Speeding up the computation of similarity
measures based on Minkowski addition in 3D

Axel Brink

April 2004

V&
¢ ¢

Master’s thesis

Supervisor: Henk Bekker

Scientific Visualization and Computer Graphics
Department of Mathematics and Computing Science

Rijksuniversiteit Groningen Ru G



Abstract

The shape of two objects can be compared by a computer program using sim-
ilarity measures. The family of similarity measures based on Minkowski addi-
tion provides a well-founded way to do this. In practice, they are restricted to
comparing the shapes of convex polyhedra. We describe two variants of these
measures. The first variant uses the volume of the Minkowski sum, and the
second variant uses the so-called mixed volume of the Minkowski sum.
Current implementations have the disadvantage that they are very time-
consuming: their time complexity is proportional to n%, where n is proportional
to the complexity of the polyhedra. We developed, implemented and tested
improved algorithms for both variants. These algorithms proved to reduce the

time complexity to n*?®.
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Chapter 1

Introduction

One of the subjects of current research is object recognition by machines. This
can for example be applied in business: it enables automatically determining
whether an object is in store, when somebody holds a duplicate of it in front of
a camera.

This object recognition requires three steps: first, an input device (a camera
or a laser beam) observes a real-world object and stores the visually perceived
information. Second, the three-dimensional shape of the real-world object is
inferred from the visual information, and is represented as a three-dimensional
object in the computer. Third, the shape of this object is compared to a database
of known objects, in order to determine which object was held in front of the
input device.

When two objects are compared, the result is a number that indicates to
what degree the objects are similar. This number is computed by a function
called a similarity measure. Many similarity measures exist; each is based on a
specific principle.

1.1 Similarity measures based on Minkowski ad-
dition

In this thesis, we describe similarity measures based on Minkowski addition.
This is a kind of addition that allows us to add two objects, resulting in a new
object. This new object is referred to as the Minkowski sum of the original
objects. Minkowski addition is explained in chapter 2, along with other basic
concepts.

Tuzikov et al. [6] recently suggested that the Minkowski sum of two three-
dimensional objects has some properties that can be used to create a similarity
measure. These properties include both its volume and its mized volume. While
the volume of an object is an ordinary concept, its mixed volume is quite ab-
stract. In chapter 3, we describe these two properties and how they can each
be used for a specific similarity measure.

Given two objects, their similarity can be computed using either one of these
similarity measures. However, it is not possible to compare any two objects
using similarity measures based on Minkowski addition. It is only known how
to compute the similarity of convezr polyhedra. We quickly explain the terms
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Figure 1.1: Two convex polyhedra (left, middle), which can be compared, and
their Minkowski sum (right)

“polyhedron” and “convex”. A polyhedron is a three-dimensional solid, which
has a surface consisting of flat pieces, called faces. The faces are connected
by line segments, called edges. Polyhedra thus do not have a curved surface.
However, a curved surface can be approximated by a large number of small
faces. Furthermore, a polyhedron is convez, in short, when it has no dents.
Convex polyhedra are described into more detail in chapter 2.

In some way it is possible to compare polyhedra that are not convex. Convex
versions of these polyhedra can be derived before they are compared. This is
done by computing their convex hull. In the newly formed objects, all dents of
the original objects are covered by faces, just like all dents of a gift are covered
when it is wrapped in paper.

1.2 Program outline

In order to describe how a computer program can compare two convex polyhe-
dra, we first describe how humans compare objects in daily life. Consider for
example two cups, one standing straight up and one lying on its side. A human
would pick up the lying cup and rotate it to align its handle with the handle of
the other cup. After this, he is able to judge the similarity of the cups.

Notice that it would not make any difference to the human whether the cups
were lying or standing straight up from the beginning; that has no influence
on the human’s judgement on the similarity of the cups. In other words, the
similarity of the two objects is not dependent on their orientation. This is called
rotation invariance.

We describe an algorithm that follows the same procedure with convex poly-
hedra. It rotates one of the two polyhedra while keeping the orientation of the
other constant. For each rotation, a value specific for a similarity measure is
computed. In this way, all relative orientations of two convex polyhedra are
evaluated, searching for the best match. The best match is the orientation that
yields the highest value. This value is the similarity value of the two convex
polyhedra.

1.3 Critical orientations

Computing a similarity value for each relative orientation would be impossible,
because an infinite number of relative orientations exist. However, it was shown
[6] [4] that the highest similarity value can be found in a set of relative orien-
tations that is limited: the set of critical orientations. These orientations are
characterised by a certain combination of edges and faces of both objects that



must be parallel. In chapter 3, we explain how exactly edges and faces need to
be parallel. It suffices to search only through this limited set of orientations, so
computing a similarity value in finite time is possible.

Currently, the first algorithms implementing similarity measures based on
Minkowski addition construct a set of critical orientations by first constructing
another set. This set contains combinations of edges and faces of the objects.
For each of those combinations, it is tried to rotate one of the objects in order to
get the edges and faces parallel in the correct way. Bekker et al. [2] designed an
algorithm to find one or more such rotations, given a combination of edges and
faces. Sometimes this succeeds, in which case the found rotation (or rotations)
is a critical orientation. In the other cases, such a rotation doesn’t exist.

The set of combinations grows very fast when the complexity of the polyhe-
dra increases, because complex polyhedra by definition have a lot of edges and
faces. Furthermore, Bekker’s algorithm takes a lot of time. The combination of
these two aspects causes that current algorithms are very slow.

1.4 Improved method

We present a method to speed up those algorithms. The idea of the method is
that for some of the combinations of edges and faces, it can be detected that
they can never become parallel. This saves a call to Bekker’s algorithm, which
would otherwise try to find an orientation that doesn’t exist.

Figure 1.2: A polyhedron and its SDR

In order to detect which edges and faces cannot become parallel, the poly-
hedra are transformed into a new representation: the slope diagram representa-
tion (SDR). An SDR looks like a sphere covered with connected arcs. The arcs
somehow describe angles between edges and faces of the original polyhedra. By
comparing distances between arcs and endpoints of arcs, combinations of edges
and faces that cannot become parallel can be identified. These distances only
need to be computed once, so this is done in a preprocessing step, before the
best match is searched. We describe the method into more detail in chapter 4.

1.5 Summary

Summarising, current algorithms that compute a similarity measure based on
Minkowski addition are very slow. We introduce an improved algorithm that
does the following:

1. Compute distances on the SDRs of the polyhedra

2. Create a set of combinations of edges and faces
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Detect combinations that cannot lead to critical orientations by comparing
distances on the SDRs

Find critical orientations by calling Bekker’s algorithm for each the re-
maining combinations

Compute a similarity value for each critical orientation

Yield the highest similarity value

In this algorithm, item number 3 describes the improvement to current algo-
rithms. For this improvement, distances on SDRs are compared in item number
1. Because SDRs are spheres, measuring these distances boils down to measur-
ing distances on the surface of a sphere. This is not trivial. A great deal of
our work was dedicated to determining how those distances can be calculated.
Chapter 5 describes how it can be done.

We did two series of speed tests: one for the volume measure and one for
the mixed volume measure. Chapter 6 presents the results. Chapter 7 discusses
these results and concludes the thesis.



Chapter 2

Preliminaries

The shape of convex polyhedra is compared using similarity measures based on
Minkowski addition. To compute such a measure, a set of critical orientations
must be run through, which can be found using the slope diagram represen-
tations (SDRs) of the polyhedra. They consist of arcs covering a unit sphere.
The comparison can be speeded up when some distances in an SDR. have been
computed in advance.

This chapter introduces basic concepts, which are needed by the other chap-
ters: convex polyhedra, Minkowski addition, objects on a sphere, the slope
diagram representation and distances in an SDR.

2.1 Convex polyhedra

A polyhedron is a three-dimensional solid which has a surface consisting of flat
pieces, called faces. The faces are polygons, connected at their edges, which
are the line segments where two faces meet. The points where three or more of
these edges meet, are called vertices.

A polyhedron is convex, in short, when it has no dents. More precisely, a
polyhedron is convex if the intersection of every line with the polyhedron is
either empty or only a single line segment.

Figure 2.1: Convex polyhedron (left) and non-convex polyhedron (right)

One property of a polyhedron is its volume. The volume of a polyhedron A
is denoted by V(A). It can be computed by standard methods, for example by
dividing the polyhedron in pyramids, each having a face as base, and summing
the volumes of all pyramids.



2.2 Minkowski addition

Minkowski addition allows us to add two polyhedra, resulting in a new polyhe-

@.@

Figure 2.2: Cube (left), pyramid (middle) and their Minkowski sum (right)
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Figure 2.3: Two arbitrary convex polyhedra (left, middle) and their Minkowski
sum (right)

The Minkowski sum operation is denoted by the symbol €. Formally, the
Minkowski sum of objects A and B is defined as:

A®B={a+b:a€ Abe B} (2.1)

Let’s take a closer look at this definition, in order to understand what hap-
pens. It states that we can find the Minkowski sum C by adding all vectors in
A to all vectors in B. Consider a vector a to some point in A. Now add all
(infinitely many) vectors in B to a. The resulting vectors define a set of points
that together form a duplicate of B, translated by the vector a. All these points
belong to C. Now repeat this process for all (infinitely many) choices of a in A.
The resulting shape C is the Minkowski sum of A and B.

A few properties of the Minkowski sum are worth mentioning;:

e A ® B is a polyhedron, so it is possible to compute its volume, denoted
by V(A @ B).

A B=BgA.

When A and B are convex, then A & B is also convex.

The positions of A and B determine the position of A & B, but not its
shape.



2.3 Objects on a sphere

The slope diagram representation (SDR) of a convex polyhedron looks like a
sphere covered with arcs. Before we explain SDRs exactly, we first need to in-
troduce some concepts. In this section we define “objects” that can be identified
on a sphere: sphere points, great circles and arcs. Some of the characteristics of
these objects are also described.

2.3.1 Sphere points

A sphere point is a vector of length 1. It thus points to a position on a unit
sphere.

2.3.2 Great circles

A great circle is a circle on a unit sphere, with radius 1. Consequently, its century
coincides with the centre of the unit sphere. We introduce some notions about
great circles:

e The plane of a great circle is the unique plane that contains the great
circle.

e Two great circles are perpendicular if the planes that contain them are
perpendicular. That is, V L W = Cy L Cy, where V and W are planes
that contain the circles Cy and Cyy, respectively.

e The poles of a great circle C, are the two unique points that are defined
by the inward and and outward unit normal vectors of the plane of C.

Figure 2.4: A great circle (left) and an arc (right)

2.3.3 Arcs

We define an arc to be a piece of a great circle. An arc consists of two endpoints
enclosing an infinite number of interior points. We introduce a couple of notions
involving arcs:

e The plane of an arc is the unique plane that contains the arc.

e The poles of an arc A are the two unique points that are defined by the
positive and and negative unit normal vectors of the plane of A.



e The inverse of an arc A, A~', is the arc formed by projecting it through
the centre of the unit sphere onto the other side of it. In other words, A~!
is the arc that results when applying the inversion symmetry operation
(z,y,2) = (—z, —y, —z) to all points of A.

e The lune of an arc A, LUNE(A), is the region on the sphere that con-
tains A and is bounded by two planes that contain the poles of A, each
containing one of the endpoints of A.

e The antilune of an arc A, ALUNE(A), is the lune of the inverse of
A. That is, ALUNE(A) = LUNE(A™'). Furthermore, LUNE(A) =
—ALUNE(A).

Figure 2.5: The lune (left, dotted) and antilune (right, dotted) of an arc

2.4 Slope diagram representation

A slope diagram representation (SDR) is a partial description of a convex poly-
hedron. The slope diagram of a convex polyhedron A is denoted by SDR(A).
Tt consists of a collection of sphere points, called SDR. points, and arcs, called
SDR arcs. They cover a unit sphere in a particular way.

Figure 2.6: A cube and its SDR

All SDR arcs are connected to other SDR arcs; they meet at SDR points.
In this way, the SDR arcs divide the surface of the sphere in regions, called
spherical polygons. As such, an SDR is a subdivision of a unit sphere. The
relation between an object and its SDR is as follows:

e An SDR point is a sphere point that represents a face of the object. It is
the endpoint of the outward unit normal vector of the face it represents.
Because any unit vector has length 1, an SDR point is a point on the
surface of a unit sphere.

10



Figure 2.7: An arbitrary polyhedron and its SDR

An SDR arc is an arc between two SDR points, representing the edge
between the two faces in the object that are represented by the two SDR
points. The angle between these endpoints is equal to the angle between
the corresponding faces.

The arcs enclose spherical polygons; each corresponds to a vertex of the
polyhedron. This is the vertex where the edges meet to which the enclosing
arcs in the SDR correspond. In our implementation, SDR polygons are not
stored as a separate structure, however, because they can be computed
from the SDR points and arcs. Besides, our method doesn’t use SDR
polygons.

Two observations about SDRs are worth mentioning:

e an SDR arc is uniquely identified by its endpoints In special cases, two

sphere points e, es do not uniquely identify an arc that connects these
points. This is the case when Z(e1, e3) = 0 or when Z(ey, e2) = 7. In these
cases, there are an infinite number of arcs connecting the sphere points.
We prove that this cannot happen with the endpoints of SDR arcs.

Proof The endpoints ey, e of an arc A represent adjacent faces of a
convex polyhedron. The angle between two adjacent faces in a polyhe-
dron is always less than w. Consequently, Z(ej,e2) < 7. Furthermore,
endpoints of an SDR arc must be distinct, so Z(e,es) > 0.

One unique great circle C' through e; and ey exists. When C' is cut at e;
and e, then A is the unique piece of C' of which the angle between the
endpoints is less than 7. Thus, an SDR arc is uniquely identified by its
two endpoints. [

This allows a definition of the word “between”: a sphere point p is between
the endpoints of an SDR arc when it is on the SDR arc.

SDRs can be used to detect parallelness of faces and edges
The SDRs of two polyhedra can be overlayed. The overlay may be used
to detect parallelness of faces and edges. For example, if faces in A and B
are parallel, then the corresponding SDR points of SDR(A) and SDR(B)
coincide. Similarly, if an edge in A is parallel to a face in B, then an SDR
arc of SDR(A) coincides with an SDR point in SDR(B).

11



2.5 Distances in a slope diagram representation

The improved method skips certain cases, based on distance inequalities which
require that some distances in SDRs are computed in advance. Because SDRs
are unit spheres, all our distance calculations concern unit spheres. We will refer
to the unit sphere by simply sphere. There are four kinds of distances we want,
to measure: the distance between two sphere points, between a sphere point
and a great circle, between a point and an arc and between two arcs.

Figure 2.8: From left to right: distance between two sphere points, between a

sphere point and a great circle, between a point and an arc and between two
arcs

The distance between two sphere points d(p1,p2) is defined as the length of
the shortest path between them, following the surface of the unit sphere. In
the literature, this distance is also called “geodesic distance”. This path is a
segment of a great circle, thus an arc. Concluding, the distance between two
points is equal to the length of the arc between these points. Note that the
distance is measured in radians.

Apart from the distance between two sphere points, the other three distances
cannot, be formulated in a single number. A range of distances exists, bounded
by a minimum distance and maximum distance. We denote these distances by:

e dmin(p,C) and dmax(p, C) for a sphere point and a great circle;
e dmin(p, A) and dmax(p, A) for a sphere point and an arc;
e dmin(A1, A2) and dmax(A1, A2) for two arcs.

In chapter 5, we show how these four kinds of distances can be computed.

Summary This chapter introduced some basic concepts, which are needed by
the other chapters: convex polyhedra, Minkowski addition, objects on a sphere,
the slope diagram representation and distances in an SDR.

12



Chapter 3

Similarity measures

When two objects are compared, the result is a number that indicates to what
degree the objects are similar. This number is computed by a function called a
similarity measure. The function yields by convention a number between 0 and
1, where 1 indicates exact resemblance. In the literature, sometimes the notion
dissimilarity measure is used for a function that works the same but yields 0 for
exact resemblance.

Many similarity or dissimilarity measures exist [7]. For instance, the most
well-known dissimilarity measure is the Hausdorff distance. We first describe
this measure for illustrative purposes. Then we describe the family of similarity
measures based on Minkowski addition.

3.1 Hausdorff distance

The Hausdorff distance between two point sets A and B is defined as follows:
H(A, B) = max(h(A, B), h(B, A))

where H(A, B) denotes the directed Hausdorff distance which is defined as fol-
lows:

h(A,B) = max{min{d(a, b)}}

where d denotes any distance function of two points a and b, for example,
Euclidean distance. So the directed Hausdorff distance l_i(A, B) is the distance
between two specially chosen points a and b. a is the point in A that has
maximum distance to all points in B, and b is the point in B that has minimum
distance to a. Similarly, (B, A) can be computed by interchanging A and B.

Summarising, the general Hausdorff distance H(A, B) is the maximum of
two distances, each between two points. This causes an important disadvantage
of this (dis)similarity measure: it is very sensitive to noise. For instance, when
one of the objects is modified such that it contains a “hair”, it is probable that
a or b in one of the directed Hausdorff distances gets into this hair. In that case,
the measure can produce a completely different result.

A characteristic of the Hausdorff distance is that the similarity of two objects
depends on three factors:

1. shape

13



2. relative orientation
3. relative position

Thus, apart from the shape, the similarity value changes when one of the objects
is moved or rotated. This phenomenon is often not wanted when only the shape
of the objects has to be compared. Therefore, it is needed to try all orientations
and positions of the objects, searching for the best match. The best match is
that relative orientation and position, for which the Hausdorff distance produces
the lowest value.

3.2 Measures based on Minkowski addition

Tuzikov et al. [6] recently introduced similarity measures based on Minkowski
addition for three-dimensional convex polyhedra. Because the shape of the
Minkowski sum of two objects is not dependent on their position, these similarity
measures are naturally independent on the relative position of the objects. In
other words, they are translation invariant, which is a great advantage. Thus,
in order to find the best match, only relative orientations have to be searched.
Furthermore, it was shown [6] [4] that the best match for convex polyhedra can
be found in a set of relative orientations that is limited. Thus finding the ezact
relative orientation that produces the best match, is possible.

We describe two variants of similarity measures based on Minkowski addi-
tion. The first variant is based on the volume of the Minkowski sum of the two
compared objects; we name it the volume measure. The second variant is based
on its mized volume; we name it the mized volume measure.

3.2.1 Volume measure

The volume measure of two objects A and B makes use of a known relation
between the volume of A @& B and the individual volumes of A and B:

V(A® B) >8V(A)2V(B)> (3.1)

This formula is derived from the Brunn-Minkowski inequality [5][6]. Gen-
erally inequality holds, except for the special case where A and B have the
same shape and orientation. In that case, the left-hand side is equal to the
right-hand side. This observation suggests dividing the right-hand side by the
left-hand side, yielding a starting point for a similarity measure:

8V (A)2V(B)z
V(A@ B)

This formula is called the volume function. It yields a number between 0
and 1, inclusive: it yields at most 1, because the denominator is greater than
or equal to the numerator; it yields at least 0, because volumes are involved,
and volumes cannot be negative. Note also that because only the volumes of A,
B and their Minkowski sum are involved, relative position plays no role. The
formula thus establishes translation invariance.

However, the Minkowski sum of A and B changes when A or B is rotated, as
does its volume. So the volume function (3.2) does not satisfy independence of

(3.2)
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the relative orientation of A and B, or rotation invariance. It is thus required to
search through all relative orientations to find the best match. The best match
is in this case the relative orientation for which the volume function yields the
highest, value. Any relative orientation can be established by rotating object B
while keeping the rotation of object A constant. We thus obtain the following
formula:

o1(A, B) = max W

X V(Ae R(B)) (3:3)

R denotes the set of all rotations in R®. There are an infinite number of
relative orientations, so this formula would be useless. However, Tuzikov et al.
[6] [4] proved that the maximum value in formula (3.3) can be found in only a
limited set of relative orientations. This set consists of all relative orientations
of A and B such that one of the following conditions holds:

e Three edges of A are parallel to three faces of B

e Two edges of A are parallel to two faces of B, and one face of A is parallel
to one edge of B

e One edge of A is parallel to one face of B, and two faces of A are parallel
to two edges of B

e Three faces of A are parallel to three edges of B

The set of all relative orientations for which one of these conditions holds,
is called the set of critical orientations for the volume measure. In order to
find the maximum specified by formula (3.3), it is only required to evaluate the
volume function (3.2) for each of these relative orientations. Chapter 5 describes
how all these critical orientations can be found efficiently.

3.2.2 Mixed volume measure

The mixed volume measure is based on the so-called “mixed volume” of two
objects. This concept was introduced by Minkowski [3]. It allows an alternative
way of computing the volume of the Minkowski sum:

V(A B) = V(A) + 3V(A, A, B) + 3V(4, B, B) + V(B)

This formula is based on Minkowski’s theorem on mixed volumes, applied
to the case of two three-dimensional objects, see [6]. The terms V (A, A, B) and
V (A, B, B) denote mized volumes. These mixed volumes are quantities that
somehow contribute to the volume of A @ B, but this concept is quite abstract.
We will not try to give a concrete clarification. However, quoting [1], it can be
shown that V (A, A, B) is proportional to the area of A and the linear dimension
of B. Similarly, V (A, B, B) is proportional to the linear dimension of A and the
area of B.

A relation between the mixed volume V (A4, A, B) and the volumes of A and
B is known:

V(A,A,B) > V(A)iV(B)s (3.4)

15



This inequality was also derived from the Minkowski inequality. It is possible
to use this inequality to create a mized volume function, just like the volume
function we described for the volume measure:

V(A)3V(B)s
(A, A, 7(B)) (3:5)
The similarity measure then becomes:
A)FV(B)F
os(A, B) = max AV B)* (3.6)

Ren V (A, A, R(B))

It has been shown [4] that the maximum of this similarity measure can also
be found in a limited set of orientations; this is the set of critical orientations
for the mixed volume measure. It consists of all relative orientations of A and
B such that the following condition holds:

e Three edges of A are parallel to three faces of B

This condition is equal to one of the conditions for the critical orientations
for the volume measure, which we described before. Thus, the volume measure
and the mixed volume measure are very similar. In order to find the maximum
specified by formula (3.6), it is only needed to evaluate the mixed volume func-
tion (3.5) for each of the critical orientations of the mixed volume measure. The
next chapter describes how all these critical orientations can be found efficiently.

Summary We described two similarity measures: the volume measure and
the mixed volume measure. They can both be computed by searching for the
maximum of a function that is evaluated for a limited number of critical orien-
tations.

16



Chapter 4

Method

When the shapes of two convex polyhedra are compared, the result is a number
that indicates to what degree the shapes are similar. This number is called
a similarity value. To compute this value, a function must be evaluated for a
limited set of critical orientations. The orientation that yields the highest value
of this function, is called the best match. The similarity value of the convex
polyhedra is the function value of this best match.

The critical orientations are characterised by combinations of edges and faces
in the polyhedra that must be parallel, as described in 3.2.1 and 3.2.2. In this
chapter, we first discuss a primitive method, and then an improved method.

The primitive method is discussed in order to have a reference to compare
the improved method to. It searches for critical orientations by treating all of
the combinations of edges and faces. For each combination, it tries to rotate one
of the polyhedra such that the edges and faces in the combination get parallel.

The improved method finds the critical orientations faster, because it skips
some of the combinations. That can be done because for these combinations, it
can be determined that it is not possible to get the edges and faces parallel.

4.1 Primitive method

Figure 4.1: The critical orientations are the relative orientations of A and B
such that in the overlay of SDR(A) and SDR(B) three arcs in SDR(A) coincide
with three SDR points in SDR(B).

The critical orientations are characterised by conditions about parallel faces
and edges. These orientations can be identified using the slope diagram repre-
sentation (SDR). When the SDRs of convex polyhedra A and B are overlayed,

17



parallelness of faces and edges in A and B appears as SDR points coinciding
with SDR arcs.

The primitive method has two variants, one for the volume measure and one
for the mixed volume measure. The variants treat different kinds of combina-
tions of arcs and SDR points, because the volume measure and the mixed volume
measure have different parallelness conditions. We first describe the variant for
the mixed volume measure, because it has only one parallelness condition. After
that, we describe the volume measure, which is basically an extension to the
variant, for the mixed volume measure.

4.1.1 Mixed volume measure

When using slope diagram representations, the condition for the mixed volume
as described in 3.2.2 becomes:

e Three SDR arcs of SDR(A) coincide with three SDR points of SDR(B)

Note that this condition also includes the special case that SDR points of
SDR(A) coincide with SDR points of SDR(B), because an SDR points are
endpoints of SDR arcs.

A straightforward approach to finding all orientations satisfying the above
condition, is treating all combinations of three SDR arcs of A and three SDR
points of B. Each combination looks like a six-tuple (af',as,af,p?,p%, p%),
where af! are arcs in SDR(A) and pP are points in SDR(B), and each a;' must
coincide with pP. For each of these combinations, we have to try to rotate B
such that the points fall on the arcs. If we managed to find such a rotation R,
we have to evaluate the mixed volume function (3.5). We repeat this process
for all combinations, searching for the maximum of the mixed volume function.
This maximum is the similarity of the compared polyhedra.

Finding a rotation R such that three SDR points pP, pZ p2 of R(SDR(B))
coincide with three arcs af',af', a4 of A can be done using an algorithm devel-
oped by Bekker [2], called tvt. It uses numerical approximation techniques to
yield zero or more rotations R.

The primitive method is implemented by the following algorithm:

oc=0
for all af
for all aéq > aq
for all a? > a»
for all pF
for all pQB
for all pf
R = tvt(aé“,aég?,pf,pf,pf)
_ V(A)3V(B)3
TR = V(AAR(B))
if op > 0 then o = op
Algorithm la: primitive method for the mixed volume measure

There are two reasons why this algorithm is slow:

1. The function tvt is quite slow: on current home PCs, it can be executed
only about 1000 times per second.
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2. There are a lot of combinations, so tvt is called many times.

Small optimisations Note that it does not matter in which order we say “af

coincides with pP”, “as' coincides with p5” and “ag‘ coincides with p#”. So for

example, (afl, a2, af', pB, pB pP) is equivalent to (a3, ai', af', p? pP,pP). There
are six of those equivalent permutations. In this algorithm, the permutations
of SDR arcs are omitted. In this way, a constant factor of six is gained. This is
established by the >’s; they use the fact that SDR arcs are linearly ordered in
our implementation.

There are other combinations of SDR. arcs and SDR. points that can be left

out. Those are the combinations for which one of the following conditions hold:

o pP =pf =pf

[ ] (lf:(l?:aé4

° p? = pf while (1;4 = (13-4

For these combinations always an infinite number of critical orientations exist.
For example, the first condition corresponds to the case that the three chosen
points are equal. We show that this combination can be left out.

pP = pB = pP means that there is effectively only one SDR point of B
that is restricted in its position, leaving an infinite number of satisfying relative
orientations. Let M denote the set of these relative orientations. In another
iteration of the nested for-loops, a combination will occur for which two of the
p’'s are the same as before, and the third different. Let N denote the set of
relative orientations satisfying this combination. N is a subset of M, because it
contains the orientations that satisfy the same condition and one extra condi-
tion. So these orientations will not result in a lower value of the (mixed) volume
function. O

All combinations of SDR. arcs and SDR points that satisfy the above condi-
tions, are left out in our implementation of the primitive method. However, it
can be argued that these combinations should not be left out in the primitive
method, because the primitive method wouldn’t be primitive anymore.

4.1.2 Volume measure

Using the slope diagram representation, the critical orientations of the volume
measure can be defined as the set of orientations satisfying one of the following
conditions:

e Three SDR arcs of SDR(A) coincide with three SDR points of SDR(B);

e Two SDR arcs of SDR(A) coincide with two SDR points of SDR(B), and
one SDR point of SDR(A) coincides with one arc of SDR(B);

e One SDR arc of SDR(A) coincides with one SDR point of SDR(B), and
two SDR points of SDR(A) coincide with two arcs of SDR(B);

e Three SDR points of SDR(A) coincide with three SDR. arcs of SDR(B).
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The primitive method works essentially the same for the volume measure as
for the mixed volume measure. For each of the conditions, the primitive method
has six nested for-loops:

c=0
for all af
for all a; > af
for all a? > af
for all pF
for all pf
for all pf
R = tvt(ai',as',as,pf,pl, )
8V(A)3V(B)Z
V(AGR(B))
if op > 0 then 0 = op

oR =
for all af
for all a? > af
for all p?
for all p?
for all pf
for all af
R = tvt(ai, a3, pg, p7 05 s 05
_ 8V(A)IV(B)?
9R = TV(AGR(B))
if op > 0 then 0 = op
for all af
for all p?
for all p?
for all pf
for all af
for all af
R = tvt(al,pf,pg.pt’,af s af)
8V(A)3V(B)2

R = “V(AGR(B))
if op > o0 then 0 = op
for all pf
for all p?
for all p?

for all a?

for all af
for all af
R = tvt(pf,pé,e?7af7af7af)
8V(A)2V(B)2
“V(A®R(B))
if op > 0 then 0 = op

Algorithm 1b: primitive method for the volume measure

OoR =
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Figure 4.2: It is not always possible to rotate B such that three SDR points of
SDR(B) coincide with three SDR arcs of SDR(A). This combination of SDR
arcs and SDR points can thus be skipped. This observation is the essence of
the improved method.

4.2 TImproved method

4.2.1 Mixed volume measure

Finding critical orientations for the mixed volume measure requires rotating
B such that three SDR points of SDR(B) coincide with three SDR arcs of
SDR(A). In some cases there is no such orientation. Consider for example
figure 4.2. It is clear that the marked SDR points of SDR(B) can never fall
on the marked arcs of SDR(A). Points p; and ps could fit on a; and a2, but
then ps cannot fall on agz, because p3 is close to p» while a3 is not close to as.
Generally speaking, the distances do not agree.

There is no need to call the slow function tvt with this combination, be-
cause we already know that tvt cannot find a rotation for it. Skipping this
combination saves time. When the distances between SDR arcs in SDR(A) and
distances between SDR points in SDR(B) are known, the remaining combina-
tions are identified by the following condition:

dmm(ai4 (l?) S d(p] 7p2) S d ((114 (l?) and
dmm(aé4 (1%4) < d(p2 7p‘3) < dmax(“?:“?) and (4.1)
dmin(a 14 af) < d(p1 7p‘3) < dmax(a f‘ A)

as
These inequalities are called distance inequalities. The following algorithm
skips combinations for which these distance inequalities do not hold:
o=20
for all af
for all aé“ > a’f‘

for all a? > aéq
for all p{;
for all pf
for all p3
if dmm(al :(154) < d(plB pQB) < dmaX(af:af) and
mm(a2 70%4) < d(p£3 p?) < dmaX(aéé‘:a‘?) and
dunin (a7, a3) < d(p7,p) < dmax(ai', a3)) then

R = tVt(a’l 7(15‘ a37p] 7p2 p3)
_vaiv(mes

9R = V(A,AR(B))

if op > 0 then 0 = op

Algorithm 2: improved method for the mixed volume measure
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Summarising, in order to determine which combinations can be skipped,
the distances between the SDR points of SDR(B) must be compared to the
distances between the SDR arcs of SDR(A). These distances can be computed
and stored in tables during a preprocessing step. In chapter 5, it is explained
how these distances can be computed.

4.2.2 Volume measure

For the volume measure, similar improvements can be done based on distance
inequalities. The inequalities in formula (4.1) are applicable again for the
first nesting of for-loops in algorithm 1b. The distances between three SDR
arcs of SDR(A) are compared to the distances between three SDR points of
SDR(B). This combination of SDR arcs and SDR points can be written as
(af‘,aéa{;‘,pf,pf,pf). Similar inequalities apply to the the fourth nesting,
but this time the SDR points come from SDR(A) and the SDR arcs come from
SDR(B).

For the second and third nesting, the combinations are more complicated.
The combinations of the second nesting are of the form (af}, a3, p4', p2, p2, a®).
For such combinations, also distances between an SDR point and an SDR arc
must be compared. For these comparisons, it must be tested whether the ranges
of distances overlap:

dmin(af: (15‘) < d(p{gap?) < dmaxmf: (134) and
o (5 03) > dinin(pF, aF) and
Amin (p:?, (1?) < dmax (pZB: a?B) and
dmax(pg‘; (114) > dmin(pﬁa a‘?) and
dmin (P35 01') < dinax (p’, a3)

The combinations of the third nesting are of the form (af', p', p3', pP, a2, a®),

and are thus similar to the combinations for the second nesting.

All mentioned distance inequalities can be easily plugged into the primi-
tive method for the volume measure by adding if-statements. The resulting
improved method is not printed.

Summary We introduced a primitive and an improved method for computing
the similarity of two convex polyhedra. The improved method is faster because it
takes distance inequalities in account. Both methods can compute two variants
of similarity measures based on Minkowski addition: the volume measure and
the mixed volume measure.
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Chapter 5

Distance computations

In this chapter we explain how the distance between two sphere points and the
distance between two arcs can be computed. Computing the distance between
two points will prove to be simple, but computing the distance between two arcs
requires more work. We explain how to compute the distance between two arcs
in four steps. The first step is the distance between two sphere points. Then
we consider the distance between a sphere point and a great circle, the distance
between a sphere point and an arc, and finally the distance between two arcs.

5.1 Distance between two points

Figure 5.1: Distance between two points

The distance between two sphere points p; and ps is equal to the length of
the arc D between these points. The length of D is proportional to the angle 6
between p; and ps. Because sphere points lie on the surface of the unit sphere
and we measure in radians, the length of D is equal to the angle between p; and
p2. Computing this angle in Cartesian coordinates can be done using the inner
product: @ = cos~!(p; - p2). Thus:

d(p1,p2) = cos ™ (p1 - po)

5.2 Distance between a point and a great circle

Now that we know how to compute the distance between two sphere points, we
go to the next step: computing the minimum and maximum distance between
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a sphere point p and a great circle C. First, we search for the points on C
that are the closest to and the farthest from p. We call these points ¢nin and
Gmax, respectively. The minimum distance between p and C is then equal to
the distance between p and gmin. Thus, dmin(p,C) = d(p, gmin)- Similarly,
dmax (P, C) = d(p, gmax)- We first describe how to find g¢min, and then gmax-

5.2.1 Minimum distance

Figure 5.2: Minimum distance between a point and a great circle (left); curves
of equal (minimum) distance to a great circle (right). The great circle is drawn
thick.

Gmin 1S the point on C that has minimum distance to p. This distance is
equal to the length of the arc D between p and gpuin-

Theorem 5.2.1 D 1 C

Proof Without loss of generality, we define an orthogonal set of base vectors
such that the centre of the unit sphere is in the origin, C' is in the zz-plane
and p is in the zy-plane. For each d € (0, ), the points on the sphere having
distance d to the point p define a circle Cp(d). When d increases, starting from
0, there is a unique point where C'p(d) first touches C. This is the point gmin.
P, Qmin, and the arc D between them, are all in the zy-plane. This plane is
perpendicular to the xzz-plane, which is the plane of C'. Because the planes of
D and C are perpendicular, D 1 C. O

From D 1| C it follows that gmin can be found by moving from p along the
surface of the sphere to C, perpendicularly to C. This can be done computa-
tionally by a projection: first, p is projected orthogonally to the plane of C.
Two distinct vectors e; and ey in the plane of C are needed for the projection.
The projection can now be done using the following formula:

p' = (e1-pler + (e2-ples
The resulting point p’ is on the intersection line of the planes of C and D. Next,
p' is normalised, yielding gmin:

!

_ b
Gmin = T
']

A problem arises when p is a pole of A, because then p’ is the origin of the
sphere and |p'| = 0. This vector cannot be normalised. However, we do not need
a projection in this case because the minimum distance between an equator and
its pole is known to be %’/T.
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5.2.2 Maximum distance

Figure 5.3: Maximum distance between a sphere point and a great circle (left);
curves of equal maximum distance to a great circle (right). The great circle is
drawn thick.

(max 1S the point on C' that has maximum distance to p. We now prove that
gmax 18 exactly on the other side on C with respect to gmin.

Theorem 5.2.2 ¢nax = —Gmin

Proof Like in the proof in the former section, we increase d, but now continu-
ing from the distance where we stopped then. The intersection of Cp(d) and C
then consists of two points, until these points meet in the point the farthest from
p: this is gmax. Like gmin, this point is in the zy-plane and on C. The zy-plane
intersects C' at exactly two points, which are each other’s inverse because C' is
centred at the origin. These are the points ¢min and ¢max, SO Gmax = —Gmin- [

Summary Computing the minimum and maximum distance between a sphere
point p and a circle C first requires finding the points gmin and ¢max. These can
be computed using a projection and a normalisation. Then, the distances can
be computed as distances between sphere points: dmin(p, C) = d(p, ¢min) and

Amax (P, C) = d(p, Gmax)-

5.3 Distance between a point and an arc

Now that we have found the minimum and maximum distance from a point
to a great circle, we can use this information to compute the minimum and
maximum distance between a sphere point p and an arc A. The arc A is part
of a great circle C'4y. We compute the points ¢min and gmax on the circle C'4 as
described in section 5.2. The endpoints of A serve as vectors defining the plane
of C, needed for the projection. We first consider the minimum distance, and
then the maximum distance.

5.3.1 Minimum distance

If gmin happens to be an interior point of A, then this point of A must be the
closest to p, because ¢mi, is the point on C'4 that is closest to p, and A is a part
of C'4. This happens when p € LUNE(A). The minimum distance between p
and A is then equal to the distance between the points p and guin. Thus:

Gmin S A = dmin(p: A) = d(p: qmin)-
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Figure 5.4: Minimum distance between a sphere point and an arc. In the left
picture, the point is in the lune of the arc; in the right picture, it is not.

If gmin is not an interior point of A, then there is no interior point of A that
has minimum distance to p. So one of the endpoints of A must have minimum
distance to p. When a; and ay are the endpoints of A, we can compute the
distance of each to p and take the minimum:

Gmin ¢ A = dmin(p: A) = mln(d(p, 61), d(pa 62))
Determining whether gmin € A can be done using the following formula:
(61 X Qmin) . (qmin X 62) >0 and
min A
(€1 X Gmin) - (€1 X €2) > 0 = min €

The first part is true if and only if gmi, is a vector between the endpoints of
A, or between their negative counterparts. The second part is true if and only
if gmin 1S not between the negative counterparts.

Figure 5.5: Curves of equal minimum distance to an arc, and its lune. Front
view (left) and back view (right). The arc is drawn thick.

Figure 5.5 shows curves of equal minimum distance to an arc A. The curves
have a different shape in the lune of A than outside the lune. Inside the lune,
the shape is like a part of the shape of the curves of minimum distance to the
great circle carrying A. This shows that the minimum distance from a point p
in L(A) is equal to the minimum distance between the sphere points p and gmin,
the point on the circle containing A that has minimum distance to p.

5.3.2 Maximum distance

Similarly, if gmax is an interior point of A, then the maximum distance between
p and A is equal to the distance between p and @max. This happens when
p € ALUNE(A). Otherwise, the maximum distance is equal to the distance
between p and one of the endpoints of A:
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Figure 5.6: Maximum distance between a sphere point and an arc. In the left
picture, the point is in the antilune of the arc; in the right picture, it is not.

Gmax € A = dimax(p, A) = d(p, Gmax)
Imax ¢ A = dmax(p, A) = max(d(p, a1), d(p, a»))

Determining whether gmax € A now becomes:

(6] X qmiﬂ) : (qmin X 62) > 0 and
(e1 X gmin) - (€1 X €3) <0 = gmax € 4

Figure 5.7: Curves of equal maximum distance to an arc, and its antilune. Front
view (left) and back view (right). The arc is drawn thick.

Figure 5.7 shows curves of equal maximum distance to an arc A. It is clear
that the distance curves in the antilune have the same shape as a part of the
curves of maximum distance to a great circle; the great circle of which A is a
part. This shows that the maximum distance from a point p in ALUNE(A)
is equal to the maximum distance between p and ¢max, the point on the circle
containing A that has maximum distance to p.

More remarkable is the fact that figure 5.7 and figure 5.5 are very similar.
The curves of maximum distance to A are equal to the curves of minimum
distance to A~!. The arc A~! represents the set of points that have maximum
distance to A, which is . This leads to an alternative definition of the maximum
distance:

dmax(p7 A) =n— dmin(pa Ail) (5-1)

Summary Computing the minimum and maximum distance between a point
and an arc first requires finding the points ¢min and gmax. Then, it is needed to
test if gmin OT gmax iS an interior point of A. If gmin iS an interior point of A,
then the minimum distance is equal to the distance between the sphere points
p and ¢min - Otherwise, the minimum distance is equal to the distance between
p and an endpoint of A. The maximum distance can be found similarly.
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5.4 Distance between two arcs

Now that we know how to compute the distance between a point and an arc,
we are able to compute the distance between two arcs. To this end, we consider
the variable points ¢; and ¢ on the arcs A; and As, respectively. The mini-
mum distance between A; and As is the minimum distance between ¢; and ¢».
Therefore, we first search for the points g1 min and g» min, which are the posi-
tions of ¢; and ¢» with minimum distance. After that, the minimum distance
can be easily computed by dmin(A1, A2) = d(¢1,min; ¢2,min). Similarly, in order
to compute the maximum distance between A; and Ay, we search for ¢i max
and g2 max and compute their distance by dmax(A41, A2) = d(g1 max; ¢2.max)- We
first discuss the minimum distance, and then the maximum distance.

5.4.1 Minimum distance
We identify two cases that can apply:
1. ¢1,min and g2 min are endpoints of A; and A,

2. ¢1,min is an endpoint of A; and g2 min is an interior point of A,, or vice
versa

One might expect a third case in which ¢i min and g2 min are both interior
points of A; and As, but this case can never occur:

Theorem 5.4.1 ¢ min and g2.min are not both interior points of Ay and A,

Proof If g min and ¢ min are interior points of A; and A, then there are two
possible causes:

1. the arcs are curved towards each other, or
2. the arcs intersect, implying a distance of zero.

We show that both situations cannot happen. First, two arcs cannot intersect,
because they represent edges of a polyhedron and edges never intersect. Second,
the arcs cannot be curved towards each other, because in that case the circles
of which the arcs are a part could not have the same centre. But arcs are parts
of great circles, which all have the same centre, so this can never be the case. [

Concluding, the minimum distance between two arcs is equal to the minimum
distance between an arc and an endpoint of the other arc. We already know how
to compute the minimum distance between a point and an arc: it is discussed in
5.3.1. However, it is not known which endpoint to take. So all four possibilities
must be checked, searching for the minimum:

dmin(A] s Az) = min(dm;n (6} , Ag), dm;n(e;, A2)7 dm;n(e?, A]), dmin (637 A] ))
(5.2)
Where e;: denotes endpoint i of arc j. Formula 5.2 is defined in terms of the
minimum distance between a point and an arc. Figure 5.8 shows that the
position of one endpoint of an arc relative to the lune of the other arc plays a

role, just like the case of the distance between a point and an arc.
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Figure 5.8: Minimum distance between two arcs. In the right picture, an end-
point of one arc is in the lune of the other arc.

5.4.2 Maximum distance

Figure 5.9: Maximum distance between two arcs. In the right picture, an
endpoint of one arc is in the antilune of the other arc.

For computing the maximum distance, three cases can apply:
1. ¢1,max and g2 max are endpoints of 4; and A,

2. ¢1,max is an endpoint of A; and g2 max is an interior point of As, or vice
versa

3. ¢1,max and @2 max are interior points of A; and A,

The first two cases are similar to the two cases for the minimum distance,
as is the computation of the maximum distance in these cases:

Amax (A1, As) = max(dmax (€], As), dmax (€5, A2), dmax (€3, A1), dmax (€3, A1)
(5.3)
But the third case deserves special attention. In 5.4.1 we argued that two arcs
Ay and As cannot intersect, which would otherwise imply a minimum distance
of zero. Recall that formula 5.1 states that the maximum distance between a
point and an arc can also be reformulated as w minus the minimum distance
between the point and the inverse of the arc:

dmax(p: Al) =T — dmin(p: Afl) (54)

Because we now need to compute the minimum distance between two arcs,
we choose p on Ay such that it has minimum distance to A;'. Key observation
is that A;l and Ay can intersect. Thus, point p can be an internal point of A;l
and A, at the same time, implying dmin(p, 4; ') = 0. In this case, formula 5.4
yields a maximum distance of 7. Concluding:
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AT N Ay = 0 = dax (A1, As)
= max(dmax(e}:A2)a dmax(e%a AQ): dmax(e%a Al)a dmax(ega Al))
AP N Ay £ 0 = diax (A1, A9) = 7

Figure 5.10: Maximum distance between two arcs, when one arc intersects the
inverse of the other arc. The inverse arc is drawn dotted. Left: front view;
right: back view.

So it must be checked whether the arcs A;' and A, intersect or not. In the
following paragraph, we describe how this can be done.

Intersection testing First, let I; be the straight line segment that connects
the endpoints e} and e? of arc A;*. Similarly, let I be the straight line segment
that connects the endpoints e} and e3 of arc Ay. A; ! and A, intersect if and
only if a unique half-line ;¢ from the origin through the intersection point
exists, which intersects /3 in the point p;, and l» in the point p;,. So, Af] and
A, intersect if a point p;, on [y is a linear multiple of a point p;, on l2. To check
whether this is the case, we first parametrise /; with parameter A (0 < A < 1)
and [y with parameter p (0 < pu < 1):

L= Xed + (1= Nej
Iy = pes + (1 — p)ey

By equating [, and o - [y, with ¢ > 0, we establish that p;, and p;, are on
one half-line:

Ae? + (1= Nel = o(ued + (1 — p)ed)

This equation can be rewritten as follows:

(€F —eD)A+ (3 — ex)po — €30 = —ey (5.5)
Because all e’ are three dimensional vectors, formula 5.5 can be seen as a
3x3 linear system of equations, with unknowns A, uo and o. These parameters

can be found by standard methods, such as Gaussian elimination. When the
found values satisfy A > 0,0 < A<1and 0<pu <1, A;' and A, intersect.

Summary The minimum distance between two arcs can be defined in terms
of the minimum distance between one endpoint and one arc. The same gen-
erally holds for the maximum distance between two arcs, except when one arc
intersects the inverse of the other arc. In that case, the maximum distance is 7.
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Chapter 6

Results

In order to test how much faster the improved method is than the primitive
method, we implemented a computer program that simulates the comparison
of two convex polyhedra. This program takes two polyhedra as input. The
polyhedra are transformed into convex versions by computing their convex hull.
After that, the program computes a desired similarity measure. This can be the
volume or the mixed volume measure. The output of the program consists of
two numbers, one for the primitive method and one for the improved method.
These numbers indicate for both methods the number of calls to tvt needed.
Recall that this is the slow function that tries to find one or more orientations
for which specific parallelness conditions hold, for a given combination of arcs
and SDR points. By recording both numbers, the improved method can be
compared with the primitive method.

We performed two series of performance tests. In the first series, the methods
computed the volume measure; in the second the methods computed the mixed
volume measure. This was done by repeatedly executing the program with as
input a pair of generated polyhedra of increasing complexity, where complexity
is defined as the number of faces. The polyhedra are generated randomly, such
that both polyhedra are equally complex.

We first present the results for the volume measure, and then those for the
mixed volume measure. For both we show how the number of calls to tvt relates
to the complexity of the polyhedra.

6.1 Volume measure

The left graph of figure 6.1 shows the number of calls to tvt needed for the
primitive method. It shows that the time needed to compare two polyhedra is
more than proportional to their complexity. Notice the huge scale and recall that
executing tvt 1000 times takes one second on current home PCs. This means
for example that polyhedra with 24 faces require about ten days to compare
using the primitive method. Even when we use a computer that is a hundred
times faster, the time required to compare such polyhedra still is far beyond
practicable.

The graph on the right shows the performance of the improved method.
This graph looks similar to that of the left graph, but there are two differences:
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the range on the y-axis is smaller and the slope is lower. With this method,
polyhedra with 24 faces require about half a day to compare.

Volume measure, primitive method Volume measure, improved method
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Figure 6.1: Performance of methods for the volume measure. Primitive method
(left) and improved method (right). Notice the difference in scale.
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Figure 6.2: Performance of methods for the volume measure. Primitive and
improved method combined. Large scale on the y-axis (left) and smaller scale
(right).

Figure 6.2 shows the performance of both methods combined in one graph.
The left graph shows not only that the improved method performs better than
the primitive method, but also that the improvement increases when the com-
plexity of the polyhedra increases. The right graph is a copy of the left one,
but with a smaller range on the y-axis. It shows that the improved method also
performs better with polyhedra of very low complexity. For example, when two
polyhedra with 12 faces are compared, the primitive method makes 149 million
calls to tvt (4 hours) while the improved method only needs 17 million (30
minutes).

Curve fitting The left graph of figure 6.3 shows the performance of the meth-
ods for the volume measure on a logarithmic scale. The fact that the data points
of each method lie approximately on a straight line, indicates an underlying
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Figure 6.3: Performance of methods for the volume measure. Primitive and
improved method combined on a logarithmic scale (left) and on a linear scale
with fitted curves (right).

function of the form y = a - z*. We used the least squares method to fit curves
on the data points, based on this function. The functions of the resulting curves
are:

e y = 6.522°90 for the primitive method;
e y = 25.072**® for the improved method.

The curves of these functions on a linear scale are shown in the right graph of
figure 6.3. Note that in these functions, z denotes the number of faces in the
polyhedra. In the following, we will also use the letter n for this quantity. For
the the time complexity, only the power of 2 (or n) matters: y o 25-%° for the
primitive method and y o 448 for the improved method.

The primitive method contains four times a nesting of six for-loops, which
contain a call to tvt. All four nestings consist of three loops running through
SDR arcs or SDR points in SDR(A), and three loops running through arcs or
SDR points in SDR(B). The number of SDR arcs and SDR points in each loop
is proportional to n. So the number of calls to tvt must be proportional to n®.
The fact that there are four of these nested structures has no influence on the
time complexity of the method; it only matters a constant factor.

We found a complexity of n®99, so there is a slight difference. This difference
can be explained by the fact that some combinations of SDR points and SDR
arcs are left out structurally, as explained in section 4.1.

The improved method performs better when the compared objects are more
complex. This can be explained as follows. The method uses distance inequal-
ities to skip combinations of SDR points that cannot coincide with SDR arcs.
When a polyhedron becomes more complex, the SDR arcs in its SDR become
shorter. Then the chance is smaller that two SDR points of another SDR. can
fit between two of these SDR arcs. So the more complex the objects, the more
combinations can be skipped. In [1] it is shown that the time complexity of this
method is n*-®, which agrees reasonably well with the value of our fitted curve.
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6.2 Mixed volume measure
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Figure 6.4: Performance of methods for the mixed volume measure. Primitive
method (left) and improved method (right).
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Figure 6.5: Performance of methods for the mixed volume measure. Primitive
and improved method combined. Large scale on the y-axis (left) and smaller
scale (right).

We did the same performance tests for the mixed volume measure. The
results are shown in figure 6.4 and 6.5. The graphs are similar to those for the
volume measure. However, as may be expected, the number of calls to tvt is
lower. For example, for polyhedra with 12 faces, the primitive method needs 1,9
million calls to tvt (31 min) and the improved method needs 192.000 (3 min).

Curve fitting The left graph of figure 6.6 shows the performance of the meth-
ods for the mixed volume measure on a logarithmic scale. The data points of
both methods lie again approximately on a straight line. Again we fitted curves,
which are shown by the right graph of figure 6.6. The functions of these curves
are:

e y = (.712%9 for the primitive method;
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Figure 6.6: Performance of methods for the mixed volume measure. Primitive
and improved method combined on a logarithmic scale (left) and on a linear
scale with fitted curves (right).

e y = 2.132*% for the improved method.

Concluding, the time complexity of both methods for the mixed volume is
approximately equal to their complexity for the volume measure. These com-
plexities are roughly proportional to n® for the primitive method and n*® for
the improved method. We didn’t find a satisfying explanation for this found
complexity yet; it will be left as future work.

The primitive and improved methods perform a constant factor better for
the mixed volume measure, because for this method the parallelness conditions
are more strict, so less combinations need to be checked.

Data structure optimisation In our implementation, the distances between
SDR points and SDR arcs are stored in ordinary tables. The main loop runs
through all combinations of points and arcs and uses distance inequalities for
every combination to determine whether the combination can be skipped or
not. Because usually many combinations can be skipped, many iterations in
the for-loops are done without a call to tvt.

To avoid this, we also tried another implementation. This implementations
has a more sophisticated data structure, in which SDR points and SDR arcs
are sorted in several ways. The main loop uses this ordering to efficiently yield
combinations of SDR points and SDR. arcs that cannot be skipped. This saves
iterations in for-loops.

We tested this implementation and found that this saving became significant
with polyhedra of more than 24 faces. However, we chose to abandon the idea,
because it is more complex and it has no influence on the number of calls to
tvt needed.

Summary The improved method works well. While the complexity of the
primitive method is n%, the complexity of the improved method is n*?®.
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Chapter 7

Conclusion

The shape of two objects can be compared by a computer program using simi-
larity measures. The family of similarity measures based on Minkowski addition
provides a well-founded way to do this. We described two variants of these mea-
sures. The first variant uses the volume of the Minkowski sum, and the second
variant uses the mixed volume of the Minkowski sum.

Current implementations have the disadvantage that they are very time-
consuming: their time complexity is proportional to n%, where n is proportional
to the complexity of the polyhedra. We developed, implemented and tested
improved algorithms for both variants. These algorithms proved to reduce the
time complexity to n*?®.

Although this is a significant improvement, a time complexity of n**® is still
very high. For example, simple polyhedra with 12 faces still need 3 minutes to
compare on current home PCs, using the mixed volume measure. Comparing
using the volume measure takes 31 minutes. Even for these simple polyhedra,
the time needed to compare is far beyond usable. Particularly, when one poly-
hedron needs to be compared to a complete database of polyhedra, then fast
comparison is important. So the use of these improved methods is still very
limited.

7.1 Future work

We found a time complexity of n*® for both variants of similarity measures
computed by the improved algorithm. That the volume measure apparently
has this time complexity still asks for an explanation.

The method presented in this thesis skips combinations using distance in-
equalities. These inequalities take distances along the surface in account, but
not angles. A further improvement would be to implement an algorithm that
also takes angles in account.

A major disadvantage of the method is that it can only be used for convex
polyhedra. It would be an improvement if the method could be altered such
that it also allows for polyhedra that are not convex.

Furthermore, it is not really known how to apply similarity measures based
on Minkowski addition. An application might be object recognition: a computer
program compares an object to a database of objects, and possibly finds the
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object that is most similar.
The similarity of two convex polyhedra is expressed in one similarity value.
However, there are uncertainties about this similarity value:

e Has it the power to find the correct object in a database, when we compare
to another object that is not an exact duplicate?

e What does it say about the similarity of two objects when only their
convex hulls are compared?

e What does it say about the similarity of two objects when they are ap-
proximated by polyhedra with very few faces?

Thus, the method can be further improved and it needs more testing in order
to determine how well similarity measures based on Minkowski additions can
be applied in practice.
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