. This shows that the maximum distan
e from a point p in ALUNE(A)is equal to the maximum distan
e between p and qmax, the point on the 
ir
le
ontaining A that has maximum distan
e to p.More remarkable is the fa
t that �gure 5.7 and �gure 5.5 are very similar.The 
urves of maximum distan
e to A are equal to the 
urves of minimumdistan
e to A�1. The ar
 A�1 represents the set of points that have maximumdistan
e to A, whi
h is �. This leads to an alternative de�nition of the maximumdistan
e: dmax(p;A) � � � dmin(p;A�1) (5.1)Summary Computing the minimum and maximum distan
e between a pointand an ar
 �rst requires �nding the points qmin and qmax. Then, it is needed totest if qmin or qmax is an interior point of A. If qmin is an interior point of A,then the minimum distan
e is equal to the distan
e between the sphere pointsp and qmin . Otherwise, the minimum distan
e is equal to the distan
e betweenp and an endpoint of A. The maximum distan
e 
an be found similarly.27



5.4 Distan
e between two ar
sNow that we know how to 
ompute the distan
e between a point and an ar
,we are able to 
ompute the distan
e between two ar
s. To this end, we 
onsiderthe variable points q1 and q2 on the ar
s A1 and A2, respe
tively. The mini-mum distan
e between A1 and A2 is the minimum distan
e between q1 and q2.Therefore, we �rst sear
h for the points q1;min and q2;min, whi
h are the posi-tions of q1 and q2 with minimum distan
e. After that, the minimum distan
e
an be easily 
omputed by dmin(A1; A2) = d(q1;min; q2;min). Similarly, in orderto 
ompute the maximum distan
e between A1 and A2, we sear
h for q1;maxand q2;max and 
ompute their distan
e by dmax(A1; A2) = d(q1;max; q2;max). We�rst dis
uss the minimum distan
e, and then the maximum distan
e.5.4.1 Minimum distan
eWe identify two 
ases that 
an apply:1. q1;min and q2;min are endpoints of A1 and A22. q1;min is an endpoint of A1 and q2;min is an interior point of A2, or vi
eversaOne might expe
t a third 
ase in whi
h q1;min and q2;min are both interiorpoints of A1 and A2, but this 
ase 
an never o

ur:Theorem 5.4.1 q1;min and q2;min are not both interior points of A1 and A2Proof If q1;min and q2;min are interior points of A1 and A2, then there are twopossible 
auses:1. the ar
s are 
urved towards ea
h other, or2. the ar
s interse
t, implying a distan
e of zero.We show that both situations 
annot happen. First, two ar
s 
annot interse
t,be
ause they represent edges of a polyhedron and edges never interse
t. Se
ond,the ar
s 
annot be 
urved towards ea
h other, be
ause in that 
ase the 
ir
lesof whi
h the ar
s are a part 
ould not have the same 
entre. But ar
s are partsof great 
ir
les, whi
h all have the same 
entre, so this 
an never be the 
ase. �Con
luding, the minimum distan
e between two ar
s is equal to the minimumdistan
e between an ar
 and an endpoint of the other ar
. We already know howto 
ompute the minimum distan
e between a point and an ar
: it is dis
ussed in5.3.1. However, it is not known whi
h endpoint to take. So all four possibilitiesmust be 
he
ked, sear
hing for the minimum:dmin(A1; A2) = min(dmin(e11; A2); dmin(e12; A2); dmin(e21; A1); dmin(e22; A1))(5.2)Where eij denotes endpoint i of ar
 j. Formula 5.2 is de�ned in terms of theminimum distan
e between a point and an ar
. Figure 5.8 shows that theposition of one endpoint of an ar
 relative to the lune of the other ar
 plays arole, just like the 
ase of the distan
e between a point and an ar
.28



Figure 5.8: Minimum distan
e between two ar
s. In the right pi
ture, an end-point of one ar
 is in the lune of the other ar
.5.4.2 Maximum distan
e
Figure 5.9: Maximum distan
e between two ar
s. In the right pi
ture, anendpoint of one ar
 is in the antilune of the other ar
.For 
omputing the maximum distan
e, three 
ases 
an apply:1. q1;max and q2;max are endpoints of A1 and A22. q1;max is an endpoint of A1 and q2;max is an interior point of A2, or vi
eversa3. q1;max and q2;max are interior points of A1 and A2The �rst two 
ases are similar to the two 
ases for the minimum distan
e,as is the 
omputation of the maximum distan
e in these 
ases:dmax(A1; A2) = max(dmax(e11; A2); dmax(e12; A2); dmax(e21; A1); dmax(e22; A1))(5.3)But the third 
ase deserves spe
ial attention. In 5.4.1 we argued that two ar
sA1 and A2 
annot interse
t, whi
h would otherwise imply a minimum distan
eof zero. Re
all that formula 5.1 states that the maximum distan
e between apoint and an ar
 
an also be reformulated as � minus the minimum distan
ebetween the point and the inverse of the ar
:dmax(p;A1) � � � dmin(p;A�11 ) (5.4)Be
ause we now need to 
ompute the minimum distan
e between two ar
s,we 
hoose p on A2 su
h that it has minimum distan
e to A�11 . Key observationis that A�11 and A2 
an interse
t. Thus, point p 
an be an internal point of A�11and A2 at the same time, implying dmin(p;A�11 ) = 0. In this 
ase, formula 5.4yields a maximum distan
e of �. Con
luding:29



A�11 \A2 = ; ) dmax(A1; A2)= max(dmax(e11; A2); dmax(e12; A2); dmax(e21; A1); dmax(e22; A1))A�11 \A2 6= ; ) dmax(A1; A2) = �
Figure 5.10: Maximum distan
e between two ar
s, when one ar
 interse
ts theinverse of the other ar
. The inverse ar
 is drawn dotted. Left: front view;right: ba
k view.So it must be 
he
ked whether the ar
s A�11 and A2 interse
t or not. In thefollowing paragraph, we des
ribe how this 
an be done.Interse
tion testing First, let l1 be the straight line segment that 
onne
tsthe endpoints e11 and e21 of ar
 A�11 . Similarly, let l2 be the straight line segmentthat 
onne
ts the endpoints e12 and e22 of ar
 A2. A�11 and A2 interse
t if andonly if a unique half-line lint from the origin through the interse
tion pointexists, whi
h interse
ts l1 in the point pl1 and l2 in the point pl2 . So, A�11 andA2 interse
t if a point pl1 on l1 is a linear multiple of a point pl2 on l2. To 
he
kwhether this is the 
ase, we �rst parametrise l1 with parameter � (0 � � � 1)and l2 with parameter � (0 � � � 1):l1 = �e21 + (1� �)e11l2 = �e22 + (1� �)e12By equating l1 and � � l2, with � > 0, we establish that pl1 and pl2 are onone half-line: �e21 + (1� �)e11 = �(�e22 + (1� �)e12)This equation 
an be rewritten as follows:(e21 � e11)�+ (e22 � e12)�� � e22� = �e11 (5.5)Be
ause all eij are three dimensional ve
tors, formula 5.5 
an be seen as a3x3 linear system of equations, with unknowns �, �� and �. These parameters
an be found by standard methods, su
h as Gaussian elimination. When thefound values satisfy � > 0, 0 � � � 1 and 0 � � � 1, A�11 and A2 interse
t.Summary The minimum distan
e between two ar
s 
an be de�ned in termsof the minimum distan
e between one endpoint and one ar
. The same gen-erally holds for the maximum distan
e between two ar
s, ex
ept when one ar
interse
ts the inverse of the other ar
. In that 
ase, the maximum distan
e is �.30



Chapter 6ResultsIn order to test how mu
h faster the improved method is than the primitivemethod, we implemented a 
omputer program that simulates the 
omparisonof two 
onvex polyhedra. This program takes two polyhedra as input. Thepolyhedra are transformed into 
onvex versions by 
omputing their 
onvex hull.After that, the program 
omputes a desired similarity measure. This 
an be thevolume or the mixed volume measure. The output of the program 
onsists oftwo numbers, one for the primitive method and one for the improved method.These numbers indi
ate for both methods the number of 
alls to tvt needed.Re
all that this is the slow fun
tion that tries to �nd one or more orientationsfor whi
h spe
i�
 parallelness 
onditions hold, for a given 
ombination of ar
sand SDR points. By re
ording both numbers, the improved method 
an be
ompared with the primitive method.We performed two series of performan
e tests. In the �rst series, the methods
omputed the volume measure; in the se
ond the methods 
omputed the mixedvolume measure. This was done by repeatedly exe
uting the program with asinput a pair of generated polyhedra of in
reasing 
omplexity, where 
omplexityis de�ned as the number of fa
es. The polyhedra are generated randomly, su
hthat both polyhedra are equally 
omplex.We �rst present the results for the volume measure, and then those for themixed volume measure. For both we show how the number of 
alls to tvt relatesto the 
omplexity of the polyhedra.6.1 Volume measureThe left graph of �gure 6.1 shows the number of 
alls to tvt needed for theprimitive method. It shows that the time needed to 
ompare two polyhedra ismore than proportional to their 
omplexity. Noti
e the huge s
ale and re
all thatexe
uting tvt 1000 times takes one se
ond on 
urrent home PCs. This meansfor example that polyhedra with 24 fa
es require about ten days to 
ompareusing the primitive method. Even when we use a 
omputer that is a hundredtimes faster, the time required to 
ompare su
h polyhedra still is far beyondpra
ti
able.The graph on the right shows the performan
e of the improved method.This graph looks similar to that of the left graph, but there are two di�eren
es:31



the range on the y-axis is smaller and the slope is lower. With this method,polyhedra with 24 fa
es require about half a day to 
ompare.

Figure 6.1: Performan
e of methods for the volume measure. Primitive method(left) and improved method (right). Noti
e the di�eren
e in s
ale.

Figure 6.2: Performan
e of methods for the volume measure. Primitive andimproved method 
ombined. Large s
ale on the y-axis (left) and smaller s
ale(right).Figure 6.2 shows the performan
e of both methods 
ombined in one graph.The left graph shows not only that the improved method performs better thanthe primitive method, but also that the improvement in
reases when the 
om-plexity of the polyhedra in
reases. The right graph is a 
opy of the left one,but with a smaller range on the y-axis. It shows that the improved method alsoperforms better with polyhedra of very low 
omplexity. For example, when twopolyhedra with 12 fa
es are 
ompared, the primitive method makes 149 million
alls to tvt (4 hours) while the improved method only needs 17 million (30minutes).Curve �tting The left graph of �gure 6.3 shows the performan
e of the meth-ods for the volume measure on a logarithmi
 s
ale. The fa
t that the data pointsof ea
h method lie approximately on a straight line, indi
ates an underlying32



Figure 6.3: Performan
e of methods for the volume measure. Primitive andimproved method 
ombined on a logarithmi
 s
ale (left) and on a linear s
alewith �tted 
urves (right).fun
tion of the form y = a � xb. We used the least squares method to �t 
urveson the data points, based on this fun
tion. The fun
tions of the resulting 
urvesare:� y = 6:52x5:90 for the primitive method;� y = 25:07x4:48 for the improved method.The 
urves of these fun
tions on a linear s
ale are shown in the right graph of�gure 6.3. Note that in these fun
tions, x denotes the number of fa
es in thepolyhedra. In the following, we will also use the letter n for this quantity. Forthe the time 
omplexity, only the power of x (or n) matters: y / x5:90 for theprimitive method and y / x4:48 for the improved method.The primitive method 
ontains four times a nesting of six for-loops, whi
h
ontain a 
all to tvt. All four nestings 
onsist of three loops running throughSDR ar
s or SDR points in SDR(A), and three loops running through ar
s orSDR points in SDR(B). The number of SDR ar
s and SDR points in ea
h loopis proportional to n. So the number of 
alls to tvt must be proportional to n6.The fa
t that there are four of these nested stru
tures has no in
uen
e on thetime 
omplexity of the method; it only matters a 
onstant fa
tor.We found a 
omplexity of n5:90, so there is a slight di�eren
e. This di�eren
e
an be explained by the fa
t that some 
ombinations of SDR points and SDRar
s are left out stru
turally, as explained in se
tion 4.1.The improved method performs better when the 
ompared obje
ts are more
omplex. This 
an be explained as follows. The method uses distan
e inequal-ities to skip 
ombinations of SDR points that 
annot 
oin
ide with SDR ar
s.When a polyhedron be
omes more 
omplex, the SDR ar
s in its SDR be
omeshorter. Then the 
han
e is smaller that two SDR points of another SDR 
an�t between two of these SDR ar
s. So the more 
omplex the obje
ts, the more
ombinations 
an be skipped. In [1℄ it is shown that the time 
omplexity of thismethod is n4:5, whi
h agrees reasonably well with the value of our �tted 
urve.33



6.2 Mixed volume measure

Figure 6.4: Performan
e of methods for the mixed volume measure. Primitivemethod (left) and improved method (right).

Figure 6.5: Performan
e of methods for the mixed volume measure. Primitiveand improved method 
ombined. Large s
ale on the y-axis (left) and smallers
ale (right).We did the same performan
e tests for the mixed volume measure. Theresults are shown in �gure 6.4 and 6.5. The graphs are similar to those for thevolume measure. However, as may be expe
ted, the number of 
alls to tvt islower. For example, for polyhedra with 12 fa
es, the primitive method needs 1,9million 
alls to tvt (31 min) and the improved method needs 192.000 (3 min).Curve �tting The left graph of �gure 6.6 shows the performan
e of the meth-ods for the mixed volume measure on a logarithmi
 s
ale. The data points ofboth methods lie again approximately on a straight line. Again we �tted 
urves,whi
h are shown by the right graph of �gure 6.6. The fun
tions of these 
urvesare:� y = 0:71x5:95 for the primitive method;34



Figure 6.6: Performan
e of methods for the mixed volume measure. Primitiveand improved method 
ombined on a logarithmi
 s
ale (left) and on a linears
ale with �tted 
urves (right).� y = 2:13x4:59 for the improved method.Con
luding, the time 
omplexity of both methods for the mixed volume isapproximately equal to their 
omplexity for the volume measure. These 
om-plexities are roughly proportional to n6 for the primitive method and n4:5 forthe improved method. We didn't �nd a satisfying explanation for this found
omplexity yet; it will be left as future work.The primitive and improved methods perform a 
onstant fa
tor better forthe mixed volume measure, be
ause for this method the parallelness 
onditionsare more stri
t, so less 
ombinations need to be 
he
ked.Data stru
ture optimisation In our implementation, the distan
es betweenSDR points and SDR ar
s are stored in ordinary tables. The main loop runsthrough all 
ombinations of points and ar
s and uses distan
e inequalities forevery 
ombination to determine whether the 
ombination 
an be skipped ornot. Be
ause usually many 
ombinations 
an be skipped, many iterations inthe for-loops are done without a 
all to tvt.To avoid this, we also tried another implementation. This implementationshas a more sophisti
ated data stru
ture, in whi
h SDR points and SDR ar
sare sorted in several ways. The main loop uses this ordering to eÆ
iently yield
ombinations of SDR points and SDR ar
s that 
annot be skipped. This savesiterations in for-loops.We tested this implementation and found that this saving be
ame signi�
antwith polyhedra of more than 24 fa
es. However, we 
hose to abandon the idea,be
ause it is more 
omplex and it has no in
uen
e on the number of 
alls totvt needed.Summary The improved method works well. While the 
omplexity of theprimitive method is n6, the 
omplexity of the improved method is n4:5.
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Chapter 7Con
lusionThe shape of two obje
ts 
an be 
ompared by a 
omputer program using simi-larity measures. The family of similarity measures based on Minkowski additionprovides a well-founded way to do this. We des
ribed two variants of these mea-sures. The �rst variant uses the volume of the Minkowski sum, and the se
ondvariant uses the mixed volume of the Minkowski sum.Current implementations have the disadvantage that they are very time-
onsuming: their time 
omplexity is proportional to n6, where n is proportionalto the 
omplexity of the polyhedra. We developed, implemented and testedimproved algorithms for both variants. These algorithms proved to redu
e thetime 
omplexity to n4:5.Although this is a signi�
ant improvement, a time 
omplexity of n4:5 is stillvery high. For example, simple polyhedra with 12 fa
es still need 3 minutes to
ompare on 
urrent home PCs, using the mixed volume measure. Comparingusing the volume measure takes 31 minutes. Even for these simple polyhedra,the time needed to 
ompare is far beyond usable. Parti
ularly, when one poly-hedron needs to be 
ompared to a 
omplete database of polyhedra, then fast
omparison is important. So the use of these improved methods is still verylimited.7.1 Future workWe found a time 
omplexity of n4:5 for both variants of similarity measures
omputed by the improved algorithm. That the volume measure apparentlyhas this time 
omplexity still asks for an explanation.The method presented in this thesis skips 
ombinations using distan
e in-equalities. These inequalities take distan
es along the surfa
e in a

ount, butnot angles. A further improvement would be to implement an algorithm thatalso takes angles in a

ount.A major disadvantage of the method is that it 
an only be used for 
onvexpolyhedra. It would be an improvement if the method 
ould be altered su
hthat it also allows for polyhedra that are not 
onvex.Furthermore, it is not really known how to apply similarity measures basedon Minkowski addition. An appli
ation might be obje
t re
ognition: a 
omputerprogram 
ompares an obje
t to a database of obje
ts, and possibly �nds the36



obje
t that is most similar.The similarity of two 
onvex polyhedra is expressed in one similarity value.However, there are un
ertainties about this similarity value:� Has it the power to �nd the 
orre
t obje
t in a database, when we 
ompareto another obje
t that is not an exa
t dupli
ate?� What does it say about the similarity of two obje
ts when only their
onvex hulls are 
ompared?� What does it say about the similarity of two obje
ts when they are ap-proximated by polyhedra with very few fa
es?Thus, the method 
an be further improved and it needs more testing in orderto determine how well similarity measures based on Minkowski additions 
anbe applied in pra
ti
e.
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