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Generalized Hidden Markov Models—Part I:
Theoretical Frameworks

Magdi A. Mohame¢dMember, IEEEand Paul GadeiSenior Member, IEEE

Abstract—This is the first paper in a series of two papers de- This proper generalization, which is based on the strong theo-
scribing a novel generalization of classical hidden Markov models retical foundations of fuzzy measures and fuzzy integrals [4],
using fuzzy measures and fuzzy integrals. In this paper, we present provides more freedom and flexibility to aggregate the sequen-
the theoretical framework for the generalization and, in the . .. . . A
second paper, we describe an application of the generalized hiddentlal lnformat!qn Obtamed. from the observation Sequences'
Markov models to handwritten word recognition. The main One S|gn|f|Cant contribution of our research is the estab-
characteristic of the generalization is the relaxation of the usual lishment of a relation between the generalized hidden Markov
additivity constraint of probability measures. Fuzzy integrals are  model and the classical nonstationary hidden Markov model
defined with respect to fuzzy measures, whose key property is j, \which the transitional parameters are allowed to vary with
monotonicity with respect to set inclusion. This property is far .. - .
weaker than the usual additivity property of probability measures. time. The ma'_n advantag.e of our prOPF’SGd generallzed _mOdeI
As a result of the new formulation, the statistical independence OVer the classical nonstationary model is that this nonstationary
assumption of the classical hidden Markov models is relaxed. An behavior, which is an extremely desirable property, is achieved
attractive property of this generalization is that the generalized naturally and dynamically as a byproduct of the nonlinear
hidden Markov model reduces to the classical hidden Markov aggregation of information using the fuzzy integral. Moreover,

model if we used the Choquet fuzzy integral and probability . ..
measures. Another interesting property of the generalization is the fuzzy model does not require fixing the lengths of the

the establishment of a relation between the generalized hidden Observation sequences and the availability of large training sets
Markov model and the classical nonstationary hidden Markov in order to learn a large number of transition parameters as for

model in which the transitional parameters vary with time. the classical nonstationary model.
Index Terms—Fuzzy integral, fuzzy measures, handwriting Constructing a mathematical framework for generalizing the
recognition, Markov models. classical hidden Markov model requires thoughtful application
of tools from different disciplines and difficult nonlinear opti-
I. INTRODUCTION mization issues. The main factor that makes the classical hidden

Markov model a versatile pattern recognition tool is the formu-
IDDEN Markov model (HMM) is a statistical method that|ation of the forward and backward variables under statistical
uses probability measures to model sequential data rgyependence assumptions to compute the matching scores effi-
resented by sequence of observation vectors. In this paper, ¥htly. By properly defining fuzzy forward and backward vari-
describe a novel generalization of the classical hidden Markgyjes, we gain increased flexibility and meaningful matching
models that utilizes fuzzy sets, fuzzy measures, and fuzzy infgyres with relaxed assumptions.
grals. Fuzzyintegral; are defineq vyith respectto fuzzy measureshe concept of an optimal state sequence is used by many
whose k_ey property is monotonicity with respect to set inclypsearchers in the field of classical hidden Markov models to
sion. This property is far weaker than the usual additivity proesign appropriate training and classification techniques. Given
erty of probability measures. As a result of the monotonicity of sequence of observation vectors, the difficulty for finding a
the fuzzy measures, the statistical independence assumptiog,@bningful optimal state sequence lies with the definition of
the classical model is relaxed in the generalized (fuzzy) modgle gptimal state sequence since there are several possible opti-
An attractive property of this generalization is that the genegsajity criterion functions. Here, again, we utilize the proper def-
alized hidden Markov model (GHMM) reduces to the classicglisions of the fuzzy forward and backward variables to formu-
hidden Markov model if we used the Choquet fuzzy integral anghe the corresponding nonlinear optimality criterion function
probability measures. This property implies that the generalizgflq \se a fuzzy modification of the classical Viterbi algorithm
models include the classical one as a special case. to determine the fuzzy optimal state sequence. We call this se-
The classical hidden Markov models have been found o Rfance a fuzzy optimal state sequence because its computation
extremely useful for awide spectrum of applications in ecology, ,yes new parameters that are thought to serve as consistency
cryptanalysis, image understanding, speech, and handwritij, g res (or robustness factors) that take into account the confi-

recognition [1]-[3]. The proposed generalized hidden Markqy, e scores from other states to identify the final optimal state
model shares the ability to model sequential processes with uence in an appropriate manner

classical one and, therefore, can be used for similar apphcatlonsAS for the classical hidden Markov model, there is a computa-

tional difficulty for the generalized model. Fortunately, we can
Mr?nuscrr]ipt receivethEne 14, 1996; revised Augustdloy 1999. overcome this difficulty for certain choices of the fuzzy mea-
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partment, University of Missouri—-Columbia, Columbia, MO 65211 USA. Eﬁre fuzzy |ntegral,_ar_1d fuzzy Intersection operatqr by using a
Publisher Item Identifier S 1063-6706(00)01623-4. scaling procedure similar to that used for the classical model.
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The most difficult aspect of the generalization is the deriva. Elements of a Discrete HMM
tion of reestimation formulas used inside the training algorithms \s o<t of the material and notation presented in this section

as updating rules. We accomplish this difficult task under celza adapted from Rabiner [1]. There are a finite number, say
tain relaxed constraints; the general case remains unsolved. R;L,Jl’of states in the model. At each time step, a new state is
generalization opens new future directions for research in mQthiered based upon a transition probability distribution which
eling sequential processes. There are many aspects that reqtiifends on the previous state (the Markovian property). If the
more study._ . i ) transition parameters are held constant with respect to time the
_ The remainder of this paper is devoted to a detailed descriy g js called stationary, otherwise it is called nonstationary.
tion of both the existing mathematical frameworks and our 9€Rgier each transition is made, an observation output symbol is
eralized hidden Markov model. We provide necessary backzqced according to a probability distribution, which depends
ground material to make the motivation for the generalizalifh, the current state. The probability distribution is held fixed for
clear and to make the paper self-contained. In Section Il, we P{g state regardiess of when and how the state is entered. This
V'.de areview of the clas_5|ca! hidden Mgrkov models. W(_a al%ﬂeans that the properties of the process are held steady, except
discuss the implementation issues required for the applicatigf minor fluctuations, for a certain period of time and then, at
ofinterest. Section Ill provides a description of fuzzy measures i instances, a gradual change to another set of properties

and fuzzy integrals. This material is essential for generalizig - ,rs We now formally define the following model notation
the classical hidden Markov models. In Section IV, we formulatg . , first-order discrete observation HMM:

proper definitions for the fuzzy forward and backward variables
using the notions of fuzzy measures and fuzzy integrals. We also
describe our approach for solving the optimization problems re-
quired for training the fuzzy models and other implementation

Length of observation sequence (total number of time
steps).

Number of states in the model.

Number of observation symbols.

issues. Finally, Section V is dedicated to a summary of this studyS (51, S, ---, Sy}, states
and suggestions for future outlooks. e |
Q {q192 - - - g7 }, State sequence.
1% {v1, va, vs, - -+, vpr } discrete set of possible observa-
tions.
Il. HIDDEN MARKOV MODELS o State visited at time.

{aij}, ai; = Plq+1 = S;lg = S,), state transition

HMM'’s are statistical methods (stochastic networks) that probability distribution.

have been extremely useful for modeling sequentiallychangingB b (R)}, b;(k) = Plug attlg, = S;), observation
behavior as in speech and handwriting recognition applications: syjmbolyprjobability disfributiori in sta]tﬁ,
This technique was applied to speech recognition problems {m}, 7 = Pqu = ), initial state distribution

with great success [1]. Since the recognition of handwritt e use the compact notation = (A, B, =) to indicate the

vv_ords has many S|m|Ia_1r|t|es with that_ of speech, resef”‘.r(:h(?:rosmplete parameter set of the model. Given the form of the
tried to apply this technique to handwritten word recognition.

Formal,  hdden Markov modslas defned by Rabigl TN (1 D ereare e ey
in 1], "is a doubly embedded stochastic process with an UM real-world applications. These problems are the following
derlying process that is not observable (it is hidden), but can ' '
only be observed through another set of stochastic proces eSThe Classification Problem
that produce the sequence of observations.” This means that a
probabilistic function of a hidden Markov chain is a stochastic The probability of an observation sequengg® =
process generated by two interrelated mechanisms, an undéyrr Oz, ---, Or given a model), P(O[|\) can be used
lying Markov chain having a finite number of states, and a st& perform classification. The straightforward way of com-
of random functions, one of which is associated with each stapeiting P(O|\) is by enumerating every possible state sequence.
At discrete instants of time, the process is assumed to beAasuming statistical independence of observations, it follows
some state and an observation is generated by the random fiihat:

tion corresponding to the current state. The underlying Markov

chain then changes states according to its transition probability ~— P(O|\) = Z P(O, QN

matrix. The observer sees only the output of the random func- allQ

tions associated with each state and cannot directly observe the T

states of the underlying Markov chain; hence, the term hidden = Z gy by, (O1) H ag_1q.05,(0r). (1)
Markov model. allQ t=2

In principle, the underlying Markov chain may be of any
order and the outputs from its states may be multivariatdis method of computing®(O|)) requiresO(T’N*) compu-
random processes having some continuous joint probabiltations. A method called the forward—backward procedure takes
density function [5]. We will restrict ourselves in this papef(1’N?) computations. Consider the forward variablé:) de-
to consideration of Markov chains of order one, i.e., those tfed as
which the probability of transition to any state depends only
upon that state and its predecessor. o(t) = P(O102 -+ Oy ¢ = Si| ). (2)
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Fig. 1. Forward and backward variables computations.
We can solve fory(¢) inductively as follows: =[P(01, Oz, ---, O, @141 = S;)|P(Ors1lqi+1 = S;)
Initialization: Foralll <i< N =[P(O1, Oz, -+, Otlgers = 5j)P (g1 = 5j)]
, - P(O =5,). 7
aq (8) = m;b;(Oq) ©) (Ot41]gt+1 ) @)
Induction: Foralll <¢+<7 -1 and 1<j<N  AgsumingO;,; is independent oDy, O, - - -, Oy, then
N
@t1()) = [Z ar(t)aij | bj(Ort1)  (A)  RHS=P(Oy, 05, -+, O, Ospilgiss = S;)Plarss = S;)
=1
Termination: P(O|)\) = ar(4). (5) =P(01, 0y, -+, O1, O141, @11 = Sj)
. . . o . :Oét+1(j)
Equation (4) relies on assuming statistical independence. To —LHS ®)

show that, let us denote the left- and right-hand side of (4) by
LHS and RHS, respectively. The derivation proceeds as foIIovx{ﬁ:a similar manner, we consider a backward varighte) de-

N fined as
RHS= lz ar(i)aij | bj(Ory1)
i=1 Be(i) = P(Oi110442 - -- Orp|gs = Si, A) )
N
= Z P(O1,04, -, 04, s = S;) and again we can solve fgk (¢) inductively as follows.
i=1 Initialization foralll < i< N
- P(gi1 = Silae = 9i)| P(Orqalgra = 55) Br(é) = 1. (10)
N .
Induction foralll <¢t<7T-landl<:< N
= |37 P01, 02, . Ollas = $,)P(qy = 5)) == ==
=1
(i) Z ai;b;(0411)Bea1 ()- (11)

» P(gt+1 = Sjlae = Si) | P(Orq1lge41 = S;).  (6)

Termination fFor any suchthatl <t <7 —1

Assumingg:+1 is independent of,, O3, ---, Oy, then
N N N
RHS= |3~ P(O1, Oz, -+, Or, a1 = Silas = S:) PO =3 > a(®aigh;(Ors1)Benn (). (12)
=1 =1 j=1
- P(g = S5)| P(Opp1|qesr = S)) Fig. 1 illustrates the operations required to compute the for-
ward and backward variables.
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Fig. 2. Viterbi algorithm.

C. The Optimal-State Sequence Problem Similarly 6,11 () can be computed inductively and the proce-

There are several possible ways of finding the optimal st4® can be stated as follows:
sequence associated with the given observation sequence. THgitialization forl < i < N
difficulty lies with the definition of the optimal state sequence,
i.e., there are several possible optimality criteria. One possible 61(i) =mibi(O1) 17)
optimality criterion is to choose the states which are individually P1(i) =0. (18)
most likely. This optimality criterion maximizes the expected
number of correct individual states. To implement the solution Recursion foR2 <¢ < 7T andl1 < j < N
we define the variable

&(J) = 11<nax [61—1(4)aij]b; (Or) (19)
(1) = P(qe = SilO, \) (13)
W (j) = argmax [be—1(8)as;]. (20)
(i) can be computed as L<i=h
. Termination
Y(2) = ()P (i )/P(OIA)
= (D)) Z (i)l (14) 7= e Lo ) ()
gy = argmax [67(4)]. (22)
1<i<N
Using+.(¢), we can solve for the individually most likely state
g attimet,1 <t <7, as Backtracking forall <t <7 -1
¢ = argmax {3, (i)}. (15) G = e (@)- (23)

1<¢<N

The major problem with the above criterion and solution occurs Fig- 2 below illustrates the sequence of operations required
when there are disallowed transitions. In this case, the obtairf@fithe Viterbi algorithm.
optimal state sequence may, in fact, be an impossible state se-
quence. This drawback points to the necessity of global cda- The Training Problem
straints on the derived optimal-state sequence. An optimalityGiven any finite observation sequence as training data, we
criterion of this type is to find the state sequence with the higheginnot optimally train the model. We can, however, choose
probability, i.e., to maximize’(O, Q|A). A formal technique A, B, and = such thatP(O|)) is locally maximized. The
for finding this solution exists and is called the Viterbi algoBaum—Welch method is an iterative algorithm that uses the
rithm. This algorithm defines a quantity forward and backward probabilities to solve the problem of
) training by parameter estimation. To implement the solution we
6t(1)—q17(11£§p§t71P(q1, 259 = Si; O102---O4|A). first define the variabley, (i) the probability of being in state
(16) S; attimet and then defing,(¢, 7) the probability of being in
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stateS; at timet and stateS; at timet + 1, given the model where f;,,(0;) =

and the observation sequence, i.e.

(1) = P(q = SilO, A)
= au()B:(i)/P(OIN) (24)
St(i7 J):P( —Si7 qt+l—S'|O )‘)
= ()ai;b;(Or41) Bey1(5)/P(O[N).  (25)
Now we have
T-—1
Z &1 (¢, 7) = expected number of transitions made
t=1
(from S; to S;) (26)

T—1
>~ (i) = expected number of transitions frofi.
t=1
(27)
The Baum—Welch reestimation formulas fér B, andr are

) (28)

( T—1
@ij = Z > %) (29)
t=1 . t:lT
biky= > Z 7(j) (30)
t=1,0,=k t=1

71

N(O, pijm, Ujry) is a multivariate
Gaussian density with meary;,,, and covariance matrik/;.,,.
The mixture gainsv;,,, satisfy the stochastic constraint

I1<j<N (32)

Z Wim =1

m=1

wherew;,, > 0,1 <j < Nandl <m < M.
The reestimation formulas [6], [7] for the coefficients

-1 N

Z Z ()i jwjm fim(Or4+1) Br1(d)
t=1 =1
M T-1 N

30303 al@)aswim Fim(Or1) B ()

m=1 t=1 i=1

wjrn —

(33)

T-1 N
Z Z [cv ()i jwim [jm(Org1) B ()] O141
t=1 i=
M T—1 N

2.2 ) [

m=1 t=1 =1

fan

ern =

az] wjnzfjrn(Ot-i—l)ﬁt-l—l( )]
(34)

The reestimation formulas [1] for the coefficients of the mixture

lterative application of these formulas will converge to a loc&lensities can also be rewritten as [see, also, (35) at the bottom
maxima of P(O|)). of the page]

E. Continuous Observation Densities in HMM
For most applications, the observations are continuous sig-

T
Z ryt(j? m
=1

nals (or vectors). Vector quantization of these continuous sig- Wim = (36)
nals can degrade performance significantly. Moreover, the code- M T -
books generated by the quantization process are constructed ZZ%("’ )
using training data from all classes. When a new class of shapes h=11=1
is added, we need to reconstruct the codebook and retrain all T
system modules. On the other hand, for HMM’s with continuous Z ve(4, m)Oy
observation densities we do not need to train the system fromthe  _ (37)
beginning since there is no codebook to be constructed. We only Hjm =7
need to train the newly added class. Hence, HMM'’s with contin- Z (4, m)
uous observation densities offer some advantages over discrete t=1
HMM'’s. -
The class of densitieB = {b;(-)} we consider is the class . p
. . . y Oy — jm O — jm
of mixtures of the form B ;%(‘1’ M) (O = 1tjm)(Or = ttjm)
M Ujrn = T (38)
0) = > wjmfim(Oy) (31) Y owl,m
m=1 t+1
T7—1 N
>0 lew(@aijwim Fim(Orr1) Byt (D(Org1 — pim)(Orgr — fjm )
U' _ t=1 =1 (35)

Jm = M T-1 N

S S letaswim Fim( O )Bria ()]

m=1 t=1 ¢=1
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to multiply « (¥) by a scaling coefficient that is independent of
¢. A similar scaling is done to thg,(¢) coefficients since these

ve(j,m) = Af“(j)ﬁt(j) ;’j”’fim(Ot) (39) also tend to approach zero. At the end of the computation, the
: N8 O scaling coefficients are canceled out [1]. When using the Viterbi
Z:l ()5 () ;1 wikfi(O1) algorithm to determine the optimal state sequence, no scaling is

required if use logarithms.
wherev,(j, m) is the probability of being in statg at timet Another implementation issue is related to the modification
with the kth mixture component accounting 6. of the reestimation procedure to handle multiple observation se-
guences. Let the set of th€ training observation sequences be
O ={0' 0% .., O}, whereO* = (O}, 0%, ---, Ok )is
the kth observation sequence. Assuming that each observation

_ Rabiner described a procedure for providing good initial €gsqyence is independent of every other, the goal is to adjust the
timates of the model parameters called the segméfialeans parameters of the modalto maximize

algorithm [1], [8], [9]: An initial model estimate can be chosen

randomly, uniformly, or on the basis of any available model that X X
is appropriate to the data. Following model initialization, the set P(O]N) = H P(O*|)) = H j23 (40)

of training observation sequences is segmented into states based Pt

on the current model. This segmentation is achieved by finding

the optimal state sequence via the Viterbi algorithm. In the cashe modified reestimation formula for the transition probabili-
where we are using discrete symbol densities, each of the @bs is

servation vectors within a state is coded usingMeodeword

F. Initial Estimates of HMM Parameters

k=1

codebook and; (k) is updated as the number of vectors with K Ty—1

codebook indek in statej divided by the number of vectors in D> ab(Daihi(OF)BE )

statey. G k=1 t=1 (41)
In the case that we are using continuous observation densi- " N K Tl

ties, the segmentak-means procedure is used to cluster the ZZ Z oy ($)aib;(OF, )BF(I)

observation vectors within each staffg into a set ofM clus- j=lk=1 t=1

ters, where each cluster represents one ofifhmixtures of the _ . .
b,;(O,) density. From the clustering, an updated set of model plés_mg the scaled forward and backward variables. Similar results
J - L]

rameters is derived as follows: are obtained for the other parameters.

e Ill. Fuzzy INTEGRALS
wjm Number of vectors classified in cluster of

statej divided by the number of vectors in Fuz_zy integ_rals are nonlinear functi_on_als that can be us_ed to
. combine multiple sources of uncertain information. The inte-
state; grals are evaluated over a set of information sources. The func-
wym sample mean of the vectors classified in cluster  tion being integrated supplies a confidence value for a particular
of statej hypothesis from the standpoint of each individual source of in-
formation. A distinguishing characteristic of fuzzy integrals is
that they utilize information concerning not only the worth or
importance of the individual sources but also information con-
. - . cerning the worth or importance of subsets of these sources to
Updated estimates of the; coefficients can be obtained byarrive at a reasonable numeric confidence value for the partic-

F:obunt;]ng the r;umbfer of tr_gnS|t|?ns from state j and d“;"dmg ular hypothesis or decision under consideration. Recently, fuzzy
It by the number of transitions from statéo any state. An up- integrals have been proven to be quite useful in many pattern

dated model is obtained from the new model parameters and FQ ognition applications such as automatic target recognition

formal reestimation pro_cedure IS l.Jsed to reestimate all mo 2y R), handwriting recognition, nonlinear image filtering, and
parameters. The resulting model is then compared to the p,

) . . iltiple classifier fusion [10]-[14].
vious model by computing a distance score that reflects the StaFuzzy integrals are defined with respect to fuzzy measures

tisticaldsimilc';l]rity ﬁf tlge tk\:vo Hr':AM'ISd' lfth; rlnodel ?istagc;)e Sﬁor 4]. The key property of fuzzy measures is monotonicity with re-
exceeds a threshold, then the old model is replaced by the ct to set inclusion. This property is far weaker than the usual

rees_,timated model ar_ld the overall training_loop is repeated, o ditivity property of probability measures. A probability mea-
erwise convergence is assumed and the final model parameters is a particular case of a fuzzy measure since the additivity
are saved. property is a special case of the monotonicity property. Other
) examples of fuzzy measures are the belief and plausibility mea-

G. Implementation Issues for HMM's sures defined in Dempster—Shafer belief theory.

For a sufficiently long observation sequence, the dynamicin the following sections, we describe fuzzy measures, the
range ofa,(¢) computation will exceed the precision range oformulation of fuzzy integrals, and the basic components re-
any computer. There exists a scaling procedure which is usgdred for our generalization of the classical HMM's.

U;,, sample covariance matrix of the vectors classified
in clusterm of statej.
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A. Fuzzy Measures Supposer(z1) > h(xa) > --- > h(z,), (if not, X is rear-

The additivity hypothesis of the probability measure is nd@nged so that this relation holds). Then a Sugeno fuzzy integral
well-suited for modeling systems that manifest a high degree o¥Vith respect to a fuzzy measuever X can be computed by
interdependencies among sources of information. Sugeno [13] n .
introduced the concept of a fuzzy measure as a more flexible €= I?ff([mm(h(xi)’ g4l (48)
model.

Let X be an arbitrary set anfl a o algebra of subsets of
X. A set functiong: @ — [0, 1] defined onf2, which has the
following properties is called a fuzzy measure.

whereA; = {z1, z2, -+, x;}.
Whenyg is the A-fuzzy measure, the values gfA;) can be
computed recursively as

Boundary Conditions g(A) =g({z1}) = ¢ (49)
gl¢) =0, g(X)=1 (42) 9(4) =g" +g(Aim1) +Ag'g(Ai-1),
forl <i<mn. (50)

Monotonicity
Thus, the calculation of the fuzzy integral with respect to a
If A, BCQandA C B, theng(A4) <g(B). (43) A\-fuzzy measure only requires the knowledge of the fuzzy den-

o sities. N
Continuity A fuzzy integral over a fuzzy set is defined by
If F,, € for1 < n<ooandthe sequencd:, } is / /
h N = h. Ah . 51
monotone (in the sense of inclusion), then A (@)og() X[ al@) (@]eg() ®1)
nli_{go 9(Fn) = Q(JEEO ). (44) whereh 4 () is the membership function of the fuzzy skt

By the nature of the definition of a fuzzy measyrehe mea- . choquet Integral
sure of the union of two disjoint subsets cannot be directly com-_l_h iqinal definiti . by S 131for the f .
puted from the component measures. In light of this, Sugeno in- e original definition given by Sugeno [13] for the fuzzy in-

troduced the so-callelfuzzy measure satisfying the following.tegt[]al s nota tﬂrotptir e>L<tebnS|on Of. trt1e uslugl (Letbesgue) wgegrr]al,
additional property for alld, B ¢ X with AN B = ¢ in the sense that the Lebesgue integral is not recovered when

the measure is additive. To avoid this drawback, Murofushi and
g(AUB) = g(A) + g(B) + A\g(A)g(B), forsomer>—1. Sugeno [_15] prop(_)sed the so-calle_d Chqquet integral, referring
(45) to a functional defined by Choquet in a different context. In ad-
dition to this property, Grabisch [16], [17] showed that the Cho-
Let X = {a1, 22, -, zn} be a finite set and ley’ = quet integral shares many important properties with the Sugeno

g({z;}). The valuesy’ are referred to as the densities of théntegral. _ _
\-fuzzy measurg. The value of\ can be found from the equa- L€t/ andg be defined as for the Sugeno integral. The Cho-

tion g(X) = 1, which is equivalent to solving quet integral is defined by
n 1
i )= A, 2
A=A, 46) | n@oat)= [ atan)da (52)
=1

where A, = {z|h(z) > a}.
If X is a discrete set, the Choquet integral can be computed

as follows:
The Sugeno fuzzy integral combines objective evidence for a ”

hypothesis with the prior expectation of the importance of that e= Z (M) — h(mi—1)]gy" (53)
evidence to the hypothesis. Using the notion of fuzzy measures, ‘ A
Sugeno originally defined the concept of fuzzy integrals as fol-

B. Sugeno Integral

i=1

lows. whereh(z1) < h(zz) < -+ <h(zy,)

Let (X, ©2) be a measurable space andAetX — [0, 1]
be anQ2-measurable function. The Sugeno fuzzy integral over h(wo) =
A C X of the functionh with respect to a fuzzy measugds

. and
defined by

g = {9({% Titl, s Ti}), 1S
/ h(xz)og(-) = sup {min <min h{z), g(AN E))} ‘ 0, otherwise.
A Eex oel . . . . : . .
= sup [min(a, (g(ANFy))] (47) Sinceg(A,) is @ monotonic nonincreasing function ©f it is
aglo,1] ’ also possible to redefine Choquet integral as

whereF,, = {z|h(z) > «}. The calculation of the Sugeno B ! do( A 54
fuzzy integral whenX is a finite set is easily given [10], [14]. ‘=L 9(Aa) (54)
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Fig. 3. Computation of Sugeno and Choquet integrals.

with the same assumptions as before. Defipe- g;' — g7, ;.
Then the computation for the finite set case is given by

e= > h(z)lg] — gi]- (55)

1

n
1=

If g is a probability measure, thég' — g7, ;] = gt and the ex-

pectation is a weighted sum that is independent of the ordering
of thex;’s. In this sense the Lebesgue integral is recovered from
the Choquet integral when the measure is additive (probability
measure). Fig. 3 illustrates graphically the computation of the

Sugeno and the Choquet integrals

h(z1) <h(z2) < --- < h(aw) (56)

A ={xi, vig1, -, 2N} (57)

€Sugeno = miax[min(h(a:i), a(A:N)] (58)
N

CChoquet = Z h(xZ)[g(AZ) - g(AH'l)]

7;1

=Y h(w)d;. (59)
i=1

D. Conditional Fuzzy Measures

Conditional fuzzy measures are similar to conditional prob
bilities [13]. Let X andY” be two universes. A conditional fuzzy
measure oY’ with respect taX is a fuzzy measurey (-|z) on
Y for any fixedz € X. A fuzzy measurgy onY is induced
by oy (+|z) and a fuzzy measurgy as follows.

ForB C Y,

gy(B) = (60)

| v @Bioax

Now, gx corresponds to aa priori probability andry (B|x) to
a conditional probability. For this reasgny may be called aa

priori fuzzy measure. Note that-(B|x) measures the grade of

fuzziness of the statement, “One of the elemeni8 ofsults be-
cause of:” [13]. Fig. 4 below illustrates the computation graph
ically.

gx (X))

oy (tylx)

gy (ty;)
Fig. 4. Conditional fuzzy measures.

E. Other Fuzzy Measures

The basic notion of a fuzzy integral using the Sugeno measure
has been demonstrated to be a useful tool. It can be improved by
using more general measures or by using different fuzzy aggre-
gation operators in the definition of the fuzzy integral. Recently,
Keller and Tahani have extended the fuzzy integral information
fusion approach to a large family of measures calfedecom-
posable measures [10], [14]. Given a triangular conétnan
S-decomposable measugehas the property: IA N B = ¢,
THEN

a- 9(AU B) = 5(g(A), g(B)). (61)

Possibility measures are simple examples of stxdlecompos-
able measures wher# is the maximum operator. An impor-
tant property of this class is that the measure of an arbitrary
set of information sources can be computed if the densities are
known, as with the Sugeno measures. Many othdecompos-
able measures can actually be constructed by the definition from
a set of density values for a givérconormSS if the boundary
conditions hold, i.e., one must guarantee #ia') = 1. This

will clearly happen if one of the densities has the value one. This
follows simply from the fact that

9(X) =g({wr} U{aa} U--- U{an})
=5(g({z1}), 9({z2}), -5 9{zn}))

andg({z;}) is the density value for =1, - - -, n.

(62)
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IV. Fuzzy INTEGRAL EXTENSIONS OFHIDDEN MARKOV The interpretation for the transition fuzzy density is thgt
MODELS measures the grade of certainty of the statement that vigjting

Since the definition of the Markov property is a statemerﬁf’ tates; at t|metJ.r 1) resgltg because-of visiting (stgteS i at

o . o . tllmet). An extension of this interpretation could be given for the

about conditional expectations, our generalization relies heav] o . ~

tr%’msmon fuzzy measure as follows: for ahyC Y andx € X,

on the use .Of the conditional fuzzy measure, which IS one g (F|x), measures the grade of certainty of the statement that
the many things the measure-theoretic framework provides [1 L . L
Visiting one of the elements df results because of visiting

[19]. Let us formally define the model notation for our extensio .
to a fuzzy HMM, A = (A4, B, «) as follows: Pone of the states at tims.

g’ O, N, g, and$ 22:;6; gol)rstzr?/z:%r;d\%gtsrl\s/l.M. A. Fuzzy Formulation of the Forward Variables

X = States at time, i.e., nodes attime Let{2; , denote the space of observation sequence from time

{z1, z2, -+, N} slot ¢ in the lattice structure re- slot 1 to time slott. Let @x = €, , x X denote the Carte-
sulting from folding the states of sian product of?; , and (recall thafX' denotes the states at time
the model through time. t). Let 4o, : 2%x — [0,1] be a fuzzy measure on the space

Y ={w, v, -, un} States at time + 1. (Qx, 22x)whereforanyt C X, g, ({01 - - O} x E) mea-

7s(+) Fuzzy measure off, we refer to sures the grade of certainty of the statement that we observed
this measure as the initial stateO;,0;---O; and we are visiting a state that is containedin
fuzzy measure. For a given observation sequen@eOs --- O, and a statex;

7y = % = 7s({S:}) Initial state fuzzy density. (stateS; at timet) we leta, = dq, ({01 --- O} x {;}) be

T = [74] Vector of initial state fuzzy densi- the fuzzy density for this measure. We will refer to this density
ties. as the forward fuzzy variable and denote itdy(). The for-

i)j() Conditional fuzzy measure ot ward fuzzy variabley, (¢) measures the grade of certainty of the

with respect to staté;, we refer statement that we observéy O, - - - O, and we are visiting;
to this as the symbol fuzzy mea-(states; at timet).

sure for states;. Initially, at ¢ = 1, the forward fuzzy variables can be com-
AJ(Ot) Symbol fuzzy density. puted from the initial state densities and the membership func-
B = [h;(0,)] Matrix of symbol densities. tions by
ay (-] X) Conditional fuzzy measure ori .

with respect tar € X, we refer G (i) = 71 A b(O1) (63)

to this measure as the transition

fuzzy measure. where “A” is a fuzzy intersection operator [20].
ai; = ay ({y; Hz:) Transition fuzzy density. Atany time, a fuzzy measud,, on{2y = ;.41 xY can
A= @] Matrix of the transition fuzzy den- be constructed from its constituent forward fuzzy variables.

sities. The forward fuzzy variables are computed recursively as

Our interpretation for the initial state fuzzy density is that '

measures the grade of certainty of the statement that the initial &, 11(j) = &, = da, ({01 Opr } x {y;})

state isS;, i.e., g1 = S;. An extension of this interpretation

could be given for the initial state fuzzy measure as follows: = / ay ({y; Hz) 0 oy ({01 -+ O}, )

foranyG C S, #s(G) measures the grade of certainty of the X

statement that the initial state is containedini.e.,q € G. Abj(Or1)- (64)
The interpretation for the symbol fuzzy density is thai0, )

measures the grade of certainty of the statement that we

servedO, given that we are visiting stat§;. An extension of

Jlhe above expression offers a more flexible method of com-
puting forward variables than for the standard HMM. Recall

this interpretation could be given for the symbol fuzzy measu?ré:f"‘t in the derivation of (4) for computing forward variables in

as follows: for a seff O 8»(H) measures the grade of cer- e standard HMM there are two assumptions of conditional
tainty of the statement that any of the vectors contained is statistical independence: that the observation attik, 01

observed given that we are visiting state is independent of the previous ob;ervauaﬁzﬁ Oy, -+, 0
o and that the states at timtet+ 1 are independent of the same
For each staté;, we have a symbol fuzzy measurg ) on , T
. . . observations0y, Os, ---, O,. The latter statistical indepen-
the space of observation vectdis At a given time slot, 1 < Lo, . -
t < T the values of the symbol fuzzy densities dence assumption is an assumption that the joint measure
- P(O1, Oz, -+, O, qe41 = S;) can be written as the product
N N N P(017 027 Tty Ot)P(qt-f—l = SJ)
b1(Oy), b2(O4), -+, by (Oy) In the fuzzy model, the corresponding assumption is be that
the joint measuréq, ({01 --- O, } x {y;}) can be written as a
define a fuzzy set over the set &f states. Therefore, we cancombination of two measures defined &n, O,, ---, O, and

construct a total df’ different fuzzy sets over the setdfstates. on the states, respectively. However, we make no assumption
In this sensep; (O, ) can also be interpreted as the membershthat the measures can be decomposed. Itis in this sense that the
value of observatiold, in states,. assumption of statistical independence is relaxed.
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05 0.4 10 the difference between the above two scores is

@ 0.3 @ 0.6 @ DZP(H, H, H)—P(H, L, H) = 0.097.

This illustrates that the fuzzy model can have better perfor-
mance than the classical model. It is worth noting that here we
used the same values for the corresponding classical and fuzzy
parameters and the most pessimistic fuzzy measure (possibility
measure). In the second paper, we compare the classical and

Toillustrate the above claimed advantage of our proposed félizzy models using real data.
mulation, consider a discrete left-to-right model shown in Fig. 5

Fig. 5. A sample three-state left-to-right model.

and defined as follows: B. Fuzzy Formulation of the Backward Variable
vV ={H, L} Let BQHLTHx) be a conditional fuzzy measure 6hy; ¢
S5 S S with respect tar, where for any subsequen€g;1O;42 - - - Or,
=1{51, 52, 53} By, (-|z;) measures the fuzziness of the statement that ob-
0.5 0.3 0.2 servingOy 41045 - - - O results because of visiting; (state
0.0 00 1.0 A conditional fuzzy measur, ,, ,(|=) can be computed
where the training observation sequences are assumed to refiggn the conditional fuzzy measur,,,, ,.(-ly) and the tran-
sent the nonincreasing binary signals given by sition fuzzy measuréy (-|x) as follows:
1 _ ~
O =HHH Bavir ({041 Or}le)
O?=H H, L . . X
ot 1 = [ Vas s {0+~ Ora) b0 0 (1)
4 ~
o =b Lk ~ [ Brtes (Orga+- Oy oy (o (65)

If the symbol probabilities are estimated (initially) according
to how many times the symbol appears at time slot 1, 2, a”d\@nereﬁ is the fuzzy subset of given by
assuming that each time slot may correspond to one of the three
states then

N
0.75 0.25 F=>"b{(0u11)/y;. (66)
B={bj}= {050 0.50 i=1
0.25 0.75

We refer tofo, 1. (-]z) as the backward fuzzy variable and de-
3{Gte it byft(i). Fig. 6 illustrates the computations of the fuzzy
and forward and backward variables.

These formulas define a class of generalizations of classical

Given the above set of parameters, we would like to comp
the behavior of the HMM and GHMM in terms @t(O|))
P(O|\) whenO is:

1) atraining sequence such@s= H, H, H; HMM'’s, one for each type of fuzzy measure, fuzzy integral, and

2) anonmonotonic sequence suchtas H, L, H. fuzzy intersection operator. If the Choquet integral is chosen

If we use HMM (that assumes statistical independence wheiith respect to a probability measure and multiplication is used
computing the forward variables) as the intersection operator, then these formulas represent the

classical HMM. For any specific choice of measure and integral,
P(H, H, H) =0.210 there are many implementation issues to consider, both in the
P(H, L, H) =0.121. training and testing phases. In the next section, we consider the

. _ case of the Choquet integral with respect to an arbitrary fuzzy

The difference between the above two scores is measure and with multiplication as the intersection operator

D =P(H, H, H) — P(H, L, H) = 0.089.

o _ Get1(J) = oy ({01 - - Opn ) x {y,})
The value ofP(H, L, H)is high compared to the ideal value
that is supposed to be close to zero. This result is mainly due to = / ay ({ys}x) o o ({O1--- O}, )
the statistical independence assumed to simplify computations. X
Now, if we use the GHMM with the possibility measure (the . A b;(Ot+1)
Choquet integral) and multiplication as the intersection operator ~ 5:(¢) = fa,,, +({Ot41 - -- Oz }|;)

P(H, H, H) =0.182 = /Y By, ({Ots2 - Or ) Abj(Opy)]

P(H, L, H) =0.085 oty (-|z).
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a,()= g ({0..0}x{x})  &aU)=an (0. O} x{yh

T
e
51
Yo O3 O
7(// /lI
O O~ 777 0O O
’
Rt
/ " :
©7
Yo 040 O
,I \\

O o 0

B()=Ba,,, (OO Bn() =Ba,,, {Ou2--Orll3))

Fig. 6. Fuzzy forward and backward variables computations.

C. GHMM Using the Choquet Integral intersection operator. With this notation, the variaplé:, ;)

As described in Section I, the computation of the Choqué 91ven by
integral is given by

pe(i, J) = di(i, j)/u(d) (72)
= Z hzi) [g" — 974 (67)  then the computation for the fuzzy forward variables reduce to
=1
Define the variablel; b ;
0y Gy y1(J [Z Aij pe(i, J)bu (i) bj(0t+l) (73)

di = [g{" — gi1]- (68)

Assume thaty is a measure satisfying the property that i
gi = 0thend; = 0. This condition is satisfied by a wide classf
of fuzzy measures. We define the variapjeas follows:

hich is similar to the formula for the classical case except for
he introduction of the variable,(z, ;) to be computed from the
uzzy measures as described above. Each varjalbiley) is a

nonlinear function ofy,(k) anday,, k=1, 2, ---, N.
di/gi, ifgi#0 In order to derive reestimation formulas for the GHMM sim-
pi = 0, otherwise. (69) ilar to those used for the classical HMM, we redefine the back-

ward fuzzy variable by
Now, the computation for the Choquet integral is given by
N

€= i En: h(z:)pig;- (70) pe(i) =Y i, 3B ()b (Org1). (74)
=1 i=1

j=1

This representation of the discrete Choquet integral is verylt follows that the summatiorfjﬁ\;l 64(i)B3,(i) is indepen-
useful for manipulating the GHMM equations and for relatindent of ¢ as for the classical case. Let us call the value of this
the GHMM to nonstationary HMM's. The forward fuzzy vari-summation the possibility of the observation sequence given the
ables are computed as fuzzy model\ = (A, B, #) and denote it by?(O|)). It also

. NN . follows that
qeq1 () =gy, = b, ({01~ O} < {us})

N
CALY({?JjHﬂ?) g ({01--- O}, ) AD(O1)  P(OIN) = Z@t(i)/§f(L)
T
ZW(II (11 Ol H a(lt 17(1tpt qt—1, qt)]b (Ot)

[ZGZJdt 7J
all@

where d,(¢, j) represents the difference between the corre- = Z P(O, Q|)\) (75)
sponding fuzzy measures and multiplication is used as a fuzzy allQ

N

b;(O441) (71)
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WhereP(O, Q|5\) represents the possibility of the observation The above expression is similar to the expression for the clas-
O = {0:0;---Or} and a state sequence = {q1q2---qr} sical case except for the derivatives that can be computed as
given the fuzzy modek = (A, B, 7) that is computed by

g ap :T_l’\ 7 ; ri)O
PO, Q) =4, (O1) [ [ g acpulai1, 0010y, (O). iy = 2 Pl (Outs)
=2 a F
(76) ) |:pt(i7 J)+ auj %;1) (82)

This formulation is helpful for developing a constructive and
effective training procedure for the fuzzy model by optimizing@h
P(O|X) in a similar way to that of the classical one.

If we use a probability measure with the Choquet integral,
enp:(t,5) = 1,Yt, 4, j, and

D. Relation Between Generalized HMM and Classical oP _ A INA G
Nonstationary HMM i, (1) P41 (7)b;(Or1) (83)

Recall that a nonstationary HMM is one for which _ )
the transition probabilities vary with time. If we defineWhich is exactly the expression for the classical case as ex-
aj;(t) = a;;p(i, j), then it can be seen that the GHMM carPected. _ _ _ _
be viewed as a classical nonstationary HMM for which the The essential question now is, “What is the value of
transition probabilities not only vary with time, but which(9#:(i, j)/9a.;)?" It is very difficult to derive an expression
are dependent upon the observation sequence itself. A mdfro:(é, 7) as a function ofi;; becausep, (i, j) is computed
advantage of the GHMM is that this nonstationary behavi§iom the fuzzy forward variables, (z) that are computed recur-
is achieved naturally and dynamically as a byproduct of tfévely using the Choquet integral. The sorting requirement for
nonlinear aggregation of information using the fuzzy integrsfOmMputing the fuzzy forward variables makes the derivation of
Moreover, the fuzzy model does not require fixing the lengths 8f/Ch an expression a complicated task. One approach is to ap-
the observation sequences and the availability of more trainifgPXimate the value bydp. (i, j)/9ai;) = (Api(i, j)/Adij).
data in order to learn a large number of transition parameters/d Problem with this approximation is that we have to store
for the classical nonstationary model. The additivity constraiRfevious values of(é, j) in the training procedure, which

of the transition parameters required for all classical HMM's iduires significant memory. _ .
relaxed for the fuzzy HMM's. Another approach is to assume a parametric expression that

representg, (i, j) as a monotonic nondecreasing function of
E. Reestimation Formulas for the Choquet Integral GHMM &;; andb; (O, ) as follows.
| Assume thap, (¢, §) is the solution of the following differen-

Let # = P(O|}) in a similar manner to that of the classica .
tial equations:

model; it follows that

p= zj\: G ()B4 (1) Qi Lpégi;j) = uip(, J) (84)
i=1 . Ipe(i, ) o
N N R R bz(Ot) — = l/ipt('L, J) (85)
=57 5" ali) (o1, 1)iif) Brar ()b (Orr). (77) i(O1)

==t wherey; andy; are positive. These differential equations have

Let R be the Lagrangian af with respect to the constraintSolutions. For example the function

Yy iy =1 .
! peliy ) = caiilai 1 [bi (O] (86)
N N
R=P+> ni|> ay—-1|=0 (78) (wherec,;; is positive) is a solution ofthe first equation.
i=1 j=1 We can also make a similar assumption for deriving a symbol
ok ap . . 79 membership estimation formula
~ — 4o~ 11 =U
O Oy Opuliod) oty (o
T . LS = cuislass) [6i(O) (87)
Multiply by a,; and sum ovey 9b;(Oy)
; . ; 5 Ope (i, 5) .
N N ? —
P OP bi(Or) —= =vipe(i, ). (88)
Z &ij a0 = Z &ijnv‘, == = 5 (80) ‘%i(Ot)
=1 8aij = 8aij

The second differential equation is needed for the symbol
P is maximized when membership reestimation formula. These assumptions allow us
. N . to substitute the expressiQnp: (i, j) for a;;(0p:(i, 5)/04:;)
@ij = <€L7¢j E) /(Z @ik E) : (81) inside the updating rule. The terfh+ 4;] cancels out of both
Da; — " Oaix the numerator and denominator of the equation and it follows
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that the reestimation formula (updating rule) for the transitiomses the additional information made availableky, j) since

measure becomes itis a nonlinear function of,; (%) and all the transmon&;U k=
1,2, ---, N.We seek to maximize the functidi(O, Q|\) de-
Z D pii, )i Brgr ()b (Ops1) fined _by (76). Our modification of the classical Viterbi algo-
— P rithm is used to perform this maximization. Define a quantity
Gij = (89)
T—-1 t
Z G (8)p1 (i, k)i Proys (R)br(Org) &:(i) = max {frqll;ql(Ol) H
k=1 t=1 q1, > dt—1 s

which is similar to the classical case, except for the presence of R .
p. Similarly, we can derive the updating rules forand B for Mgy, g Pr(@r—1, @)]0g. (O2) ¢ . (96)
the discrete case as

B & (i)B () Similarly, 5t+1(i) can be computed inductively using the
T = ]\1—1 (90) fuzzy Viterbi algorithmin the following manner.
Z@l(j)gl(j) Initialization for1 <: < N
. b1(i) =#:b:(01) (97)
>, @@h) $1(i) =0. (98)
ij = tzl’(;tz”’“ ) (91) Recursion foR <t < T andl1 < j < N
> @) 8e(4) = Dax [be—1(D)étsjor (i, 5)10;(Or) (99)
t=1 i<
_ For the continuous case, we model the membership functions Pr(y) = arg L2 [6t 1(0)aijpe (i, 7)1 (100)
B = {b;(-)} as mixture functions of the form Termination
]\ al 2 .
= >~ Ginfim(00) (92) P = [or ()] (102)
m=t gy = arg nax [61(3)]. (102)

wherefjm(Ot) = N(O, fijm, Ujm) are multivariate Gaussian _
functions with mear.;,,, and covariance matri;,,,. The rees- ~ Backtracking foralll <¢ <7 —1
timation formulae for the coefficients of the mixture functions

Gy = ¢ Grt)- 103
are (93)—(95), as shown at the bottom of the page. @ = berillie) (103)
F. The Fuzzy Viterbi Algorithm G. Implementation Issues for the GHMM

The quantityp; (i, j) provides the basis for defining our mod-  As for the classical model, for a sufficiently long observation
ification of the classical Viterbi algorithm. The modificationsequence, the dynamic ranged{i) computation will exceed

T—-1 N

Z Z@t( i) pe (i, l)wjmem(Ot-q-l)ﬁtH( )

— ) ) (93)
&t(i)&ijpt(iv j)@jmfjm(Ot+1)/3t+1(j)

T—-1 N
Z Z[Oét( Jaijpi (i, J)wmzfjm(Ot+1)/3t+1( NOt41
= t=1 i=1
Fjm = 30 721 W ) ) (94)
> [ ($)aipe (4, H)@jm fim(Or41) P41 (4)]
m=1 t=1 =1
T—1 N
- Z Z[at( )aszt(L 1)wjrnfjrn(0t+l)[3t+l( )](Ot+1 I/Ljnl) (Ot+1 I/Ljnl)
2 t=1 =1
Ujm = M T-1 N (99)

Z Z Z [6e ()i pe (i, 5)gm fim(Org1)Bryr ()]

m=1 t=1 =1
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the precision range of any computer. This is because we uddt fuzzy expression reduces the one required by assuming sta-
multiplication as the fuzzy intersection operator and the Chustical independence if we use the Choquet integral, probability
quet integral as the fuzzy integral. Multiplication is used baneasure and multiplication as the fuzzy integral, the fuzzy mea-
cause it is distributive over the summation resulting from usirgyire and the fuzzy intersection operator respectively.

the Choquet integral. We also used the possibility measure ag\nother interesting property of our approach for the general-
the fuzzy measure. The same scaling procedure for the classization is the establishment of the relationship between the fuzzy
HMM is used for the generalized HMM since we used a pos$tMM and the classical nonstationary HMM in which the tran-
sibility measure with the Choquet integral. When using a postional probabilities vary with time. The main advantage of the
sibility measure, if we scale the fuzzy forward variables at fazzy model is that this nonstationary behavior is achieved nat-
certain time the induced forward variables at the next slot wilirally and dynamically as a byproduct of the nonlinear aggrega-
be scaled by the same scaling factor because of the nature oftibie of information using the fuzzy integral. Moreover, the fuzzy
“max” function. This is a desired property for the scaling techmodel does not require fixing the lengths of the observation se-
nique which is used to multiply;(¢) by a scaling coefficient quences and the availability of more training data in order to
that is independent af A similar scaling is done to thét(i) learn a large number of transition parameters as for the classical
coefficients by the same scaling factor used¥gi) since these nonstationary model. The additivity constraint of the transition
also tend to approach zero and then at the end of the compyttarameters required for all classical HMM's is not required for

tion, the scaling coefficients are canceled out. the fuzzy HMM's.
Another implementation issue, similar to that for the
classical case, is related to the modification of the fuzzy ACKNOWLEDGMENT
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