
Speeding up the omputation of similaritymeasures based on Minkowski addition in 3DAxel BrinkApril 2004

Master's thesisSupervisor: Henk Bekker
Sienti� Visualization and Computer GraphisDepartment of Mathematis and Computing Siene



AbstratThe shape of two objets an be ompared by a omputer program using sim-ilarity measures. The family of similarity measures based on Minkowski addi-tion provides a well-founded way to do this. In pratie, they are restrited toomparing the shapes of onvex polyhedra. We desribe two variants of thesemeasures. The �rst variant uses the volume of the Minkowski sum, and theseond variant uses the so-alled mixed volume of the Minkowski sum.Current implementations have the disadvantage that they are very time-onsuming: their time omplexity is proportional to n6, where n is proportionalto the omplexity of the polyhedra. We developed, implemented and testedimproved algorithms for both variants. These algorithms proved to redue thetime omplexity to n4:5.
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Chapter 1IntrodutionOne of the subjets of urrent researh is objet reognition by mahines. Thisan for example be applied in business: it enables automatially determiningwhether an objet is in store, when somebody holds a dupliate of it in front ofa amera.This objet reognition requires three steps: �rst, an input devie (a ameraor a laser beam) observes a real-world objet and stores the visually pereivedinformation. Seond, the three-dimensional shape of the real-world objet isinferred from the visual information, and is represented as a three-dimensionalobjet in the omputer. Third, the shape of this objet is ompared to a databaseof known objets, in order to determine whih objet was held in front of theinput devie.When two objets are ompared, the result is a number that indiates towhat degree the objets are similar. This number is omputed by a funtionalled a similarity measure. Many similarity measures exist; eah is based on aspei� priniple.1.1 Similarity measures based on Minkowski ad-ditionIn this thesis, we desribe similarity measures based on Minkowski addition.This is a kind of addition that allows us to add two objets, resulting in a newobjet. This new objet is referred to as the Minkowski sum of the originalobjets. Minkowski addition is explained in hapter 2, along with other basionepts.Tuzikov et al. [6℄ reently suggested that the Minkowski sum of two three-dimensional objets has some properties that an be used to reate a similaritymeasure. These properties inlude both its volume and its mixed volume. Whilethe volume of an objet is an ordinary onept, its mixed volume is quite ab-strat. In hapter 3, we desribe these two properties and how they an eahbe used for a spei� similarity measure.Given two objets, their similarity an be omputed using either one of thesesimilarity measures. However, it is not possible to ompare any two objetsusing similarity measures based on Minkowski addition. It is only known howto ompute the similarity of onvex polyhedra. We quikly explain the terms3



Figure 1.1: Two onvex polyhedra (left, middle), whih an be ompared, andtheir Minkowski sum (right)\polyhedron" and \onvex". A polyhedron is a three-dimensional solid, whihhas a surfae onsisting of at piees, alled faes. The faes are onnetedby line segments, alled edges. Polyhedra thus do not have a urved surfae.However, a urved surfae an be approximated by a large number of smallfaes. Furthermore, a polyhedron is onvex, in short, when it has no dents.Convex polyhedra are desribed into more detail in hapter 2.In some way it is possible to ompare polyhedra that are not onvex. Convexversions of these polyhedra an be derived before they are ompared. This isdone by omputing their onvex hull. In the newly formed objets, all dents ofthe original objets are overed by faes, just like all dents of a gift are overedwhen it is wrapped in paper.1.2 Program outlineIn order to desribe how a omputer program an ompare two onvex polyhe-dra, we �rst desribe how humans ompare objets in daily life. Consider forexample two ups, one standing straight up and one lying on its side. A humanwould pik up the lying up and rotate it to align its handle with the handle ofthe other up. After this, he is able to judge the similarity of the ups.Notie that it would not make any di�erene to the human whether the upswere lying or standing straight up from the beginning; that has no inueneon the human's judgement on the similarity of the ups. In other words, thesimilarity of the two objets is not dependent on their orientation. This is alledrotation invariane.We desribe an algorithm that follows the same proedure with onvex poly-hedra. It rotates one of the two polyhedra while keeping the orientation of theother onstant. For eah rotation, a value spei� for a similarity measure isomputed. In this way, all relative orientations of two onvex polyhedra areevaluated, searhing for the best math. The best math is the orientation thatyields the highest value. This value is the similarity value of the two onvexpolyhedra.1.3 Critial orientationsComputing a similarity value for eah relative orientation would be impossible,beause an in�nite number of relative orientations exist. However, it was shown[6℄ [4℄ that the highest similarity value an be found in a set of relative orien-tations that is limited: the set of ritial orientations. These orientations areharaterised by a ertain ombination of edges and faes of both objets that4



must be parallel. In hapter 3, we explain how exatly edges and faes need tobe parallel. It suÆes to searh only through this limited set of orientations, soomputing a similarity value in �nite time is possible.Currently, the �rst algorithms implementing similarity measures based onMinkowski addition onstrut a set of ritial orientations by �rst onstrutinganother set. This set ontains ombinations of edges and faes of the objets.For eah of those ombinations, it is tried to rotate one of the objets in order toget the edges and faes parallel in the orret way. Bekker et al. [2℄ designed analgorithm to �nd one or more suh rotations, given a ombination of edges andfaes. Sometimes this sueeds, in whih ase the found rotation (or rotations)is a ritial orientation. In the other ases, suh a rotation doesn't exist.The set of ombinations grows very fast when the omplexity of the polyhe-dra inreases, beause omplex polyhedra by de�nition have a lot of edges andfaes. Furthermore, Bekker's algorithm takes a lot of time. The ombination ofthese two aspets auses that urrent algorithms are very slow.1.4 Improved methodWe present a method to speed up those algorithms. The idea of the method isthat for some of the ombinations of edges and faes, it an be deteted thatthey an never beome parallel. This saves a all to Bekker's algorithm, whihwould otherwise try to �nd an orientation that doesn't exist.
Figure 1.2: A polyhedron and its SDRIn order to detet whih edges and faes annot beome parallel, the poly-hedra are transformed into a new representation: the slope diagram representa-tion (SDR). An SDR looks like a sphere overed with onneted ars. The arssomehow desribe angles between edges and faes of the original polyhedra. Byomparing distanes between ars and endpoints of ars, ombinations of edgesand faes that annot beome parallel an be identi�ed. These distanes onlyneed to be omputed one, so this is done in a preproessing step, before thebest math is searhed. We desribe the method into more detail in hapter 4.1.5 SummarySummarising, urrent algorithms that ompute a similarity measure based onMinkowski addition are very slow. We introdue an improved algorithm thatdoes the following:1. Compute distanes on the SDRs of the polyhedra2. Create a set of ombinations of edges and faes5



3. Detet ombinations that annot lead to ritial orientations by omparingdistanes on the SDRs4. Find ritial orientations by alling Bekker's algorithm for eah the re-maining ombinations5. Compute a similarity value for eah ritial orientation6. Yield the highest similarity valueIn this algorithm, item number 3 desribes the improvement to urrent algo-rithms. For this improvement, distanes on SDRs are ompared in item number1. Beause SDRs are spheres, measuring these distanes boils down to measur-ing distanes on the surfae of a sphere. This is not trivial. A great deal ofour work was dediated to determining how those distanes an be alulated.Chapter 5 desribes how it an be done.We did two series of speed tests: one for the volume measure and one forthe mixed volume measure. Chapter 6 presents the results. Chapter 7 disussesthese results and onludes the thesis.

6



Chapter 2PreliminariesThe shape of onvex polyhedra is ompared using similarity measures based onMinkowski addition. To ompute suh a measure, a set of ritial orientationsmust be run through, whih an be found using the slope diagram represen-tations (SDRs) of the polyhedra. They onsist of ars overing a unit sphere.The omparison an be speeded up when some distanes in an SDR have beenomputed in advane.This hapter introdues basi onepts, whih are needed by the other hap-ters: onvex polyhedra, Minkowski addition, objets on a sphere, the slopediagram representation and distanes in an SDR.2.1 Convex polyhedraA polyhedron is a three-dimensional solid whih has a surfae onsisting of atpiees, alled faes. The faes are polygons, onneted at their edges, whihare the line segments where two faes meet. The points where three or more ofthese edges meet, are alled verties.A polyhedron is onvex, in short, when it has no dents. More preisely, apolyhedron is onvex if the intersetion of every line with the polyhedron iseither empty or only a single line segment.
Figure 2.1: Convex polyhedron (left) and non-onvex polyhedron (right)One property of a polyhedron is its volume. The volume of a polyhedron Ais denoted by V (A). It an be omputed by standard methods, for example bydividing the polyhedron in pyramids, eah having a fae as base, and summingthe volumes of all pyramids.
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2.2 Minkowski additionMinkowski addition allows us to add two polyhedra, resulting in a new polyhe-dron:
Figure 2.2: Cube (left), pyramid (middle) and their Minkowski sum (right)

Figure 2.3: Two arbitrary onvex polyhedra (left, middle) and their Minkowskisum (right)The Minkowski sum operation is denoted by the symbol �. Formally, theMinkowski sum of objets A and B is de�ned as:A�B � fa+ b : a 2 A; b 2 Bg (2.1)Let's take a loser look at this de�nition, in order to understand what hap-pens. It states that we an �nd the Minkowski sum C by adding all vetors inA to all vetors in B. Consider a vetor a to some point in A. Now add all(in�nitely many) vetors in B to a. The resulting vetors de�ne a set of pointsthat together form a dupliate of B, translated by the vetor a. All these pointsbelong to C. Now repeat this proess for all (in�nitely many) hoies of a in A.The resulting shape C is the Minkowski sum of A and B.A few properties of the Minkowski sum are worth mentioning:� A � B is a polyhedron, so it is possible to ompute its volume, denotedby V (A�B).� A�B � B �A.� When A and B are onvex, then A�B is also onvex.� The positions of A and B determine the position of A � B, but not itsshape.
8



2.3 Objets on a sphereThe slope diagram representation (SDR) of a onvex polyhedron looks like asphere overed with ars. Before we explain SDRs exatly, we �rst need to in-trodue some onepts. In this setion we de�ne \objets" that an be identi�edon a sphere: sphere points, great irles and ars. Some of the harateristis ofthese objets are also desribed.2.3.1 Sphere pointsA sphere point is a vetor of length 1. It thus points to a position on a unitsphere.2.3.2 Great irlesA great irle is a irle on a unit sphere, with radius 1. Consequently, its enturyoinides with the entre of the unit sphere. We introdue some notions aboutgreat irles:� The plane of a great irle is the unique plane that ontains the greatirle.� Two great irles are perpendiular if the planes that ontain them areperpendiular. That is, V ?W ) CV ? CW , where V and W are planesthat ontain the irles CV and CW , respetively.� The poles of a great irle C, are the two unique points that are de�nedby the inward and and outward unit normal vetors of the plane of C.
Figure 2.4: A great irle (left) and an ar (right)2.3.3 ArsWe de�ne an ar to be a piee of a great irle. An ar onsists of two endpointsenlosing an in�nite number of interior points. We introdue a ouple of notionsinvolving ars:� The plane of an ar is the unique plane that ontains the ar.� The poles of an ar A are the two unique points that are de�ned by thepositive and and negative unit normal vetors of the plane of A.9



� The inverse of an ar A, A�1, is the ar formed by projeting it throughthe entre of the unit sphere onto the other side of it. In other words, A�1is the ar that results when applying the inversion symmetry operation(x; y; z)! (�x;�y;�z) to all points of A.� The lune of an ar A, LUNE(A), is the region on the sphere that on-tains A and is bounded by two planes that ontain the poles of A, eahontaining one of the endpoints of A.� The antilune of an ar A, ALUNE(A), is the lune of the inverse ofA. That is, ALUNE(A) � LUNE(A�1). Furthermore, LUNE(A) ��ALUNE(A).
Figure 2.5: The lune (left, dotted) and antilune (right, dotted) of an ar2.4 Slope diagram representationA slope diagram representation (SDR) is a partial desription of a onvex poly-hedron. The slope diagram of a onvex polyhedron A is denoted by SDR(A).It onsists of a olletion of sphere points, alled SDR points, and ars, alledSDR ars. They over a unit sphere in a partiular way.

Figure 2.6: A ube and its SDRAll SDR ars are onneted to other SDR ars; they meet at SDR points.In this way, the SDR ars divide the surfae of the sphere in regions, alledspherial polygons. As suh, an SDR is a subdivision of a unit sphere. Therelation between an objet and its SDR is as follows:� An SDR point is a sphere point that represents a fae of the objet. It isthe endpoint of the outward unit normal vetor of the fae it represents.Beause any unit vetor has length 1, an SDR point is a point on thesurfae of a unit sphere. 10



Figure 2.7: An arbitrary polyhedron and its SDR� An SDR ar is an ar between two SDR points, representing the edgebetween the two faes in the objet that are represented by the two SDRpoints. The angle between these endpoints is equal to the angle betweenthe orresponding faes.� The ars enlose spherial polygons; eah orresponds to a vertex of thepolyhedron. This is the vertex where the edges meet to whih the enlosingars in the SDR orrespond. In our implementation, SDR polygons are notstored as a separate struture, however, beause they an be omputedfrom the SDR points and ars. Besides, our method doesn't use SDRpolygons.Two observations about SDRs are worth mentioning:� an SDR ar is uniquely identi�ed by its endpoints In speial ases, twosphere points e1, e2 do not uniquely identify an ar that onnets thesepoints. This is the ase when \(e1; e2) = 0 or when \(e1; e2) = �. In theseases, there are an in�nite number of ars onneting the sphere points.We prove that this annot happen with the endpoints of SDR ars.Proof The endpoints e1, e2 of an ar A represent adjaent faes of aonvex polyhedron. The angle between two adjaent faes in a polyhe-dron is always less than �. Consequently, \(e1; e2) < �. Furthermore,endpoints of an SDR ar must be distint, so \(e1; e2) > 0.One unique great irle C through e1 and e2 exists. When C is ut at e1and e2, then A is the unique piee of C of whih the angle between theendpoints is less than �. Thus, an SDR ar is uniquely identi�ed by itstwo endpoints. �This allows a de�nition of the word \between": a sphere point p is betweenthe endpoints of an SDR ar when it is on the SDR ar.� SDRs an be used to detet parallelness of faes and edgesThe SDRs of two polyhedra an be overlayed. The overlay may be usedto detet parallelness of faes and edges. For example, if faes in A and Bare parallel, then the orresponding SDR points of SDR(A) and SDR(B)oinide. Similarly, if an edge in A is parallel to a fae in B, then an SDRar of SDR(A) oinides with an SDR point in SDR(B).11



2.5 Distanes in a slope diagram representationThe improved method skips ertain ases, based on distane inequalities whihrequire that some distanes in SDRs are omputed in advane. Beause SDRsare unit spheres, all our distane alulations onern unit spheres. We will referto the unit sphere by simply sphere. There are four kinds of distanes we wantto measure: the distane between two sphere points, between a sphere pointand a great irle, between a point and an ar and between two ars.
Figure 2.8: From left to right: distane between two sphere points, between asphere point and a great irle, between a point and an ar and between twoarsThe distane between two sphere points d(p1; p2) is de�ned as the length ofthe shortest path between them, following the surfae of the unit sphere. Inthe literature, this distane is also alled \geodesi distane". This path is asegment of a great irle, thus an ar. Conluding, the distane between twopoints is equal to the length of the ar between these points. Note that thedistane is measured in radians.Apart from the distane between two sphere points, the other three distanesannot be formulated in a single number. A range of distanes exists, boundedby a minimum distane and maximum distane. We denote these distanes by:� dmin(p; C) and dmax(p; C) for a sphere point and a great irle;� dmin(p;A) and dmax(p;A) for a sphere point and an ar;� dmin(A1; A2) and dmax(A1; A2) for two ars.In hapter 5, we show how these four kinds of distanes an be omputed.Summary This hapter introdued some basi onepts, whih are needed bythe other hapters: onvex polyhedra, Minkowski addition, objets on a sphere,the slope diagram representation and distanes in an SDR.
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Chapter 3Similarity measuresWhen two objets are ompared, the result is a number that indiates to whatdegree the objets are similar. This number is omputed by a funtion alled asimilarity measure. The funtion yields by onvention a number between 0 and1, where 1 indiates exat resemblane. In the literature, sometimes the notiondissimilarity measure is used for a funtion that works the same but yields 0 forexat resemblane.Many similarity or dissimilarity measures exist [7℄. For instane, the mostwell-known dissimilarity measure is the Hausdor� distane. We �rst desribethis measure for illustrative purposes. Then we desribe the family of similaritymeasures based on Minkowski addition.3.1 Hausdor� distaneThe Hausdor� distane between two point sets A and B is de�ned as follows:H(A;B) � max(~h(A;B);~h(B;A))where ~h(A;B) denotes the direted Hausdor� distane whih is de�ned as fol-lows: ~h(A;B) � maxa2Afminb2Bfd(a; b)ggwhere d denotes any distane funtion of two points a and b, for example,Eulidean distane. So the direted Hausdor� distane ~h(A;B) is the distanebetween two speially hosen points a and b. a is the point in A that hasmaximum distane to all points in B, and b is the point in B that has minimumdistane to a. Similarly, ~h(B;A) an be omputed by interhanging A and B.Summarising, the general Hausdor� distane H(A;B) is the maximum oftwo distanes, eah between two points. This auses an important disadvantageof this (dis)similarity measure: it is very sensitive to noise. For instane, whenone of the objets is modi�ed suh that it ontains a \hair", it is probable thata or b in one of the direted Hausdor� distanes gets into this hair. In that ase,the measure an produe a ompletely di�erent result.A harateristi of the Hausdor� distane is that the similarity of two objetsdepends on three fators:1. shape 13



2. relative orientation3. relative positionThus, apart from the shape, the similarity value hanges when one of the objetsis moved or rotated. This phenomenon is often not wanted when only the shapeof the objets has to be ompared. Therefore, it is needed to try all orientationsand positions of the objets, searhing for the best math. The best math isthat relative orientation and position, for whih the Hausdor� distane produesthe lowest value.3.2 Measures based on Minkowski additionTuzikov et al. [6℄ reently introdued similarity measures based on Minkowskiaddition for three-dimensional onvex polyhedra. Beause the shape of theMinkowski sum of two objets is not dependent on their position, these similaritymeasures are naturally independent on the relative position of the objets. Inother words, they are translation invariant, whih is a great advantage. Thus,in order to �nd the best math, only relative orientations have to be searhed.Furthermore, it was shown [6℄ [4℄ that the best math for onvex polyhedra anbe found in a set of relative orientations that is limited. Thus �nding the exatrelative orientation that produes the best math, is possible.We desribe two variants of similarity measures based on Minkowski addi-tion. The �rst variant is based on the volume of the Minkowski sum of the twoompared objets; we name it the volume measure. The seond variant is basedon its mixed volume; we name it the mixed volume measure.3.2.1 Volume measureThe volume measure of two objets A and B makes use of a known relationbetween the volume of A�B and the individual volumes of A and B:V (A�B) � 8V (A) 12V (B) 12 (3.1)This formula is derived from the Brunn-Minkowski inequality [5℄[6℄. Gen-erally inequality holds, exept for the speial ase where A and B have thesame shape and orientation. In that ase, the left-hand side is equal to theright-hand side. This observation suggests dividing the right-hand side by theleft-hand side, yielding a starting point for a similarity measure:8V (A) 12V (B) 12V (A�B) (3.2)This formula is alled the volume funtion. It yields a number between 0and 1, inlusive: it yields at most 1, beause the denominator is greater thanor equal to the numerator; it yields at least 0, beause volumes are involved,and volumes annot be negative. Note also that beause only the volumes of A,B and their Minkowski sum are involved, relative position plays no role. Theformula thus establishes translation invariane.However, the Minkowski sum of A and B hanges when A or B is rotated, asdoes its volume. So the volume funtion (3.2) does not satisfy independene of14



the relative orientation of A and B, or rotation invariane. It is thus required tosearh through all relative orientations to �nd the best math. The best mathis in this ase the relative orientation for whih the volume funtion yields thehighest value. Any relative orientation an be established by rotating objet Bwhile keeping the rotation of objet A onstant. We thus obtain the followingformula: �1(A;B) � maxR2< 8V (A) 12 V (B) 12V (A�R(B)) (3.3)< denotes the set of all rotations in R3. There are an in�nite number ofrelative orientations, so this formula would be useless. However, Tuzikov et al.[6℄ [4℄ proved that the maximum value in formula (3.3) an be found in only alimited set of relative orientations. This set onsists of all relative orientationsof A and B suh that one of the following onditions holds:� Three edges of A are parallel to three faes of B� Two edges of A are parallel to two faes of B, and one fae of A is parallelto one edge of B� One edge of A is parallel to one fae of B, and two faes of A are parallelto two edges of B� Three faes of A are parallel to three edges of BThe set of all relative orientations for whih one of these onditions holds,is alled the set of ritial orientations for the volume measure. In order to�nd the maximum spei�ed by formula (3.3), it is only required to evaluate thevolume funtion (3.2) for eah of these relative orientations. Chapter 5 desribeshow all these ritial orientations an be found eÆiently.3.2.2 Mixed volume measureThe mixed volume measure is based on the so-alled \mixed volume" of twoobjets. This onept was introdued by Minkowski [3℄. It allows an alternativeway of omputing the volume of the Minkowski sum:V (A�B) � V (A) + 3V (A;A;B) + 3V (A;B;B) + V (B)This formula is based on Minkowski's theorem on mixed volumes, appliedto the ase of two three-dimensional objets, see [6℄. The terms V (A;A;B) andV (A;B;B) denote mixed volumes. These mixed volumes are quantities thatsomehow ontribute to the volume of A�B, but this onept is quite abstrat.We will not try to give a onrete lari�ation. However, quoting [1℄, it an beshown that V (A;A;B) is proportional to the area of A and the linear dimensionof B. Similarly, V (A;B;B) is proportional to the linear dimension of A and thearea of B.A relation between the mixed volume V (A;A;B) and the volumes of A andB is known: V (A;A;B) � V (A) 23 V (B) 13 (3.4)15



This inequality was also derived from the Minkowski inequality. It is possibleto use this inequality to reate a mixed volume funtion, just like the volumefuntion we desribed for the volume measure:V (A) 23 V (B) 13V (A;A;R(B)) (3.5)The similarity measure then beomes:�2(A;B) � maxR2< V (A) 23V (B) 13V (A;A;R(B)) (3.6)It has been shown [4℄ that the maximum of this similarity measure an alsobe found in a limited set of orientations; this is the set of ritial orientationsfor the mixed volume measure. It onsists of all relative orientations of A andB suh that the following ondition holds:� Three edges of A are parallel to three faes of BThis ondition is equal to one of the onditions for the ritial orientationsfor the volume measure, whih we desribed before. Thus, the volume measureand the mixed volume measure are very similar. In order to �nd the maximumspei�ed by formula (3.6), it is only needed to evaluate the mixed volume fun-tion (3.5) for eah of the ritial orientations of the mixed volume measure. Thenext hapter desribes how all these ritial orientations an be found eÆiently.Summary We desribed two similarity measures: the volume measure andthe mixed volume measure. They an both be omputed by searhing for themaximum of a funtion that is evaluated for a limited number of ritial orien-tations.
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Chapter 4MethodWhen the shapes of two onvex polyhedra are ompared, the result is a numberthat indiates to what degree the shapes are similar. This number is alleda similarity value. To ompute this value, a funtion must be evaluated for alimited set of ritial orientations. The orientation that yields the highest valueof this funtion, is alled the best math. The similarity value of the onvexpolyhedra is the funtion value of this best math.The ritial orientations are haraterised by ombinations of edges and faesin the polyhedra that must be parallel, as desribed in 3.2.1 and 3.2.2. In thishapter, we �rst disuss a primitive method, and then an improved method.The primitive method is disussed in order to have a referene to omparethe improved method to. It searhes for ritial orientations by treating all ofthe ombinations of edges and faes. For eah ombination, it tries to rotate oneof the polyhedra suh that the edges and faes in the ombination get parallel.The improved method �nds the ritial orientations faster, beause it skipssome of the ombinations. That an be done beause for these ombinations, itan be determined that it is not possible to get the edges and faes parallel.4.1 Primitive method
Figure 4.1: The ritial orientations are the relative orientations of A and Bsuh that in the overlay of SDR(A) and SDR(B) three ars in SDR(A) oinidewith three SDR points in SDR(B).The ritial orientations are haraterised by onditions about parallel faesand edges. These orientations an be identi�ed using the slope diagram repre-sentation (SDR). When the SDRs of onvex polyhedra A and B are overlayed,17



parallelness of faes and edges in A and B appears as SDR points oinidingwith SDR ars.The primitive method has two variants, one for the volume measure and onefor the mixed volume measure. The variants treat di�erent kinds of ombina-tions of ars and SDR points, beause the volume measure and the mixed volumemeasure have di�erent parallelness onditions. We �rst desribe the variant forthe mixed volume measure, beause it has only one parallelness ondition. Afterthat, we desribe the volume measure, whih is basially an extension to thevariant for the mixed volume measure.4.1.1 Mixed volume measureWhen using slope diagram representations, the ondition for the mixed volumeas desribed in 3.2.2 beomes:� Three SDR ars of SDR(A) oinide with three SDR points of SDR(B)Note that this ondition also inludes the speial ase that SDR points ofSDR(A) oinide with SDR points of SDR(B), beause an SDR points areendpoints of SDR ars.A straightforward approah to �nding all orientations satisfying the aboveondition, is treating all ombinations of three SDR ars of A and three SDRpoints of B. Eah ombination looks like a six-tuple (aA1 ; aA2 ; aA3 ; pB1 ; pB2 ; pB3 ),where aAi are ars in SDR(A) and pBi are points in SDR(B), and eah aAi mustoinide with pBi . For eah of these ombinations, we have to try to rotate Bsuh that the points fall on the ars. If we managed to �nd suh a rotation R,we have to evaluate the mixed volume funtion (3.5). We repeat this proessfor all ombinations, searhing for the maximum of the mixed volume funtion.This maximum is the similarity of the ompared polyhedra.Finding a rotation R suh that three SDR points pB1 ; pB2 ; pB3 of R(SDR(B))oinide with three ars aA1 ; aA2 ; aA3 of A an be done using an algorithm devel-oped by Bekker [2℄, alled tvt. It uses numerial approximation tehniques toyield zero or more rotations R.The primitive method is implemented by the following algorithm:� = 0for all aA1for all aA2 > a1for all aA3 > a2for all pB1for all pB2for all pB3R = tvt(aA1 ; aA2 ; aA3 ; pB1 ; pB2 ; pB3 )�R = V (A) 23 V (B) 13V (A;A;R(B))if �R > � then � = �RAlgorithm 1a: primitive method for the mixed volume measureThere are two reasons why this algorithm is slow:1. The funtion tvt is quite slow: on urrent home PCs, it an be exeutedonly about 1000 times per seond.18



2. There are a lot of ombinations, so tvt is alled many times.Small optimisations Note that it does not matter in whih order we say \aA1oinides with pB1 ", \aA2 oinides with pB2 " and \aA3 oinides with pB3 ". So forexample, (aA1 ; aA2 ; aA3 ; pB1 ; pB2 ; pB3 ) is equivalent to (aA2 ; aA1 ; aA3 ; pB2 ; pB1 ; pB3 ). Thereare six of those equivalent permutations. In this algorithm, the permutationsof SDR ars are omitted. In this way, a onstant fator of six is gained. This isestablished by the >'s; they use the fat that SDR ars are linearly ordered inour implementation.There are other ombinations of SDR ars and SDR points that an be leftout. Those are the ombinations for whih one of the following onditions hold:� pB1 = pB2 = pB3� aA1 = aA2 = aA3� pBi = pBj while aAi = aAjFor these ombinations always an in�nite number of ritial orientations exist.For example, the �rst ondition orresponds to the ase that the three hosenpoints are equal. We show that this ombination an be left out.pB1 = pB2 = pB3 means that there is e�etively only one SDR point of Bthat is restrited in its position, leaving an in�nite number of satisfying relativeorientations. Let M denote the set of these relative orientations. In anotheriteration of the nested for-loops, a ombination will our for whih two of thep's are the same as before, and the third di�erent. Let N denote the set ofrelative orientations satisfying this ombination. N is a subset of M , beause itontains the orientations that satisfy the same ondition and one extra ondi-tion. So these orientations will not result in a lower value of the (mixed) volumefuntion. �All ombinations of SDR ars and SDR points that satisfy the above ondi-tions, are left out in our implementation of the primitive method. However, itan be argued that these ombinations should not be left out in the primitivemethod, beause the primitive method wouldn't be primitive anymore.4.1.2 Volume measureUsing the slope diagram representation, the ritial orientations of the volumemeasure an be de�ned as the set of orientations satisfying one of the followingonditions:� Three SDR ars of SDR(A) oinide with three SDR points of SDR(B);� Two SDR ars of SDR(A) oinide with two SDR points of SDR(B), andone SDR point of SDR(A) oinides with one ar of SDR(B);� One SDR ar of SDR(A) oinides with one SDR point of SDR(B), andtwo SDR points of SDR(A) oinide with two ars of SDR(B);� Three SDR points of SDR(A) oinide with three SDR ars of SDR(B).19



The primitive method works essentially the same for the volume measure asfor the mixed volume measure. For eah of the onditions, the primitive methodhas six nested for-loops:� = 0for all aA1for all aA2 > aA1for all aA3 > aA2for all pB1for all pB2for all pB3R = tvt(aA1 ; aA2 ; aA3 ; pB1 ; pB2 ; pB3 )�R = 8V (A) 12 V (B) 12V (A�R(B))if �R > � then � = �Rfor all aA1for all aA2 > aA1for all pA3for all pB1for all pB2for all aB3R = tvt(aA1 ; aA2 ; pA3 ; pB1 ; pB2 ; aB3 )�R = 8V (A) 12 V (B) 12V (A�R(B))if �R > � then � = �Rfor all aA1for all pA2for all pA3for all pB1for all aB2for all aB3R = tvt(aA1 ; pA2 ; pA3 ; pB1 ; aB2 ; aB3 )�R = 8V (A) 12 V (B) 12V (A�R(B))if �R > � then � = �Rfor all pA1for all pA2for all pA3for all aB1for all aB2for all aB3R = tvt(pA1 ; pA2 ; pA3 ; aB1 ; aB2 ; aB3 )�R = 8V (A) 12 V (B) 12V (A�R(B))if �R > � then � = �RAlgorithm 1b: primitive method for the volume measure
20



a2

a3

a1

p2

p3

p1

Figure 4.2: It is not always possible to rotate B suh that three SDR points ofSDR(B) oinide with three SDR ars of SDR(A). This ombination of SDRars and SDR points an thus be skipped. This observation is the essene ofthe improved method.4.2 Improved method4.2.1 Mixed volume measureFinding ritial orientations for the mixed volume measure requires rotatingB suh that three SDR points of SDR(B) oinide with three SDR ars ofSDR(A). In some ases there is no suh orientation. Consider for example�gure 4.2. It is lear that the marked SDR points of SDR(B) an never fallon the marked ars of SDR(A). Points p1 and p2 ould �t on a1 and a2, butthen p3 annot fall on a3, beause p3 is lose to p2 while a3 is not lose to a2.Generally speaking, the distanes do not agree.There is no need to all the slow funtion tvt with this ombination, be-ause we already know that tvt annot �nd a rotation for it. Skipping thisombination saves time. When the distanes between SDR ars in SDR(A) anddistanes between SDR points in SDR(B) are known, the remaining ombina-tions are identi�ed by the following ondition:dmin(aA1 ; aA2 ) � d(pB1 ; pB2 ) � dmax(aA1 ; aA2 ) anddmin(aA2 ; aA3 ) � d(pB2 ; pB3 ) � dmax(aA2 ; aA3 ) anddmin(aA1 ; aA3 ) � d(pB1 ; pB3 ) � dmax(aA1 ; aA3 ) (4.1)These inequalities are alled distane inequalities. The following algorithmskips ombinations for whih these distane inequalities do not hold:� = 0for all aA1for all aA2 > aA1for all aA3 > aA2for all pB1for all pB2for all pB3if dmin(aA1 ; aA2 ) � d(pB1 ; pB2 ) � dmax(aA1 ; aA2 ) anddmin(aA2 ; aA3 ) � d(pB2 ; pB3 ) � dmax(aA2 ; aA3 ) anddmin(aA1 ; aA3 ) � d(pB1 ; pB3 ) � dmax(aA1 ; aA3 ) thenR = tvt(aA1 ; aA2 ; aA3 ; pB1 ; pB2 ; pB3 )�R = V (A) 23 V (B) 13V (A;A;R(B))if �R > � then � = �RAlgorithm 2: improved method for the mixed volume measure21



Summarising, in order to determine whih ombinations an be skipped,the distanes between the SDR points of SDR(B) must be ompared to thedistanes between the SDR ars of SDR(A). These distanes an be omputedand stored in tables during a preproessing step. In hapter 5, it is explainedhow these distanes an be omputed.4.2.2 Volume measureFor the volume measure, similar improvements an be done based on distaneinequalities. The inequalities in formula (4.1) are appliable again for the�rst nesting of for-loops in algorithm 1b. The distanes between three SDRars of SDR(A) are ompared to the distanes between three SDR points ofSDR(B). This ombination of SDR ars and SDR points an be written as(aA1 ; aA2 ; aA3 ; pB1 ; pB2 ; pB3 ). Similar inequalities apply to the the fourth nesting,but this time the SDR points ome from SDR(A) and the SDR ars ome fromSDR(B).For the seond and third nesting, the ombinations are more ompliated.The ombinations of the seond nesting are of the form (aA1 ; aA2 ; pA3 ; pB1 ; pB2 ; aB3 ).For suh ombinations, also distanes between an SDR point and an SDR armust be ompared. For these omparisons, it must be tested whether the rangesof distanes overlap:dmin(aA1 ; aA2 ) � d(pB1 ; pB2 ) � dmax(aA1 ; aA2 ) anddmax(pA3 ; aA2 ) � dmin(pB2 ; aB3 ) anddmin(pA3 ; aA2 ) � dmax(pB2 ; aB3 ) anddmax(pA3 ; aA1 ) � dmin(pB1 ; aB3 ) anddmin(pA3 ; aA1 ) � dmax(pB1 ; aB3 )The ombinations of the third nesting are of the form (aA1 ; pA2 ; pA3 ; pB1 ; aB2 ; aB3 ),and are thus similar to the ombinations for the seond nesting.All mentioned distane inequalities an be easily plugged into the primi-tive method for the volume measure by adding if-statements. The resultingimproved method is not printed.Summary We introdued a primitive and an improved method for omputingthe similarity of two onvex polyhedra. The improved method is faster beause ittakes distane inequalities in aount. Both methods an ompute two variantsof similarity measures based on Minkowski addition: the volume measure andthe mixed volume measure.
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Chapter 5Distane omputationsIn this hapter we explain how the distane between two sphere points and thedistane between two ars an be omputed. Computing the distane betweentwo points will prove to be simple, but omputing the distane between two arsrequires more work. We explain how to ompute the distane between two arsin four steps. The �rst step is the distane between two sphere points. Thenwe onsider the distane between a sphere point and a great irle, the distanebetween a sphere point and an ar, and �nally the distane between two ars.5.1 Distane between two points
Figure 5.1: Distane between two pointsThe distane between two sphere points p1 and p2 is equal to the length ofthe ar D between these points. The length of D is proportional to the angle �between p1 and p2. Beause sphere points lie on the surfae of the unit sphereand we measure in radians, the length of D is equal to the angle between p1 andp2. Computing this angle in Cartesian oordinates an be done using the innerprodut: � = os�1(p1 � p2). Thus:d(p1; p2) � os�1(p1 � p2)5.2 Distane between a point and a great irleNow that we know how to ompute the distane between two sphere points, wego to the next step: omputing the minimum and maximum distane between23



a sphere point p and a great irle C. First, we searh for the points on Cthat are the losest to and the farthest from p. We all these points qmin andqmax, respetively. The minimum distane between p and C is then equal tothe distane between p and qmin. Thus, dmin(p; C) = d(p; qmin). Similarly,dmax(p; C) = d(p; qmax). We �rst desribe how to �nd qmin, and then qmax.5.2.1 Minimum distane
Figure 5.2: Minimum distane between a point and a great irle (left); urvesof equal (minimum) distane to a great irle (right). The great irle is drawnthik.qmin is the point on C that has minimum distane to p. This distane isequal to the length of the ar D between p and qmin.Theorem 5.2.1 D ? CProof Without loss of generality, we de�ne an orthogonal set of base vetorssuh that the entre of the unit sphere is in the origin, C is in the xz-planeand p is in the xy-plane. For eah d 2 (0; �), the points on the sphere havingdistane d to the point p de�ne a irle CD(d). When d inreases, starting from0, there is a unique point where CD(d) �rst touhes C. This is the point qmin.p, qmin, and the ar D between them, are all in the xy-plane. This plane isperpendiular to the xz-plane, whih is the plane of C. Beause the planes ofD and C are perpendiular, D ? C. �From D ? C it follows that qmin an be found by moving from p along thesurfae of the sphere to C, perpendiularly to C. This an be done omputa-tionally by a projetion: �rst, p is projeted orthogonally to the plane of C.Two distint vetors e1 and e2 in the plane of C are needed for the projetion.The projetion an now be done using the following formula:p0 = (e1 � p)e1 + (e2 � p)e2The resulting point p0 is on the intersetion line of the planes of C and D. Next,p0 is normalised, yielding qmin: qmin = p0jp0jA problem arises when p is a pole of A, beause then p0 is the origin of thesphere and jp0j = 0. This vetor annot be normalised. However, we do not needa projetion in this ase beause the minimum distane between an equator andits pole is known to be 12�. 24



5.2.2 Maximum distane
Figure 5.3: Maximum distane between a sphere point and a great irle (left);urves of equal maximum distane to a great irle (right). The great irle isdrawn thik.qmax is the point on C that has maximum distane to p. We now prove thatqmax is exatly on the other side on C with respet to qmin.Theorem 5.2.2 qmax = �qminProof Like in the proof in the former setion, we inrease d, but now ontinu-ing from the distane where we stopped then. The intersetion of CD(d) and Cthen onsists of two points, until these points meet in the point the farthest fromp: this is qmax. Like qmin, this point is in the xy-plane and on C. The xy-planeintersets C at exatly two points, whih are eah other's inverse beause C isentred at the origin. These are the points qmin and qmax, so qmax = �qmin. �Summary Computing the minimum and maximum distane between a spherepoint p and a irle C �rst requires �nding the points qmin and qmax. These anbe omputed using a projetion and a normalisation. Then, the distanes anbe omputed as distanes between sphere points: dmin(p; C) = d(p; qmin) anddmax(p; C) = d(p; qmax).5.3 Distane between a point and an arNow that we have found the minimum and maximum distane from a pointto a great irle, we an use this information to ompute the minimum andmaximum distane between a sphere point p and an ar A. The ar A is partof a great irle CA. We ompute the points qmin and qmax on the irle CA asdesribed in setion 5.2. The endpoints of A serve as vetors de�ning the planeof C, needed for the projetion. We �rst onsider the minimum distane, andthen the maximum distane.5.3.1 Minimum distaneIf qmin happens to be an interior point of A, then this point of A must be thelosest to p, beause qmin is the point on CA that is losest to p, and A is a partof CA. This happens when p 2 LUNE(A). The minimum distane between pand A is then equal to the distane between the points p and qmin. Thus:qmin 2 A) dmin(p;A) � d(p; qmin):25



Figure 5.4: Minimum distane between a sphere point and an ar. In the leftpiture, the point is in the lune of the ar; in the right piture, it is not.If qmin is not an interior point of A, then there is no interior point of A thathas minimum distane to p. So one of the endpoints of A must have minimumdistane to p. When a1 and a2 are the endpoints of A, we an ompute thedistane of eah to p and take the minimum:qmin =2 A) dmin(p;A) � min(d(p; e1); d(p; e2))Determining whether qmin 2 A an be done using the following formula:(e1 � qmin) � (qmin � e2) > 0 and(e1 � qmin) � (e1 � e2) > 0 �) qmin 2 AThe �rst part is true if and only if qmin is a vetor between the endpoints ofA, or between their negative ounterparts. The seond part is true if and onlyif qmin is not between the negative ounterparts.
Figure 5.5: Curves of equal minimum distane to an ar, and its lune. Frontview (left) and bak view (right). The ar is drawn thik.Figure 5.5 shows urves of equal minimum distane to an ar A. The urveshave a di�erent shape in the lune of A than outside the lune. Inside the lune,the shape is like a part of the shape of the urves of minimum distane to thegreat irle arrying A. This shows that the minimum distane from a point pin L(A) is equal to the minimum distane between the sphere points p and qmin,the point on the irle ontaining A that has minimum distane to p.5.3.2 Maximum distaneSimilarly, if qmax is an interior point of A, then the maximum distane betweenp and A is equal to the distane between p and qmax. This happens whenp 2 ALUNE(A). Otherwise, the maximum distane is equal to the distanebetween p and one of the endpoints of A:26



Figure 5.6: Maximum distane between a sphere point and an ar. In the leftpiture, the point is in the antilune of the ar; in the right piture, it is not.qmax 2 A) dmax(p;A) � d(p; qmax)qmax =2 A) dmax(p;A) � max(d(p; a1); d(p; a2))Determining whether qmax 2 A now beomes:(e1 � qmin) � (qmin � e2) > 0 and(e1 � qmin) � (e1 � e2) < 0 �) qmax 2 A
Figure 5.7: Curves of equal maximum distane to an ar, and its antilune. Frontview (left) and bak view (right). The ar is drawn thik.Figure 5.7 shows urves of equal maximum distane to an ar A. It is learthat the distane urves in the antilune have the same shape as a part of theurves of maximum distane to a great irle; the great irle of whih A is apart. This shows that the maximum distane from a point p in ALUNE(A)is equal to the maximum distane between p and qmax, the point on the irleontaining A that has maximum distane to p.More remarkable is the fat that �gure 5.7 and �gure 5.5 are very similar.The urves of maximum distane to A are equal to the urves of minimumdistane to A�1. The ar A�1 represents the set of points that have maximumdistane to A, whih is �. This leads to an alternative de�nition of the maximumdistane: dmax(p;A) � � � dmin(p;A�1) (5.1)Summary Computing the minimum and maximum distane between a pointand an ar �rst requires �nding the points qmin and qmax. Then, it is needed totest if qmin or qmax is an interior point of A. If qmin is an interior point of A,then the minimum distane is equal to the distane between the sphere pointsp and qmin . Otherwise, the minimum distane is equal to the distane betweenp and an endpoint of A. The maximum distane an be found similarly.27



5.4 Distane between two arsNow that we know how to ompute the distane between a point and an ar,we are able to ompute the distane between two ars. To this end, we onsiderthe variable points q1 and q2 on the ars A1 and A2, respetively. The mini-mum distane between A1 and A2 is the minimum distane between q1 and q2.Therefore, we �rst searh for the points q1;min and q2;min, whih are the posi-tions of q1 and q2 with minimum distane. After that, the minimum distanean be easily omputed by dmin(A1; A2) = d(q1;min; q2;min). Similarly, in orderto ompute the maximum distane between A1 and A2, we searh for q1;maxand q2;max and ompute their distane by dmax(A1; A2) = d(q1;max; q2;max). We�rst disuss the minimum distane, and then the maximum distane.5.4.1 Minimum distaneWe identify two ases that an apply:1. q1;min and q2;min are endpoints of A1 and A22. q1;min is an endpoint of A1 and q2;min is an interior point of A2, or vieversaOne might expet a third ase in whih q1;min and q2;min are both interiorpoints of A1 and A2, but this ase an never our:Theorem 5.4.1 q1;min and q2;min are not both interior points of A1 and A2Proof If q1;min and q2;min are interior points of A1 and A2, then there are twopossible auses:1. the ars are urved towards eah other, or2. the ars interset, implying a distane of zero.We show that both situations annot happen. First, two ars annot interset,beause they represent edges of a polyhedron and edges never interset. Seond,the ars annot be urved towards eah other, beause in that ase the irlesof whih the ars are a part ould not have the same entre. But ars are partsof great irles, whih all have the same entre, so this an never be the ase. �Conluding, the minimum distane between two ars is equal to the minimumdistane between an ar and an endpoint of the other ar. We already know howto ompute the minimum distane between a point and an ar: it is disussed in5.3.1. However, it is not known whih endpoint to take. So all four possibilitiesmust be heked, searhing for the minimum:dmin(A1; A2) = min(dmin(e11; A2); dmin(e12; A2); dmin(e21; A1); dmin(e22; A1))(5.2)Where eij denotes endpoint i of ar j. Formula 5.2 is de�ned in terms of theminimum distane between a point and an ar. Figure 5.8 shows that theposition of one endpoint of an ar relative to the lune of the other ar plays arole, just like the ase of the distane between a point and an ar.28



Figure 5.8: Minimum distane between two ars. In the right piture, an end-point of one ar is in the lune of the other ar.5.4.2 Maximum distane
Figure 5.9: Maximum distane between two ars. In the right piture, anendpoint of one ar is in the antilune of the other ar.For omputing the maximum distane, three ases an apply:1. q1;max and q2;max are endpoints of A1 and A22. q1;max is an endpoint of A1 and q2;max is an interior point of A2, or vieversa3. q1;max and q2;max are interior points of A1 and A2The �rst two ases are similar to the two ases for the minimum distane,as is the omputation of the maximum distane in these ases:dmax(A1; A2) = max(dmax(e11; A2); dmax(e12; A2); dmax(e21; A1); dmax(e22; A1))(5.3)But the third ase deserves speial attention. In 5.4.1 we argued that two arsA1 and A2 annot interset, whih would otherwise imply a minimum distaneof zero. Reall that formula 5.1 states that the maximum distane between apoint and an ar an also be reformulated as � minus the minimum distanebetween the point and the inverse of the ar:dmax(p;A1) � � � dmin(p;A�11 ) (5.4)Beause we now need to ompute the minimum distane between two ars,we hoose p on A2 suh that it has minimum distane to A�11 . Key observationis that A�11 and A2 an interset. Thus, point p an be an internal point of A�11and A2 at the same time, implying dmin(p;A�11 ) = 0. In this ase, formula 5.4yields a maximum distane of �. Conluding:29



A�11 \A2 = ; ) dmax(A1; A2)= max(dmax(e11; A2); dmax(e12; A2); dmax(e21; A1); dmax(e22; A1))A�11 \A2 6= ; ) dmax(A1; A2) = �
Figure 5.10: Maximum distane between two ars, when one ar intersets theinverse of the other ar. The inverse ar is drawn dotted. Left: front view;right: bak view.So it must be heked whether the ars A�11 and A2 interset or not. In thefollowing paragraph, we desribe how this an be done.Intersetion testing First, let l1 be the straight line segment that onnetsthe endpoints e11 and e21 of ar A�11 . Similarly, let l2 be the straight line segmentthat onnets the endpoints e12 and e22 of ar A2. A�11 and A2 interset if andonly if a unique half-line lint from the origin through the intersetion pointexists, whih intersets l1 in the point pl1 and l2 in the point pl2 . So, A�11 andA2 interset if a point pl1 on l1 is a linear multiple of a point pl2 on l2. To hekwhether this is the ase, we �rst parametrise l1 with parameter � (0 � � � 1)and l2 with parameter � (0 � � � 1):l1 = �e21 + (1� �)e11l2 = �e22 + (1� �)e12By equating l1 and � � l2, with � > 0, we establish that pl1 and pl2 are onone half-line: �e21 + (1� �)e11 = �(�e22 + (1� �)e12)This equation an be rewritten as follows:(e21 � e11)�+ (e22 � e12)�� � e22� = �e11 (5.5)Beause all eij are three dimensional vetors, formula 5.5 an be seen as a3x3 linear system of equations, with unknowns �, �� and �. These parametersan be found by standard methods, suh as Gaussian elimination. When thefound values satisfy � > 0, 0 � � � 1 and 0 � � � 1, A�11 and A2 interset.Summary The minimum distane between two ars an be de�ned in termsof the minimum distane between one endpoint and one ar. The same gen-erally holds for the maximum distane between two ars, exept when one arintersets the inverse of the other ar. In that ase, the maximum distane is �.30



Chapter 6ResultsIn order to test how muh faster the improved method is than the primitivemethod, we implemented a omputer program that simulates the omparisonof two onvex polyhedra. This program takes two polyhedra as input. Thepolyhedra are transformed into onvex versions by omputing their onvex hull.After that, the program omputes a desired similarity measure. This an be thevolume or the mixed volume measure. The output of the program onsists oftwo numbers, one for the primitive method and one for the improved method.These numbers indiate for both methods the number of alls to tvt needed.Reall that this is the slow funtion that tries to �nd one or more orientationsfor whih spei� parallelness onditions hold, for a given ombination of arsand SDR points. By reording both numbers, the improved method an beompared with the primitive method.We performed two series of performane tests. In the �rst series, the methodsomputed the volume measure; in the seond the methods omputed the mixedvolume measure. This was done by repeatedly exeuting the program with asinput a pair of generated polyhedra of inreasing omplexity, where omplexityis de�ned as the number of faes. The polyhedra are generated randomly, suhthat both polyhedra are equally omplex.We �rst present the results for the volume measure, and then those for themixed volume measure. For both we show how the number of alls to tvt relatesto the omplexity of the polyhedra.6.1 Volume measureThe left graph of �gure 6.1 shows the number of alls to tvt needed for theprimitive method. It shows that the time needed to ompare two polyhedra ismore than proportional to their omplexity. Notie the huge sale and reall thatexeuting tvt 1000 times takes one seond on urrent home PCs. This meansfor example that polyhedra with 24 faes require about ten days to ompareusing the primitive method. Even when we use a omputer that is a hundredtimes faster, the time required to ompare suh polyhedra still is far beyondpratiable.The graph on the right shows the performane of the improved method.This graph looks similar to that of the left graph, but there are two di�erenes:31



the range on the y-axis is smaller and the slope is lower. With this method,polyhedra with 24 faes require about half a day to ompare.

Figure 6.1: Performane of methods for the volume measure. Primitive method(left) and improved method (right). Notie the di�erene in sale.

Figure 6.2: Performane of methods for the volume measure. Primitive andimproved method ombined. Large sale on the y-axis (left) and smaller sale(right).Figure 6.2 shows the performane of both methods ombined in one graph.The left graph shows not only that the improved method performs better thanthe primitive method, but also that the improvement inreases when the om-plexity of the polyhedra inreases. The right graph is a opy of the left one,but with a smaller range on the y-axis. It shows that the improved method alsoperforms better with polyhedra of very low omplexity. For example, when twopolyhedra with 12 faes are ompared, the primitive method makes 149 millionalls to tvt (4 hours) while the improved method only needs 17 million (30minutes).Curve �tting The left graph of �gure 6.3 shows the performane of the meth-ods for the volume measure on a logarithmi sale. The fat that the data pointsof eah method lie approximately on a straight line, indiates an underlying32



Figure 6.3: Performane of methods for the volume measure. Primitive andimproved method ombined on a logarithmi sale (left) and on a linear salewith �tted urves (right).funtion of the form y = a � xb. We used the least squares method to �t urveson the data points, based on this funtion. The funtions of the resulting urvesare:� y = 6:52x5:90 for the primitive method;� y = 25:07x4:48 for the improved method.The urves of these funtions on a linear sale are shown in the right graph of�gure 6.3. Note that in these funtions, x denotes the number of faes in thepolyhedra. In the following, we will also use the letter n for this quantity. Forthe the time omplexity, only the power of x (or n) matters: y / x5:90 for theprimitive method and y / x4:48 for the improved method.The primitive method ontains four times a nesting of six for-loops, whihontain a all to tvt. All four nestings onsist of three loops running throughSDR ars or SDR points in SDR(A), and three loops running through ars orSDR points in SDR(B). The number of SDR ars and SDR points in eah loopis proportional to n. So the number of alls to tvt must be proportional to n6.The fat that there are four of these nested strutures has no inuene on thetime omplexity of the method; it only matters a onstant fator.We found a omplexity of n5:90, so there is a slight di�erene. This di�erenean be explained by the fat that some ombinations of SDR points and SDRars are left out struturally, as explained in setion 4.1.The improved method performs better when the ompared objets are moreomplex. This an be explained as follows. The method uses distane inequal-ities to skip ombinations of SDR points that annot oinide with SDR ars.When a polyhedron beomes more omplex, the SDR ars in its SDR beomeshorter. Then the hane is smaller that two SDR points of another SDR an�t between two of these SDR ars. So the more omplex the objets, the moreombinations an be skipped. In [1℄ it is shown that the time omplexity of thismethod is n4:5, whih agrees reasonably well with the value of our �tted urve.33



6.2 Mixed volume measure

Figure 6.4: Performane of methods for the mixed volume measure. Primitivemethod (left) and improved method (right).

Figure 6.5: Performane of methods for the mixed volume measure. Primitiveand improved method ombined. Large sale on the y-axis (left) and smallersale (right).We did the same performane tests for the mixed volume measure. Theresults are shown in �gure 6.4 and 6.5. The graphs are similar to those for thevolume measure. However, as may be expeted, the number of alls to tvt islower. For example, for polyhedra with 12 faes, the primitive method needs 1,9million alls to tvt (31 min) and the improved method needs 192.000 (3 min).Curve �tting The left graph of �gure 6.6 shows the performane of the meth-ods for the mixed volume measure on a logarithmi sale. The data points ofboth methods lie again approximately on a straight line. Again we �tted urves,whih are shown by the right graph of �gure 6.6. The funtions of these urvesare:� y = 0:71x5:95 for the primitive method;34



Figure 6.6: Performane of methods for the mixed volume measure. Primitiveand improved method ombined on a logarithmi sale (left) and on a linearsale with �tted urves (right).� y = 2:13x4:59 for the improved method.Conluding, the time omplexity of both methods for the mixed volume isapproximately equal to their omplexity for the volume measure. These om-plexities are roughly proportional to n6 for the primitive method and n4:5 forthe improved method. We didn't �nd a satisfying explanation for this foundomplexity yet; it will be left as future work.The primitive and improved methods perform a onstant fator better forthe mixed volume measure, beause for this method the parallelness onditionsare more strit, so less ombinations need to be heked.Data struture optimisation In our implementation, the distanes betweenSDR points and SDR ars are stored in ordinary tables. The main loop runsthrough all ombinations of points and ars and uses distane inequalities forevery ombination to determine whether the ombination an be skipped ornot. Beause usually many ombinations an be skipped, many iterations inthe for-loops are done without a all to tvt.To avoid this, we also tried another implementation. This implementationshas a more sophistiated data struture, in whih SDR points and SDR arsare sorted in several ways. The main loop uses this ordering to eÆiently yieldombinations of SDR points and SDR ars that annot be skipped. This savesiterations in for-loops.We tested this implementation and found that this saving beame signi�antwith polyhedra of more than 24 faes. However, we hose to abandon the idea,beause it is more omplex and it has no inuene on the number of alls totvt needed.Summary The improved method works well. While the omplexity of theprimitive method is n6, the omplexity of the improved method is n4:5.
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Chapter 7ConlusionThe shape of two objets an be ompared by a omputer program using simi-larity measures. The family of similarity measures based on Minkowski additionprovides a well-founded way to do this. We desribed two variants of these mea-sures. The �rst variant uses the volume of the Minkowski sum, and the seondvariant uses the mixed volume of the Minkowski sum.Current implementations have the disadvantage that they are very time-onsuming: their time omplexity is proportional to n6, where n is proportionalto the omplexity of the polyhedra. We developed, implemented and testedimproved algorithms for both variants. These algorithms proved to redue thetime omplexity to n4:5.Although this is a signi�ant improvement, a time omplexity of n4:5 is stillvery high. For example, simple polyhedra with 12 faes still need 3 minutes toompare on urrent home PCs, using the mixed volume measure. Comparingusing the volume measure takes 31 minutes. Even for these simple polyhedra,the time needed to ompare is far beyond usable. Partiularly, when one poly-hedron needs to be ompared to a omplete database of polyhedra, then fastomparison is important. So the use of these improved methods is still verylimited.7.1 Future workWe found a time omplexity of n4:5 for both variants of similarity measuresomputed by the improved algorithm. That the volume measure apparentlyhas this time omplexity still asks for an explanation.The method presented in this thesis skips ombinations using distane in-equalities. These inequalities take distanes along the surfae in aount, butnot angles. A further improvement would be to implement an algorithm thatalso takes angles in aount.A major disadvantage of the method is that it an only be used for onvexpolyhedra. It would be an improvement if the method ould be altered suhthat it also allows for polyhedra that are not onvex.Furthermore, it is not really known how to apply similarity measures basedon Minkowski addition. An appliation might be objet reognition: a omputerprogram ompares an objet to a database of objets, and possibly �nds the36



objet that is most similar.The similarity of two onvex polyhedra is expressed in one similarity value.However, there are unertainties about this similarity value:� Has it the power to �nd the orret objet in a database, when we ompareto another objet that is not an exat dupliate?� What does it say about the similarity of two objets when only theironvex hulls are ompared?� What does it say about the similarity of two objets when they are ap-proximated by polyhedra with very few faes?Thus, the method an be further improved and it needs more testing in orderto determine how well similarity measures based on Minkowski additions anbe applied in pratie.
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