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Generalized Hidden Markov Models—Part II:
Application to Handwritten Word Recognition
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Abstract—This is the second paper in a series of two papers de-
scribing a novel approach for generalizing classical hidden Markov
models using fuzzy measures and fuzzy integrals and their appli-
cation to the problem of handwritten word recognition. This paper
presents an application of the generalized hidden Markov models
to handwritten word recognition. The system represents a word
image as an ordered list of observation vectors by encoding fea-
tures computed from each column in the given word image. Word
models are formed by concatenating the state chains of the con-
stituent character hidden Markov models. The novel work pre-
sented includes the preprocessing, feature extraction, and the ap-
plication of the generalized hidden Markov models to handwritten
word recognition. Methods for training the classical and general-
ized (fuzzy) models are described. Experiments were performed on
a standard data set of handwritten word images obtained from the
U. S. Post Office mail stream, which contains real-word samples of
different styles and qualities.

Index Terms—Fuzzy integral, fuzzy measures, handwriting
recognition, Markov models.

I. INTRODUCTION

A UTOMATED recognition of handwritten words is a cen-
tral concern in the implementation of a reading machine

for many practical applications. The handwritten word recog-
nition task is characterized by high data rates, large amounts
of data, possibly error-filled input, and the need for real-time
response. Indeed, the magnitude and complexity of the task is
such that it must be subdivided into subtasks and yet the appli-
cations illustrate the close interconnection of these subtasks and
their central importance in accomplishing this extremely valu-
able task efficiently.

In most cases, there is uncertainty due to the incomplete, im-
precise, or ambiguous contents of the handwritten word images.
Performing handwritten word recognition becomes, in a sense,
a search for a way to capture the organization of the complexity
and to deal with a high degree of ambiguity. In view of these
considerations, the production of optimally cost-effective hand-
written word recognition system design is a challenging task for
both practitioners and researchers.

In the following sections, we will discuss some of the issues
and considerations that will determine the workings of a hand-
written word recognition system and state the specific problem
addressed in this study.
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Fig. 1. Ambiguous patterns in handwritten words.

A. The Difficulty of the Problem

Automatic reading of handwritten words is a very rich and
interesting problem, involving a broad range of questions. It
is a difficult problem, not only because of the great variety in
the shape of characters, but also because of the overlapping
and the interconnection of the neighboring characters. In hand-
writing we may observe either isolated letters such as hand-
printed characters, groups of connected letters, i.e., subwords, or
entirely connected words. Furthermore, when observed in iso-
lation, characters are often ambiguous and require context to
minimize the classification errors. For example, we may prob-
ably read the message shown in Fig. 1 as, “My phone number
is area code (573) 882-3067. Please call!” because of the ef-
fect of the context of the message. If we look carefully, we will
notice that the word “is” and the part of the area code number
“(5” are written identically. We will also note that the “h” in
the word “phone” and “b” in the word “number” are the same,
as well as the “d” in the word “code” and the “l” in the word
“please.” Thus, characters from different classes can be written
using identical shapes. Conversely, characters from the same
class can be written very differently. For example, although this
message is written by a single writer, many variations in size
and shape of the character “a” are observed inside the words
“area,” “please,” and “call.” When the number of writers in-
creases (as in handwritten words from address blocks), the de-
gree of variation increases as shown in Fig. 2. Many design ef-
forts for character recognition are available, based nominally on
almost all types of classification methods such as neural nets,
linear discriminant functions, fuzzy logic, template matching,
binary comparisons, genetic algorithms, etc. [1]–[8]. The ex-
isting development efforts to solve such problems have involved
long evolutions of differing classification algorithms, resulting
in a final design that is always an engineering combination of
many techniques, not a single technique [1], [9]–[14].
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Fig. 2. Handwritten words from address blocks.

B. HMM in Handwritten Word Recognition

Hidden Markov models (HMM’s) have been applied to hand-
written word recognition by many researchers during the last
decade. Chenet al.[15] used discrete HMM to recognize words
using lexicons. The input word image is first segmented into
a sequence of segments in which an individual segment may
be a complete character, a partial character, or joint characters.
The HMM parameters are estimated from the lexicon and the
training image segments. A modified Viterbi algorithm is used
to find the best state sequences. One HMM is constructed
for the whole language and the optimalpaths are utilized to
perform classification. When tested on a set of 98 words, this
system is able to achieve 72.3% success for a lexicon of size 271
using 35 features. Another application of HMM in a character
segmentation-based word recognition was presented by Chenet
al. [16]. Chen used continuous density, variable duration hidden
Markov model (CDVDHMM) to build character models. The
character models are left-to-right HMM’s in which it is pos-
sible to skip any number of states. A major disadvantage of this
technique is that it is slow to train and in operation because of
introducing more parameters and computation for the state du-
ration statistics.

Another interesting technique was developed by Gillies
[9] for cursive word recognition using left-to-right discrete
hidden Markov models. In this technique, each column of
the word binary image is represented as a feature vector. A
series of morphological operations are used to label each pixel
in the image according to its location in strokes, holes, and
concavities located above, within and below the core region.
A separate model is trained for each individual character
using word images where the character boundaries have been
identified. The word matching process uses models for each
word in a supplied lexicon. The advantage of this technique
is that the word need not be segmented into characters for the
matching process. When tested on a set of 269 cursive words

this technique is able to achieve 72.6% success for a lexicon of
size 100.

Performing word recognition without segmenting into char-
acters is an attractive feature of a word recognition system since
segmentation is ambiguous and prone to failure for a signifi-
cant portion of the handwritten words coming from the mail
stream. In an attempt to avoid some limitations of the existing
segmentation-based handwritten word recognition techniques
we designed a segmentation-free model-based system. In this
technique, the training process does not need representative im-
ages of each word in a lexicon. Our proposed segmentation-free
system computes features from each column in a word image
and uses a continuous density HMM for each character class.

The continuous density HMM has a significant advantage
over the discrete density HMM. Using a continuous density
HMM is attractive in the sense that the observations are encoded
as continuous signals. Although it is possible to quantize such
continuous signals there might be a serious degradation associ-
ated with such quantization. In the case of the discrete HMM, a
codebook must be constructed prior to training the models for
any class. The codebook is constructed using vector quantiza-
tion or clustering applied to the set of all observations from all
classes. By contrast, in the continuous case, the clusters of ob-
servations are created for each model separately (e.g., by es-
timating Gaussian mixture parameters for each model). Thus,
continuous density HMM’s provide more flexibility for repre-
senting the different levels of complexity and feature attributes
of the individual character classes. Furthermore, in the discrete
case, training a new model may require creating a new code-
book since the features required by the new model may be quite
different from those represented in the old codebook. Since the
continuous density models perform clustering independently for
each class, there is no such requirement.

One computational difficulty associated with using contin-
uous density HMM’s is the inversion of the covariance matrices.
We overcame this difficulty by reducing the dimensionality
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Fig. 3. Overview of a word recognition system.

using principal component analysis and approximating the
densities as a mixture of Gaussian densities with diagonal
covariance matrices. The results provided in this paper
demonstrate that the approach performs reasonably well when
confronted with various styles of handwritten words.

C. Off-Line Word Recognition Systems

The specific problem addressed in this study is the recogni-
tion of handwritten words extracted from postal addresses. Our
concern is the recognition of isolated handwritten words using
the contextual information provided through the associated lex-
icon that defines the vocabulary range.

A generic off-line word-recognition system has two inputs:
a digital image, assumed to be an image of a word and a list
of strings called a lexicon, representing possible identities for
the word image. In general, before looking for features, some
preprocessing techniques are applied to the word image to avoid
recognition mistakes due to the processing of irrelevant data (see
Fig. 3). The goal of the word recognition system is to assign a
match score to each candidate in the lexicon. The match score
assigned to a string in the lexicon represents the degree to which
the image “looks like” the string. The output from this matching
process is usually followed by a postprocessing step to check for
highly unlikely decisions. Finally, a sorted lexicon is the output
from the word recognition system.

The approach considered for our research is based on the
use of the classical and generalized hidden Markov models.
The first task accomplished in this research is the development
and demonstration of a classical HMM handwritten word
recognition system using novel image processing and feature
extraction techniques. We used a segmentation-free continuous
density hidden Markov modeling approach to improve the
performance of the existing techniques in the literature. Our
approach is the first to use continuous density hidden Markov
models for a segmentation-free handwritten word recognition.
The second task is the development and demonstration of a
generalized (fuzzy) HMM system that uses fuzzy sets, fuzzy
measures, and fuzzy integrals. In this paper, we describe our
implementation for the classical and and generalized models in
detail.

The remainder of this paper is organized to describe our re-
search approach in the following manner. In Section II, a com-
plete description of the implemented classical and fuzzy HMM
off-line handwritten word recognition systems is provided. This
section describes the feature extraction, dimensionality reduc-
tion, training and matching strategies. In Section III a complete
description of the database is provided. We describe the data-
base and the preprocessing steps we applied to the raw images

contained in the standard training and testing sets. Section IV
shows the experimental results and analysis of the performance
of the implemented systems. Finally, Section V is dedicated to
the summary of this study and the suggestions for future re-
search.

II. DESIGN AND IMPLEMENTATION OF OFF-LINE HMM
HANDWRITTEN WORD-RECOGNITION SYSTEMS

In our handwritten word-recognition systems, an HMM is
constructed for each character class using the training data.
We used left-to-right HMM’s with continuous probability
densities to model the character classes. The approach is a
segmentation-free technique. An HMM is constructed for each
string in the lexicon by concatenating the state chains of the
corresponding character models. Classification is performed
according to the matching scores computed from the optimal
state sequence using the Viterbi algorithm in the classical
HMM and the fuzzy Viterbi algorithm in the generalized
hidden Markov model (GHMM).

The inputs to the word recognition algorithm are a binary
word image and a lexicon (see Fig. 4). After preprocessing
the input binary word image, the resultant image is subjected
to a feature extraction process. The output from this process
is a sequence of observation vectors, each corresponds to an
image column. Using the character models, a word model
is constructed for each string inside the lexicon. The string
matching process computes a matching score between the
sequence of observation vectors and each word model using
the Viterbi algorithm. After postprocessing, a lexicon sorted by
the matching score is the final output of the word recognition
system.

The following sections describe the system components and
related implementation issues.

A. Feature Extraction

The performance of any classification or recognition algo-
rithm depends, to a large extent, on the representation chosen,
i.e., the features or primitives that are extracted from the inputs.
These characteristics must, as far as possible, summarize the in-
formation, which is pertinent and useful for clustering and at
the same time eliminate useless or irrelevant information, i.e.,
the randomness due to variability and nondiscriminant informa-
tion.

The description of a binary word image as an ordered list of
observation vectors is accomplished by en-
coding a combination of features computed from each column
in the given preprocessed image. This representation uses what
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Fig. 4. Word recognition systems.

Fig. 5. Transition feature computations.

we refer to as the transition features. The idea behind the tran-
sition features is to compute the location and number of transi-
tions from background to foreground pixels along vertical lines
(image columns). This transition calculation is performed from
top to bottom and from bottom to top (Fig. 5).

The first step of the feature computation is to estimate the
center line of the word using the horizontal projection. The cen-
troid of the horizontal projection of the word image is taken as
an estimate for the word center-line location. The center line
of the word is used to account for differences in the positions
of characters within a word depending on whether a descender
and/or ascender is present or not. For example, a lower case “a”
may be at the bottom of a word image if there is no character of
type descender in the word, but may be in the middle of the word

if there is a descender and an ascender. The transition features
are computed on a virtual bounding box of the word image. The
core of the word image is considered to be at the middle of the
virtual bounding box.

The location of each transition is represented as a fraction of
the distance across the word image inside the virtual bounding
box in the direction under consideration [7]. For example, when
calculating the location of transitions from top to bottom, a tran-
sition close to the top edge would have a high value, whereas a
transition far from the top edge would have a low value. A max-
imum number of transitions are counted along each
column. If there are more than transitions in a given
column, then only the first transitions are considered
and the rest are ignored. Currently, the parameter is set
to four. If there are less than transitions on a column,
then the “nonexistent” transitions are assigned a value of zero.
Two more features representing the gradient of the north and
south contours are included resulting in a total of ten features
per each image column.

We used principal component analysis to reduce the dimen-
sionality from ten to five when using both transition and gradient
features. Fig. 6 shows the singular values for the covariance ma-
trix of all character samples used for training the system.

When computing features for training the character modules
the observation sequences are resampled to a fixed length

. After the transition feature vectors are calculated for each
column in the character image, they are resampled using linear
interpolation. The rationale behind this resampling process is to
guard againest biasing the training in favor of large characters.
This is because each character image will be represented by a
sequence of only 24 feature vectors in the training process re-
gardless of the actual number of columns in the character image.

B. Character Models

For the purpose of isolated handwritten word recognition, it
is useful to consider left-to-right models. In a left-to-right model
transition from stateto state is only allowed if , resulting
in a smaller number of transition probabilities to be learned. The
left-to-right HMM has the desired property that it can readily
model signals whose properties change over time. It is useful
for building word models from character models because fewer
between-character transition probabilities are required for con-
structing the word models from the corresponding character
models.

The first problem one faces is deciding what the states in
each character class correspond to, and then deciding how many
states should be in each model. We optimized the structure for
the character hidden Markov models by searching for the best
number of states to be fixed among all character classes. We
allow skipping only one state such that if a character class needs
fewer states some of the skipping probabilities could be rela-
tively high. Fig. 7 illustrates the structure of a character model
assuming five states.

C. Training The Classical Character HMM’s

A continuous density HMM is trained for each upper and
lower case character class using the transition and gradient
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Fig. 6. Singular values for the training covariance matrix of transition and gradient feature vectors.

Fig. 7. A character model assuming five states.

features computed inside word images. We varied the number
of states (from to ) for each model and
the number of Gaussian mixtures per state (from to

). Initially, the mean and covariance matrix for each
state mixture were estimated after dividing the resampled
training transition vectors equally between the states.

The standard reestimation formulae were used inside the seg-
mental -mean algorithm assuming diagonal covariance ma-
trices for the Gaussian mixtures. The Viterbi algorithm was used
to find the optimal state sequence and assign each of the obser-
vation vectors to one of the states. The probability of the obser-
vation vectors given the model was used to check whether the
new model is better than the old model inside the training proce-
dure. The training algorithm proceeds in the following manner:

Algorithm: Clasical Segmental K-Means

Choose initial values for model parameters;

Refine initial values using standard reesti-

mation formulae;

Set Improving=True;

WHILE (Improving=True)

DO

Segment training sequences into N states

(Usig Viterbi);

Cluster vectors in each state into M clus-

ters;

Update model parameters from the resulting

states and clusters;

Refine model parameters using standard

reestimation formulas;

IF the new model is not better than the old

model set Improving=False;

END WHILE.

The character models were trained on the training word im-
ages included in the State University of New York (SUNY) data-
base described in Section III. For each character class we used
all the available training samples. For example, 3474 samples
are used to model the “a” class while only three samples are
used to model the “Q” class. The actual distribution of all char-
acter training sets that have been extracted from all word images
in the training sets is shown in Fig. 8.

D. Training The Fuzzy Character HMM’s

Initially, the mean and covariance matrix for each state mix-
ture are estimated after dividing the resampled training feature
vectors equally among the states. The fuzzy reestimation for-
mulas are used inside a fuzzy version of the segmental K-means
algorithm assuming diagonal covariance matrices in the fol-
lowing manner:

Algorithm: Fuzzy Segmental K-Means

Choose initial values for model parameters;

Refine initial values using the fuzzy

reestimation formulae;

Set Improving=True;

WHILE (Improving=True)

DO

Segment training sequences into N states

(Using Fuzzy Viterbi);

Cluster vectors in each state into M clus-

ters;

Update model parameters from the resulting

states and clusters;

Refine model parameters using the fuzzy

reestimation formulas;

IF the new model is not better than the old

model, set Improving=False;

END WHILE.
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Fig. 8. Distribution of training samples.

Fig. 9. Fuzzy states membership estimation.

After clustering the vectors in each state, the model parame-
ters are updated using weighted mean and weighted covariance.
The weights are determined from the fuzzy optimal state se-
quence and the fuzzy forward and backward variables in the fol-
lowing manner:

1) Compute the fuzzy forward and backward

variables (�̂t(i) and �̂t(i)).

2) Find the optimal state sequence,

fq1q2 � � � qT g, using the fuzzy Viterbi.

3) Prune some of the paths by modifying the

fuzzy forward variables as follows:

FOR t from 2 to T DO

j = qt

FOR i from 1 to (j � 2) DO �̂t�1(i) = 0 END

FOR i from (j + 1) to T DO �̂t�1(i) = 0 END

END.

4) Compute the weight of Ot in Si called �i(Ot)

by

�i(Ot) =
�̂t(i)�̂t(i)

N

j=1

�̂t(j)�̂t(j)

:

The rationale behind this pruning is to reduce the effect of
the state sequences that are far from the estimated optimal state
sequence (Fig. 9).

E. Lexicon Pruning

A lexicon pruning component is used to improve the recog-
nition process by limiting the number of lexicon entries, espe-
cially when dealing with large size lexicons. Indeed, an exhaus-
tive search through all the lexicon entries is likely to have side
effects on the recognition robustness in addition to being very
time consuming. Lexicon pruning is actually a global recogni-
tion process. Since the words to be recognized possess some dis-
criminant features like ascenders, decsenders, loops, and overall
length, this process usually builds a coarse description of the
character segments inside words along a set of features. For now,
our system uses the overall length of the word to avoid matching
against some of the strings in the provided lexicons. The system
checks for the average character width, if it is less than ten or
greater than 160 columns a minimal value for the confidence is
assigned to the corresponding lexicon string.

F. Matching Strategies and Post Processing

Since we have different models for upper and lower character
classes, we match against each string in the lexicon using two
strategies. The first strategy constructs a word model assuming
that all characters in the word are upper case characters. The
second strategy constructs a word model assuming that the first
character is an upper case and the rest are lower case characters.
Therefore, two scores are computed for each string in the lex-
icon using the Viterbi algorithm and the maximum is taken as
the confidence for the given string.
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TABLE I
NUMBER OF HANDWRITTEN WORD IMAGES

IN THE TRAINING AND TESTING SETS

The segmentation of the word into characters is achieved as
a byproduct of the Viterbi matching process for each string in
the lexicon. To avoid inconsistent matches, we check for the
character widths. If the number of columns for any character
in the given string is less than three or greater than 164 the cor-
responding confidence is set to a minimal value. This is a very
crude postprocessing technique. A more sophisticated technique
that uses other consistency measures is required to avoid false
matches.

III. D ATABASE AND PREPROCESSING

A. The Database

The database used for our experiments consists of hand-
written words and characters extracted from the first CDROM
image database produced by the Center of excellence for docu-
ment analysis and recognition (CEDAR) at the State University
of New York (SUNY) at Buffalo. This database is widely
available and serves as a benchmark for evaluation purposes
[12]. We first describe the database and then the preprocessing
steps we applied to the original images. The handwritten words
(cities, states, and ZIP codes) are provided on the CDROM in
full eight-bit gray scale. These data were divided into training
and testing sets at SUNY by randomly choosing approximately
10% of the ZIP code images and placing those images as well
as the city and state name from the corresponding addresses in
the test set. The remainder of the data were retained for training
purposes as shown in Table I.

Each city or state word in the test data is provided with three
lexicons that simulate the results of recognition of the corre-
sponding ZIP code. The lexicons contain lists of all the city or
state words that could match the ZIP code that corresponds to
those words when one, two, or three of the digits (randomly
chosen) are allowed to vary. The data from the USPS database
of cities, states, and ZIP codes were used to determine the lexi-
cons. This file is also included in the database.

B. Preprocessing

The following preprocessing steps have been implemented,
fine tuned, and applied to all word images in the database: bi-
narization, line removal, border cleaning, tilt correction, slant
correction, smoothing and scaling. Binarization was performed
using Otsu’s thresholding medthod [17]. We describe the other
steps in detail in the following sections.

1) Line Removal and Border Cleaning:The line-removal
algorithm checks for the existence of underlines and/or lines
above a given word image using a binary morphological opening
operation by a horizontal bar. The size of the horizontal bar
(structuring element) varies with the width of the word image.
The detected lines are removed from the given image. Since this
process might remove some parts from the word image, a mor-
phological conditional dilation operation is used to recover these
parts. Formally, the line removal algorithm proceeds as follows:

I a word binary image

H a horizontal bar structuring element of

width that varies linearly with the width of

the word binary image

s an estimate of the stroke width of the

word binary image

D a disk structuring element of radius

that varies linearly with s

M = I �H the result of opening I by H

T1 = (M � D) \ I

T2 = (I � T1)

J0 = T2

FOR m from 1 to s DO

Jm = (Jm�1 � D) \ I

END.

R = Js the resultant binary image.

Word image borders are sometimes surrounded by character
segments from adjacent fields that get captured during imaging.
A similar technique to that used for line removal is applied here
to check for connected components touching the borders of the
image. All components having sizes below a specified size are
eliminated from the word image. The border cleaning algorithm
can be summarized as follows.

1) Find all connected components in the word

image.

2) Mark connected components that touch the

boundaries of the word image.

3) FOR each connected component that touches a

boundary.

IF its size is less than a threshold value.

THEN remove it from the word image.

END

The size of the connected components touching one or
more of the image boundaries is considered to be the height
or width of the bounding box surrounding the connected
component depending on whether it touches a horizontal or
vertical boundary respectively. The threshold varies linearly
with the image height or width depending on whether the
connected component touches a horizontal or vertical boundary
respectively (see Fig. 10).

2) Tilt and Slant Correction:This is one of the most diffi-
cult preprocessing steps since it involves estimating angles to
rotate and shear the original word image. It is also very impor-
tant for the system since we use the columns of the images to
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(a)

(b)

(c)

Fig. 10. Line removal and border cleaning. (a) Before line removal. (b) After
line removal. (c) After border cleaning.

define our features. To obtain an estimate for the tilt angle we
first estimated the core of the given image applying a morpho-
logical closing operation followed by an opening operation by
a horizontal bar. The elongation angle of the core image is used
as an estimate for the tilt angle and a rotation transformation is
performed to correct for tilting.

The tilt-correction algorithm proceeds as follows.

I a word binary image

H a horizontal bar structuring element of

width that varies linearly with the width of

the word binary image

W1 = I �H the result of closing I by H

W2 = W1 �H the result of opening W1 by H

M the largest connected component in W2

� the elongation degrees of M

R the resultant image from rotating I by �

degrees.

Before applying the rotation transformation, the tilt-correc-
tion algorithm checks to see whetheris within a reasonable
interval, otherwise the original image is returned (see Fig. 11).

For the slant angle, we first opened the tilt-corrected word
image by a vertical bar to obtain a set of potentially slanted
lines. The mean value of the elongation angles of these slanted
lines is considered as an estimate for the word slant angle. A
shear transformation is then applied to the tilt-corrected image
in order to correct for the estimated slant.

(a)

(b)

(c)

Fig. 11. Tilt and slant correction. (a) Before tilt correction. (b) After tilt
correction. (c) After slant correction.

The slant-correction algorithm proceeds as follows:

I a word binary image

V a vertical bar structuring elements of

height that varies linearly with the stroke

width of the word binary image

C = I � V the result of opening I by V

FOR each connected component Ci in C

�i = elongation degrees of Ci

END

� the average value of the elongation de-

grees �i
R the resultant image from shearing I by

(�=2 � �) degrees.

As for the tilt correction, before applying the shear transfor-
mation, the slant-correction algorithm checks to see whether

is within a reasonable interval, otherwise the orig-
inal image is returned.

3) Smoothing and Scaling:A morphological smoothing op-
eration is performed as follows. The word image is first closed
and then opened by a disk of size one. This operation also helps
to remove salt-and-pepper noise. Finally, the preprocessed word
image is scaled to a fixed height (sixty four) keeping the aspect
ratio as for the original image (Fig. 12).

C. Character-Level Truthing

The original training word images are not truthed to the char-
acter level, i.e., the information about where each character in-
side a word starts and ends is not provided. We identified the
horizontal positions of the start and end of each character in-
side the word images provided in the traing sets. This process is
very crucial for our proposed word recognition system since we
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(a)

(b)

(c)

Fig. 12. Smoothing and scaling. (a) Before smoothing. (b) After smoothing.
(c) After scaling.

need to compute features for character modules inside the word
image.

IV. EXPERIMENTAL RESULTS

We report the results of the baseline handwritten word recog-
nition, provide examples of successes and failures, describe
experiments to find the best structure for the character models,
report performance of the individual classical and fuzzy models
and combination techniques, and discuss research problems.
The following experiments are described in this section.

1) For the initial experiments, we fixed the structure of the
character HMM to be and and used the
classical baseline HMM word recognition system with
only transition features. The number of principal features
used is . We analyzed the performance of the
system using the standard testing set.

2) We varied the number of states from to
and the number of mixtures per state from to

in order to find the best model structure for the classical
HMM. Here we added two more gradient features to the
transition features. The number of principal features used
is .

3) After finding the best structure for the classical HMM
(which happened to be and , We trained
the GHMM using this structure. The GHMM is tested
using the same testing data.

For all of the above experiments, we also report the perfor-
mance when combining the results of the HMM and the GHMM
using the Borda count method. The Borda count for a string in a
given lexicon is the sum of the number of strings ranked below
it by each word recognizer. The combined ranking is given by
sorting the lexicon strings so that their Borda counts are in de-
scending order.

TABLE II
RESULTS OFINITIAL EXPERIMENTS

A. Initial Experiments

To build word models by concatenating character models,
values have to be assigned for the between-character transition
probabilities. At first, we applied a stationary approach and set
both the between-character transition probability and the prob-
ability of staying at the last state of the previous character to 0.5
for all character breaks. This implementation resulted in 68.8%
top rank word recognition score using the BD city words data
set (317 images) and the smallest lexicon (lexicon size∼ ten en-
tries).

For the second implementation we tried to vary those proba-
bilities with time utilizing the relative character width informa-
tion estimated from the training data for all character classes.
The location of each character break is estimated by partitioning
the word image according to the mean values of the character
widths. The between character transition probabilities are varied
exponentially as a function of the distance between the column
location and the character break location. This nonstationary ap-
proach resulted in 71.6% top rank word-recognition score for
the same testing data set. A significant improvement (76.7% top
rank recognition) was achieved when combining the two word
recognition results using the Borda count method. A summary
of the results is shown in Table II.

B. Performance Analysis of Initial Experiments

It worth noting that we ignored blank columns when
matching against lexicon strings, i.e., the input to the Viterbi
algorithm is a sequence of nonzero feature vectors. It seems
that this kind of information is useful and should be utilized
“carefully” for printed words and also sometimes as a guess for
the first character break. The segmentations (character breaks)
given by the Viterbi algorithm for some correctly classified and
misclassified words are shown in Figs. 13 and 14.

It is interesting to find that for some of the long words even
though not all characters breaks are found correctly, they are
still correctly classified as long as a significant number of the
correct character breaks are discovered.

Although some of the word images are not correctly prepro-
cessed, reasonable approximations for the character breaks are
discovered by the system. Sometimes when the word string truth
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Fig. 13. Correctly classified samples from initial experiments.

is given in a wrong case sequence the system matches against
the actual sequence.

It is also clear that some of the characters like “m,” “w,” and
capitals need more states while others like “i,” and “e” may need
less than five states. It seems that allowing to skip one state
is helping to some degree, but it is still important to increase
the number of states for the upper case characters. Special care
should be given to the first character since it is usually “well
drawn” and also to the last character since it sometimes ends
with “flair” or touches a punctuation mark. Cursive upper case
characters are the most complex among all character classes.
They involve a great amount of variation in the style, size, and
the stroke width.

A major problem occurs when the first character or some
other characters like “t” or “g” overshadow or undershadow
their neighbors. Possible solutions for this problem could be ex-
ploring new feature sets, training models for character pairs like
“ti,” “ng,” etc. Another problem is that the system is not taking
into account horizontal and global information. Some informa-
tion like the gradient of the top and bottom contours, horizontal
transitions, connected components, state duration might help for
discriminating among lexicon entries.

It is very important to note that postprocessing is sometimes
very dangerous since it can exclude the correct choice. It is more
appropriate to use any possible information inside the matching
process itself (if it is possible) and to try to avoid all kinds of
early commitments.

Fig. 14. Misclassified samples from initial experiments.

C. Performance of the Classical and Fuzzy Models

The initial experiments are promising, serving primarily to
highlight the subproblems that became the primary objects of
study for the baseline HMM word-recognition system.

High levels of performance require that large amounts of
specific knowledge be organized and brought to bear on the
problem. It is evident from even a casual look at the misclas-
sified examples that more features are required to enhance the
performance. The effect of adding the two gradient features to
the observation vector and increasing the number of principal
features from to was found to be fruitful (see
Fig. 15). The number of states was varied from to

while setting the number of clusters per state to
and . In essence, adding more states and mixtures
means storing more information which is thought to represent
different styles in character classes. The results from these
experiments are shown in Fig. 16.

As mentioned before, it worthwhile to consider the effect of
varying both the number of states and the number of clusters per
state in order to achieve better performance. Since this task re-
quires repeating the training and testing experiments and, there-
fore, more computing effort we used the smallest lexicons to
evaluate different model structures. The best word-recognition
results for the baseline system are given by the models using 12
states and three mixtures .
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Fig. 15. Effect of adding gradient features.

Fig. 16. Effect of changing number of states(N) and number of mixtures
(M).

After fixing the model structures to 12 states and three clus-
ters per state and , experiments were carried
for the classical and fuzzy HMM’s using lexicons with average
sizes 10 and 100 and the BD test set. The fuzzy model was found
to outperform the classical one as shown in Table III and Fig. 17.

The combination of the two individual classifier using the
Borda count method resulted in higher recognition rates. We
used the Borda count method, which is the simplest decision
combination technique for word recognition to demonstrate the
fact that the individual classical and fuzzy classifiers make dif-
ferent mistakes and, therefore, give better results when com-
bined.

The mixed success achieved as a result of combining the two
classifiers has again served to highlight the fact that high levels
of performance require that large amounts of specific knowl-
edge be organized and brought to bear on the problem.

V. CONCLUSION

We have presented a complete scheme for off-line hand-
written word recognition. The challenge for a handwritten
word recognition is to employ various kind of knowledge about
the application domain and analyze the word image in order
to make inferences about its identity. An important ingredient
to the knowledge base on which the analyzing processes are
operating is the collection of procedures and techniques for

TABLE III
CLASSICAL AND FUZZY HIDDEN MARKOV MODELS PERFORMANCE

image processing, feature extraction, and classification. The
heart of our scientific aim for this study is defined as the design
and engineering of an off-line handwritten word recognition
system at the conceptual and theoretical level as well as at the
methodological and implementational ones.

The presented system is a complete scheme for totally un-
constrained handwritten word recognition using HMM’s and a
segmentation-free approach. The system applies the contextual
knowledge provided by the lexicons in the process of recog-
nizing individual words to attain higher levels of accuracy. A
very large database is used to be aware of the writing variations,
insure the algorithms robustness, and to obtain significant es-
timates of efficiency rates. A given assumption to our present
system is that the characters inside a word image could be rea-
sonably separated by vertical lines. After binariztion of the input
gray word image, many preprocessing steps are used to ensure
satisfaction of this requirement.

The detection of meaningful objects and their relations is
accomplished by computing transition and gradient features
and constructing word models from the constituent character
models. We used a segmentation-free continuous density
hidden Markov modeling approach to improve the performance
of the existing techniques in the literature. Our approach is the
first to use continuous density HMM’s for a segmentation-free
handwritten word recognition. In addition, we developed a
generalization of the classical hidden Markov models using
fuzzy measures and fuzzy integrals resulting in a fuzzy hidden
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(a)

(b)

Fig. 17. Classical and fuzzy hidden Markov models performance. (a) Lexicon
size∼ 10. (b) Lexicon size∼ 100.

Markov modeling framework. Our generalization relies heavily
on the use of the conditional fuzzy measure. An attractive
property of this generalization is the fact that if we used
Choquet integral as the general fuzzy integral, multiplication
as the fuzzy intersection operator, and a probability measure
as the fuzzy measure then the generalized HMM reduces to
the original probabilistic hidden Markov mode. In this sense,
the classical model is one of many models provided by the
generalization.

Methods for training the classical and fuzzy models are de-
scribed. Learning the optimal model parameters is the most dif-
ficult problem for both the classical and fuzzy models where
there is no closed-form solution. The described learning algo-
rithms are iterative techniques seeking optimal solutions. One
of the advantages of using HMM’s is that the parameters do
have meaning associated with them such as the expectation of
transitions among states, the means and covariance matrices of
clusters of feature vectors inside each state. This provides useful
information for choosing initial values, which is very helpful for
finding good approximation of the modeling parameters by ap-
plying the reestimation formulas inside the training algorithm.

Several experimental results involving the classical HMM’s,
the generalized HMM’s assuming a possibility fuzzy measure,

and combination strategies were presented. Real data obtained
from the U.S. Post Office mail stream is used for conducting
the experiments. The results show that the proposed methods
are promising and effective. We demonstrated that the general-
ized HMM’s can be used to achieve significantly higher clas-
sification rates for the application of off-line handwritten word
recognition.

The generalization also serves as a tool for constructing mul-
tiple classifiers. It is increasingly held that the use of a combina-
tion of multiple classifiers may be able to improve significantly
the performance of a handwritten word-recognition system. Al-
though the fuzzy models use the same features as the classical
ones, fusing the information using a nonlinear integration re-
sults in different character model parameters when training and
also different matching scores when testing. The classical HMM
and the fuzzy HMM classifiers trained with exactly the same
training data, the same structures, and the same initial model
parameter values make different mistakes and, therefore, give
better results when combined.

We have shown that classical and fuzzy HMM’s, given the
right encoding method, are a versatile pattern matching tool for
solving the off-line handwritten word-recognition problem. The
generalized (fuzzy) HMM shares the ability to model sequen-
tial processes with the classical one and, therefore, can also be
used for similar applications of the classical HMM. The gener-
alization provides more freedom and flexibility to aggregate the
sequential information obtained from the observation sequence.
With such flexibility and freedom to choose comes the obliga-
tion to choose right.

There are many possible future improvements for the im-
plemented system that require the availability of more training
data. The most important one is to directly model some of the
common subwords such as “tt,” “ton,” “Te,” and “ing” where
some of the characters overshadow their neighbors. Another im-
provement could be achieved by training more than a single
model per each single character class by manually dividing the
training data into cursive and printed word styles.

A difficulty arises when matching the word image against the
lexicon strings as a result of considering two possible character
case sequences for each string inside a lexicon. One possible
approach to deal with this difficulty is to build a single model
for each character instead of two—one for the lower case and
the other for the upper case. The problem with this approach is
that there is a large degree of variations between the lower and
upper case shapes for most of the character classes. A more rea-
sonable approach is to develop techniques for combining char-
acter models and use it inside the word matching process. This
approach is also useful when dealing with models of different
styles for the same character class.
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