
MEE-01-27

Speech Recognition using Hidden Markov Model
performance evaluation in noisy environment

Mikael Nilsson
Marcus Ejnarsson

Degree of Master of Science in Electrical Engineering

Supervisor: Mattias Dahl

Department of Telecommunications and Signal Processing

Blekinge Institute of Technology

March, 2002

Speech Recognition using Hidden Markov Model
performance evaluation in noisy environment

Mikael Nilsson
Marcus Ejnarsson

Department of Telecommunications and Signal Processing

Blekinge Institute of Technology

Ronneby, March 2002

Abstract

The purpose with this final master degree project was to develop a speech recog-
nition tool, to make the technology accessible. The development includes an
extensive study of hidden Markov model, which is currently the state of the art
in the field of speech recognition. A speech recognizer is a complex machine de-
veloped with the purpose to understand human speech. In real life this speech
recognition technology might be used to get a gain in traffic security or facilitate
for people with functional disability. The technology can also be applied to many
other areas. However in a real environment there exist disturbances that might
influence the performance of the speech recognizer. The report includes an per-
formance evaluation in different noise situations, in a car environment. The result
shows that the recognition rate varies from 100%, in a noise free environment, to
75% in a more noisy environment.

c©Mikael Nilsson

c©Marcus Ejnarsson

MEE-01-27

Printed in Sweden
by Kaserntryckeriet AB

Karlskrona, 2002

Contact information:

Mikael Nilsson
Department of Telecommunications and Signal Processing

Blekinge Institute of Technology

SE-372 25 Ronneby

SWEDEN

Phone: +46 457 38 50 00

E-mail: Mikael.Nilsson@bth.se

Marcus Ejnarsson

Mobile phone: +46 709-621 321

E-mail: di97mej@student.bth.se

Contents

1 Introduction 5

2 The Speech Signal 9
2.1 Speech Production . 11
2.2 Speech Representation . 12

2.2.1 Three-state Representation 13
2.2.2 Spectral Representation 14
2.2.3 Parameterization of the Spectral Activity 15

2.3 Phonemics and Phonetics . 15
2.4 Summary . 16

3 From Speech To Feature Vectors 17
3.1 Preprocessing . 17

3.1.1 Preemphasis . 18
3.1.2 Voice Activation Detection (VAD) 18

3.2 Frame Blocking and Windowing 23
3.3 Feature Extraction . 24

3.3.1 Linear Prediction . 24
3.3.2 Mel-Cepstrum . 26
3.3.3 Energy measures . 34
3.3.4 Delta and Acceleration Coefficients 34
3.3.5 Summary . 37

3.4 Postprocessing . 39

4 Hidden Markov Model 41
4.1 Discrete-Time Markov Model . 41

4.1.1 Markov Model of Weather 42
4.2 Discrete-Time Hidden Markov Model 44

4.2.1 The Urn and Ball Model 45
4.2.2 Discrete Observation Densities 46
4.2.3 Continuous Observation Densities 47
4.2.4 Types of Hidden Markov Models 48
4.2.5 Summary of elements for an Hidden Markov Model 50

3

4

4.3 Three Basic Problems for Hidden Markov Models 51
4.4 Solution to Problem 1 - Probability Evaluation 52

4.4.1 The Forward Algorithm 53
4.4.2 The Backward Algorithm 55
4.4.3 Scaling the Forward and Backward Variables 56

4.5 Solution to Problem 2 - “Optimal” State Sequence 60
4.5.1 The Viterbi Algorithm . 62
4.5.2 The Alternative Viterbi Algorithm 63

4.6 Solution to Problem 3 - Parameter Estimation 65
4.6.1 Multiple Observation Sequences 72
4.6.2 Initial Estimates of HMM Parameters 73
4.6.3 Numerical Issues . 75

5 Speech Quality Assessment 77
5.1 The Classical SNR . 77
5.2 The Segmental SNR . 79
5.3 Comparison between SNR measures 80
5.4 The Itakura Measure . 81

6 Practical Experimental Results 85
6.1 Measurements in car . 85
6.2 Performance in noisy environment 85

7 Summary and Conclusions 91
7.1 Further Work . 91

A Phonemes 93
A.1 Continuant . 93

A.1.1 Vowels . 93
A.1.2 Consonants . 93

A.2 Non-Continuant . 94
A.2.1 Diphthongs . 94
A.2.2 Semivowels . 94
A.2.3 Stops . 95

Chapter 1

Introduction

Speech recognition is a topic that is very useful in many applications and en-
vironments in our daily life. Generally speech recognizer is a machine which
understand humans and their spoken word in some way and can act thereafter.
It can be used, for example, in a car environment to voice control non critical op-
erations, such as dialling a phone number. Another possible scenario is on-board
navigation, presenting the driving route to the driver. Applying voice control the
traffic safety will be increased.

A different aspect of speech recognition is to facilitate for people with functional
disability or other kinds of handicap. To make their daily chores easier, voice
control could be helpful. With their voice they could operate the light switch,
turn off/on the coffee machine or operate some other domestic appliances. This
leads to the discussion about intelligent homes where these operations can be
made available for the common man as well as for handicapped.

With the information presented so far one question comes naturally: how is
speech recognition done? To get a knowledge of how speech recognition problems
can be approached today, a review of some research highlights will be presented.

The earliest attempts to devise systems for automatic speech recognition by ma-
chine were made in the 1950’s, when various researchers tried to exploit the
fundamental ideas of acoustic-phonetics. In 1952, at Bell Laboratories, Davis,
Biddulph, and Balashek built a system for isolated digit recognition for a single
speaker [12]. The system relied heavily on measuring spectral resonances during
the vowel region of each digit. In 1959 another attempt was made by Forgie
and Forgie, constructed at MIT Lincoln Laboratories. Ten vowels embedded in
a /b/-vowel-/t/ format were recognized in a speaker independent manner [13].
In the 1970’s speech recognition research achieved a number of significant mile-
stones. First the area of isolated word or discrete utterance recognition became a
viable and usable technology based on the fundamental studies by Velichko and

5

6 Chapter 1. Introduction

Zagoruyko in Russia [14], Sakoe and Chiba in Japan [15] and Itakura in the United
States [16]. The Russian studies helped advance the use of pattern recognition
ideas in speech recognition; the Japanese research showed how dynamic program-
ming methods could be successfully applied; and Itakura’s research showed how
the ideas of linear predicting coding (LPC). At AT&T Bell Labs, began a series of
experiments aimed at making speech recognition systems that were truly speaker
independent [17]. They used a wide range of sophisticated clustering algorithms
to determine the number of distinct patterns required to represent all variations
of different words across a wide user population. In the 1980’s a shift in technol-
ogy from template-based approaches to statistical modelling methods, especially
the hidden Markov model (HMM) approach [1].

The purpose with this master thesis is getting a deeper theoretical and practical
understanding of a speech recognizer. The work started by examine a currently
existing state of the art speech recognizer called hidden Markov toolkit (HTK)1,
used by many researchers. This is a complex distribution consisting of many
modules implemented in the computer programming language C. All these mod-
ules was compiled and studied to understand each modules task. HTK is not
easy to use, this because it is necessary to have theoretical understanding to get
a fully functioning speech recognizer. Therefor it was desired to make a speech
recognizer, based on HTK, accessible and simpler to use. A user interface was
developed as a webpage, where training and testing files could be uploaded to
evaluate the performance of the speech recognizer. The result was sent to the
user via mail after completion.

With the experience from HTK, it was desired to have a system that could be
easier to use. The webpage is limited because it is not possible to try different
settings. This is why an implementation in the programming language Matlab
has been done. This implementation is easy to use and can easily be extended
with new features. This package is accessible for researchers and technological
development in the field of speech recognition.

Applying this knowledge in a practical manner, the speech recognizer imple-
mented in Matlab was used to simulated, as if, a speech recognizer was operating
in a real environment. To do this simulation recordings in a car has been done
to get real data.

In the future it could be possible to use this information to create a chip that
could be used as a new interface to humans. For example it would be desired
to get rid of all remote controls in the home and just tell the tv, stereo or any
desired device what to do with the voice.

1More information can be found at htk.eng.cam.ac.uk

Chapter 1. Introduction 7

The outline of this thesis is as follows.

Chapter 2 - The Speech Signal
This chapter will discuss how the production and perception of speech is per-
formed. Topics related to this chapter are human vocal mechanism, speech repre-
sentation and phonemes and phonetics.

Chapter 3 - From Speech to Feature Vectors
In this chapter the fundamental signal processing applied to a speech recog-
nizer. Some topics related to this chapter are frame blocking and windowing,
mel-cepstrum and delta and acceleration coefficients.

Chapter 4 - Hidden Markov Model
Aspects of this chapter are theory and implementation of the set of statistical
modelling techniques collectively referred to as hidden Markov modelling. Some
topics related to this chapter are observation densities, forward and backward al-
gorithm, Viterbi algorithm and Baum-Welch.

Chapter 5 - Speech Quality Assessment
This chapter presents different quality measurements applied to speech signals.
Topics related to this chapter are classical signal-to-noise ratio, segmental signal-
to-noise ratio and Itakura distance.

Chapter 6 - Practical Experimental Results
In this chapter the speech recognizer implemented in Matlab will be used. This
to test the recognizer in different signal to noise ratios and with different noises.

Chapter 7 - Summary and Conclusions
This chapter will summarize the thesis and make suggestions to further work.

Chapter 2

The Speech Signal

As relevant background to the field of speech recognition, this chapter intend to
discuss how the speech signal is produced and perceived by human beings. This
is an essential subject that has to be considered before one can pursue and decide
which approach to use for speech recognition.

Human communication is to be seen as a comprehensive diagram of the process
from speech production to speech perception between the talker and listener, see
Fig. 2.1.

A

B C

D

E

A. Speech formulation
B. Human Vocal Mechanism
C. Acoustic Wave In Air
D. Perception of the Ear
E. Speech Comprehension

TALKER LISTENER

Figure 2.1: Schematic diagram of the speech production/perception process

9

10 Chapter 2. The Speech Signal

Five different elements, A. Speech formulation, B. Human vocal mechanism, C.
Acoustic air, D. Perception of the ear, E. Speech comprehension, will be exam-
ined more carefully in the following sections.

The first element (A. Speech formulation) is associated with the formulation of
the speech signal in the talker’s mind. This formulation is used by the human
vocal mechanism (B. Human vocal mechanism) to produce the actual speech
waveform. The waveform is transferred via the air (C. Acoustic air) to the lis-
tener. During this transfer the acoustic wave can be affected by external sources,
for example noise, resulting in a more complex waveform. When the wave reaches
the listener’s hearing system (the ears) the listener percepts the waveform (D.
Perception of the ear) and the listener’s mind (E. Speech comprehension) starts
processing this waveform to comprehend its content so the listener understands
what the talker is trying to tell him or her.

One issue with speech recognition is to “simulate” how the listener process the
speech produced by the talker. There are several actions taking place in the
listeners head and hearing system during the process of speech signals. The
perception process can be seen as the inverse of the speech production process.
Worth mentioning is that the production and perception is highly a nonlinear
process. This will be discussed further on in Ch. 3.

Chapter 2. The Speech Signal 11

2.1 Speech Production

To be able to understand how the production of speech is performed one need to
know how the human’s vocal mechanism is constructed, see Fig. 2.2[1].

Tongue

Epiglottis

Vocal Tract

Nasal Cavity

Velum

Spinal Cord

Trachea

Figure 2.2: Human Vocal Mechanism

The most important parts of the human vocal mechanism are the vocal tract to-
gether with nasal cavity, which begins at the velum. The velum is a trapdoor-like
mechanism that is used to formulate nasal sounds when needed. When the velum
is lowered, the nasal cavity is coupled together with the vocal tract to formulate
the desired speech signal. The cross-sectional area of the vocal tract is limited
by the tongue, lips, jaw and velum and varies from 0-20 cm2 [1].

When humans produce speech, air is expelled from the lungs through the trachea.
The air flowing from the lungs causes the vocal cords to vibrate and by forming
the vocal tract, lips, tongue, jaw and maybe using the nasal cavity, different
sounds can be produced.

12 Chapter 2. The Speech Signal

⊗

⊗
•

•
•

DT
Impulse

Generator

G(z)
Glottal
filter

Uncorrelated
noise

generator

H(z)
Vocal
tract
filter

R(z)
Lip

radiation
filter

Pitch period, P
b0

Gain

b0

Gain

u(n)
Voice

volume
velocity s(n)

Speech
signal

Voiced

Unvoiced

Figure 2.3: Discrete-Time Speech Production Model

Important parts of the discrete-time speech production model, in the field of speech
recognition and signal processing, are: u(n), gain b0 and H(z). The impulse
generator acts like the lungs, exciting the glottal filter G(z), resulting in u(n).
The G(z) is to be regarded as the vocal cords in the human vocal mechanism1.
The signal u(n) can be seen as the excitation signal entering the vocal tract and
the nasal cavity and is formed by exciting the vocal cords by air from the lungs.
The gain b0 is a factor that is related to the volume of the speech being produced.
Larger gain b0 gives louder speech and vice versa. The vocal tract filter H(z) is
a model over the vocal tract and the nasal cavity. The lip radiation filter R(z) is
a model of the formation of the human lips to produce different sounds.

2.2 Speech Representation

The speech signal and all its characteristics can be represented in two different
domains, the time and the frequency domain.

A speech signal is a slowly time varying signal in the sense that, when exam-
ined over a short period of time (between 5 and 100 ms), its characteristics are
short-time stationary. This is not the case if we look at a speech signal under a
longer time perspective (approximately time T>0.5 s). In this case the signals
characteristics are non-stationary, meaning that it changes to reflect the different
sounds spoken by the talker.

To be able to use a speech signal and interpret its characteristics in a proper
manner some kind of representation of the speech signal are preferred. The speech
representation can exist in either the time or frequency domain, and in three

1Please recall Fig. 2.2

Chapter 2. The Speech Signal 13

different ways[1]. These are a three-state representation, a spectral representation
and the last representation is a parameterization of the spectral activity. These
representations will be discussed in the following sections (2.2.1-2.2.3).

2.2.1 Three-state Representation

The three-state representation is one way to classify events in speech. The events
of interest for the three-state representation are:

• Silence (S) - No speech is produced.

• Unvoiced (U) - Vocal cords are not vibrating, resulting in an aperiodic or
random speech waveform.

• Voiced (V) - Vocal cords are tensed and vibrating periodically, resulting in
a speech waveform that is quasi-periodic.

Quasi-periodic means that the speech waveform can be seen as periodic over a
short-time period (5-100 ms) during which it is stationary.

S U V

0.5 1 1.5 2 2.5 3 3.5

-0.5

0

0.5

(a)

Time [s]

A
m
p
lit
u
d
e

0.3 0.4 0.5 0.6 0.7 0.8 0.9

-0.1

0

0.1

0.2

(b)

Time [s]

A
m
p
lit
u
d
e

Figure 2.4: Three-state representation

The upper plot (a) contains the whole speech sequence and in the middle plot
(b) a part of the upper plot (a) is reproduced by zooming an area of the whole
speech sequence. At the bottom of Fig. 2.4 the segmentation into a three-state

14 Chapter 2. The Speech Signal

representation, in relation to the different parts of the middle plot, is given.

The segmentation of the speech waveform into well-defined states is not straight
forward. But this difficulty is not as a big problem as one can think. However, in
speech recognition applications the boundaries between different states are not
exactly defined and therefore non-crucial.

As complementary information to this type of representation it might be relevant
to mention that these three states can be combined. These combinations result
in three other types of excitation signals: mixed, plosive and whisper.

2.2.2 Spectral Representation

Spectral representation of speech intensity over time is very popular, and the
most popular one is the sound spectrogram, see Fig. 2.5.

1 1.5 2 2.5 3 3.5

−0.5

0

0.5

(b)

Time [s]

A
m

pl
itu

de

0

20

40

60

80

Time [Block #]

F
re

qu
en

cy
 [H

z]

(a)

50 100 150 200 250 300 350
0

2000

4000

6000

8000

Figure 2.5: Spectrogram using Welch’s Method (a) and speech amplitude (b)

Here the darkest (dark blue) parts represents the parts of the speech waveform2

where no speech is produced and the lighter (red) parts represents intensity if
speech is produced.

Fig. 2.5a shows a spectrogram in the frequency domain and in Fig. 2.5b the
speech waveform is given in the time domain. For the spectrogram Welch’s

2Please recall Fig. 2.5b

Chapter 2. The Speech Signal 15

method is used, which uses averaging modified periodograms [3]. Parameters
used in this method are blocksize K = 320, window type Hamming with 62.5%
overlap resulting in blocks of 20 ms with a distance of 6.25 ms between blocks.

2.2.3 Parameterization of the Spectral Activity

When speech is produced in the sense of a time-varying signal, its characteristics
can be represented via a parameterization of the spectral activity. This represen-
tation is based on the model of speech production [see Sec. 2.1].

The human vocal tract can (roughly) be described as a tube excited by air either
at the end or at a point along the tube. From acoustic theory it is known that the
transfer function of the energy from the excitation source to the output can be
described in terms of natural frequencies or resonances of the tube, more known as
formants. Formants represent the frequencies that pass the most acoustic energy
from the source to the output. This representation is highly efficient, but is more
of theoretical than practical interest. This because it is difficult to estimate the
formant frequencies in low-level speech reliably and defining the formants for
unvoiced (U) and silent (S) regions.

2.3 Phonemics and Phonetics

As discussed earlier in this chapter, the speech production begins in the humans
mind, when he or she forms a thought that is to be produced and transferred
to the listener. After having formed the desired thought, he or she constructs
a phrase/sentence by choosing a collection of finite mutually exclusive sounds.
The basic theoretical unit for describing how to bring linguistic meaning to the
formed speech, in the mind, is called phonemes.

Phonemes can be seen as a way of how to represent the different parts in a speech
waveform, produced via the human vocal mechanism3 and divided into continu-
ant (stationary) or non-continuant parts, see Fig. 2.6.

A phoneme is continuant if the speech sound is produced when the vocal tract is
in a steady-state. In opposite of this state, the phoneme is non-continuant when
the vocal tract changes its characteristics during the production of speech. For
example if the area in the vocal tract changes by opening and closing the mouth
or moving your tongue in different states, the phoneme describing the speech
produced is non-continuant.
Phonemes can be grouped based on the properties of either the time waveform or
frequency characteristics and classified in different sounds produced by the human

3Please recall Fig. 2.2

16 Chapter 2. The Speech Signal

* Front
* Middle
* Back

* Fricatives
- Unvoiced
- Voiced

* Whisper
* Affricates
* Nasals

* Liquids
* Glides

* Unvoiced
* Voiced

Phonemes

Continuant Non-Continuant

Appendix A.1.1 Appendix A.1.2 Appendix A.2.1 Appendix A.2.2 Appendix A.2.3

Appendix A.1 Appendix A.2

Diphthongs StopsSemivowelsVowels Consonants

Figure 2.6: Phoneme classification

vocal tract. The classification, may also be seen as a division of the sections in
Appendix A, see Fig. 2.6.

2.4 Summary

The purpose with this chapter has been to present an overview of the fundamen-
tals of speech science and to provide sufficient background to pursue applications
of digital signal processing to speech. The speech is produced through the careful
movement of the vocal-tract articulators in response to an excitation signal. The
excitation signal may be periodic at the glottis, or noise-like due to a major con-
struction along the vocal tract, or a combination. Phonemes, can be classified in
terms of the place of articulation, manner of articulation, or a spectral character-
ization. Each phoneme has a distinct set of features that may or may not require
articulator movement for proper sound production. This knowledge is useful, in
the field of speech recognition, to label the (synthetic?) speech waveform, being
analyzed, in a linguistic sense. Further, the speech perception process, by the hu-
man hearing system, might be useful to model appropriately. The main thing to
model is the nonlinear character of the human hearing system. A more detailed
treatment of this subject, together with others, is found in the following chapter.

Chapter 3

From Speech To Feature Vectors

This chapter describes how to extract information from a speech signal, which
means creating feature vectors from the speech signal. A wide range of pos-
sibilities exist for parametrically representing a speech signal and its content.
The main steps for extracting information are preprocessing, frame blocking and
windowing, feature extraction and postprocessing, see Fig. 3.1.

Preprocessing
Frame Blocking

And
Windowing

Feature
Extraction

Postprocessing
x(n) x1(n) x2(k; m) x3(n; m) fx(n; m)

Figure 3.1: Main steps in Feature Extraction

From a correct bandlimited and sampled speech signal, x(n), one will finally yield
the feature vectors fx(n;m)1. The notation fx(n;m), where m = 0, 1, . . . ,M − 1
and n = 0, 1, . . . , N − 1, means M vectors, each of size N . In the following
sections the steps in Fig. 3.1 will be explained.

3.1 Preprocessing

This step is the first step to create feature vectors. The objective in the prepro-
cessing is to modify the speech signal, x(n), so that it will be ”more suitable” for
the feature extraction analysis. The preprocessing operations noise cancelling,
preemphasis and voice activation detection can be seen in Fig. 3.2.

The first thing to consider is if the speech, x(n), is corrupted by some noise,
d(n), for example an additive disturbance x(n) = s(n) + d(n), where s(n) is the
clean speech signal. There are several approaches to perform noise reduction
on a noisy speech signal. Two commonly used noise reduction algorithms in
the field of speech recognition context is spectral subtraction and adaptive noise

1Note that the index n in fx(n;m) is a vector index and not a sample index as in x(n)

17

18 Chapter 3. From Speech To Feature Vectors

Noise Canceling Preemphesis
Voice

Activation
Detection

Preprocessing

x(n) ŝ(n) s1(n) x1(n)

Figure 3.2: Steps in Preprocessing

cancellation [2]. A low signal to noise ratio (SNR) decrease the performance of
the recognizer in a real environment. Some changes to make the speech recognizer
more noise robust will be presented later. Note that the order of the operations
might be reordered for some tasks. For example the noise reduction algorithm,
spectral subtraction, is better placed last in the chain (it needs the voice activation
detection).

3.1.1 Preemphasis

The preemphasizer is used to spectrally flatten the speech signal. This is usually
done by a highpass filter. The most commonly used filter for this step is the FIR
filter described below:

H(z) = 1 − 0.95z−1 (3.1)

The filter response for this FIR filter can be seen in Fig. 3.3. The filter in the
time domain will be h(n) = {1

↑
,−0.95} and the filtering in the time domain will

give the preemphasized signal s1(n):

s1(n) =
M−1∑
k=0

h(k)ŝ(n− k) (3.2)

3.1.2 Voice Activation Detection (VAD)

The problem of locating the endpoints of an utterance in a speech signal is a
major problem for the speech recognizer. An inaccurate endpoint detection will
decrease the performance of the speech recognizer. The problem of detecting
endpoints seem to be relatively trivial, but it has been found to be very difficult
in practice. Only when a fair SNR is given, the task is made easier. Some
commonly used measurements for finding speech are short-term energy estimate
Es1 , or short-term power estimate Ps1 , and short term zero crossing rate Zs1 . For
the speech signal s1(n) these measures are calculated as follows:

Chapter 3. From Speech To Feature Vectors 19

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

Normalized Frequency (×π rad/sample)

P
ha

se
 (

de
gr

ee
s)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−30

−20

−10

0

10

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Figure 3.3: Preemphasis filter

Es1(m) =
m∑

n=m−L+1

s2
1(n) (3.3)

Ps1(m) =
1

L

m∑
n=m−L+1

s2
1(n) (3.4)

Zs1(m) =
1

L

m∑
n=m−L+1

|sgn(s1(n)) − sgn(s1(n− 1)|
2

(3.5)

Where:

sgn(s1(n)) =

{
+1, s1(n) ≥ 0
−1, s1(n) < 0

(3.6)

For each block of L samples these measures calculate some value. Note that the
index for these functions is m and not n, this because these measures do not have
to be calculated for every sample (the measures can for example be calculated
in every 20 ms). The short-term energy estimate will increase when speech is
present in s1(n). This is also the case with the short-term power estimate, the
only thing that separates them is scaling with 1

L
when calculating the short-term

power estimate. The short term zero crossing rate gives a measure of how many
times the signal, s1(n), changes sign. This short term zero crossing rate tends to
be larger during unvoiced regions [2].

These measures will need some triggers for making decision about where the
utterances begin and end. To create a trigger, one need some information about

20 Chapter 3. From Speech To Feature Vectors

the background noise. This is done by assuming that the first 10 blocks are
background noise. With this assumption the mean and variance for the measures
will be calculated. To make a more comfortable approach the following function
is used:

Ws1(m) = Ps1(m) · (1 − Zs1(m)) · Sc (3.7)

Using this function both the short-term power and the zero crossing rate will be
taken into account. Sc is a scale factor for avoiding small values, in a typical
application is Sc = 1000 . The trigger for this function can be described as:

tW = µW + αδW (3.8)

The µW is the mean and δW is the variance for Ws1(m) calculated for the first
10 blocks. The α term is a constant that have to be fine tuned according to the
characteristics of the signal. After some testing the following approximation of
α will give a pretty good voice activation detection in various level of additive
background noise:

α = 0.2 · δ−0.8
W (3.9)

The voice activation detection function, VAD(m), can now be found as:

VAD(m) =

{
1, Ws1(m) ≥ tW
0, Ws1(m) < tW

(3.10)

VAD(n) is found as VAD(m) in the block of measure. For example if the measures
is calculated every 320 sample (block length L=320), which corresponds to 20 ms
if the sampling rate is 16 kHz. The first 320 samples of VAD(n) found as VAD(m)
then m = 1. Using these settings the VAD(n) is calculated for the speech signal
containing the words four and five, see Fig. 3.4. If some other sampling rate is
used, strive for a block length of 20 ms.

Chapter 3. From Speech To Feature Vectors 21

1 2 3

x 10
4

−0.4

−0.2

0

0.2

n

s 1(n
)

20 40 60 80 100

2

4

6

8

m

E
s 1(m

)

20 40 60 80 100

0.005

0.01

0.015

0.02

0.025

m

P
s 1(m

)

20 40 60 80 100

0.1

0.2

0.3

0.4

m

Z
s 1(m

)

20 40 60 80 100

5

10

15

20

t
W

m

W
s 1(m

)

1 2 3

x 10
4

0

0.5

1

n

V
A

D
(n

)

Figure 3.4: Different measures used to find speech content, VAD(n)

22 Chapter 3. From Speech To Feature Vectors

With the function, VAD(n), the calculation of x1(n) is simply s1(n) when VAD(n)
is one, see Fig. 3.5. After this step the preprocessing is ready and x1(n)2 is
prepared and calculated for the next step.

0.5 1 1.5 2 2.5 3 3.5

x 10
4

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

s 1(n
)

n

1000 2000 3000 4000 5000 6000 7000 8000 9000
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

x 1(n
)

n

Figure 3.5: From speech with silence, s1(n), to speech with no silence, x1(n),
using decision function VAD(n)

2The sample index n, for x1(n) is here different from the index for s1(n)

Chapter 3. From Speech To Feature Vectors 23

3.2 Frame Blocking and Windowing

The next thing to do with x1(n) is to divide it into speech frames and apply a
window to each frame, see Fig. 3.6.

Frame
Blocking

Windowing

Frame Blocking And Windowing

x1(n) x1(k; m) x2(k; m)

Figure 3.6: Steps in Frame Blocking and Windowing

Each frame is K samples long, with adjacent frames being separated by P sam-
ples, see Fig. 3.7.

P

K

nx
1

Figure 3.7: Frame blocking of a sequence x1(n)

Typically values for K and P are 320 samples and 100 samples (62.5% overlap)
which correspond to 20 ms frames, separated by 6.25 ms when the sampling rate
of the speech is 16 kHz. By choosing frames of 20 ms one can assume that the
speech is stationary within each frame [2]. By applying the frame blocking to
x1(n) one will get M vectors of length K, which correspond to x1(k;m) where
k = 0, 1, . . . , K − 1 and m = 0, 1, . . . ,M − 1. The next thing to do is to apply a

24 Chapter 3. From Speech To Feature Vectors

window to each frame in order to reduce signal discontinuity at either end of the
block. A commonly used window is the Hamming window. It is calculated as:

w(k) = 0.54 − 0.46cos(
2πk

K − 1
) (3.11)

By applying w(k) to x1(k;m) for all blocks, x2(k;m) is calculated.

3.3 Feature Extraction

The next step is an important one, namely to extract relevant information from
the speech blocks. A variety of choices for this task can be applied. Some com-
monly used methods for speech recognition is linear prediction and mel-cepstrum
[1]. These measures has been widely used and here are some reasons why [1]:

• These measures provides a good model of the speech signal. This is partic-
ulary true in quasi steady state voiced region of speech.

• The way these measures is calculated leads to a reasonable source-vocal
tract separation. This property leads to a fairly good representation of the
vocal tract characteristics (which is directly related to the speech sound
being produced).

• The measures has a analytically tractable model.

• Experience has found that these measures works well in recognition appli-
cation.

Other measures to add to the feature vectors are energy measures and also the cal-
culation of delta and acceleration coefficients. The delta coefficients means that
a derivative approximation of some measure (e.g. linear prediction coefficients)
is added and the acceleration coefficients is the second derivative approximation
of some measures.

3.3.1 Linear Prediction

The main idea behind linear prediction is to extract the vocal tract parameters.
A model of the vocal tract can be seen in Fig. 3.8.
Given a speech sample at time n, s(n) can be modelled as a linear combination
of the past p speech samples, such that:

s(n) = b0u(n) + a1s(n− 1) + a2s(n− 2) + · · · + aps(n− p) (3.12)

Or equivalently:

Chapter 3. From Speech To Feature Vectors 25

H(z)

b0

⊗u(n) s(n)

Figure 3.8: Model of the vocal tract

s(n) = b0u(n) +
p∑

i=1

ais(n− i) (3.13)

where u(n) is a normalized excitation signal, b0 the gain of the excitation signal
and the coefficients a1, a1, . . . , ap are the weights for previous sound samples. All
these coefficients are assumed constant over the speech analysis frame. An other
way to look at this is to express s(n) in the z-domain:

S(z) = b0U(z) +
p∑

i=1

aiS(z)z−i (3.14)

And hereby the transfer function becomes:

H(z) =
S(z)

U(z)
=

b0
1 −∑p

i=1 aiz−i
(3.15)

As (3.15) shows, one can see that this problem is to create an all pole model of
the vocal tract. The calculation of the coefficients are applied when the speech is
assumed stationary, x2(k;m) are the frames of speech where the speech is assumed
stationary. The calculation of these coefficients for each block in x2(k;m) can be
done in different ways by using the autocorrelation method, the covariance method,
the Levinson-Durbin recursion etc [3]. This report focus on the Levinson-Durbin
recursion method. The steps in linear prediction can be seen in Fig. 3.9.

Make
Autocorrelation

Levinson
Durbin

Linear Prediction

x2(k; m) rx2x2(p; m) [b0, a1, . . . , ap]m

Figure 3.9: Steps in Linear Prediction

To get a deeper understanding of the different ways to extract the predictor
coefficients see [3]. In a typical application is p = 13.

26 Chapter 3. From Speech To Feature Vectors

3.3.2 Mel-Cepstrum

Instead of using linear prediction, another method is often used in speech recogni-
tion, namely the mel-cepstrum. This method consists of two parts: the cepstrum
calculation and a method called mel scaling. The parts will be described in the
following two sections and finally the mel-cepstrum will be summarized.

Cepstrum

The cepstrum method is a way of finding the vocal tract filter H(z) with ”ho-
momorphic processing”. Homomorphic signal processing is generally concerned
with the transformation to linear domain of signals combined in a nonlinear way.
In this case the two signals are not combined linearly (a convolution can’t be
described as an simple linear combination). As Fig. 3.8 shows, the speech signal,
s(n), can be seen as the result of a convolution between u(n) and h(n):

s(n) = b0 · u(n) ∗ h(n) (3.16)

In the frequency domain:

S(z) = b0 · U(z)H(z) (3.17)

Since the excitation, U(z), and the vocal tract, H(z), are combined multiplicative
it is difficult to separate them. If the log3 operation is applied the task will become
additive:

logS(z) = log(b0 · U(z)H(z)) = log(b0 · U(z)) + log(H(z)) (3.18)

The additive property of the log spectrum also applies when an inverse trans-
forming is applied to it. The result of this operation is called a cepstrum. To
avoid taking logarithm of complex numbers, an abs operation is applied to S(z),
this is the definition of a “real cepstrum”. The steps to create a real cepstrum
can be seen in Fig. 3.10.

Z{s(n)} log |S(z)| Z−1{Cs(z)}s(n)

Voiced
Speech

S(z) log |S(z)| = Cs(z) cs(n)

Cepstrum

Figure 3.10: Steps to get real cepstrum

Note that the real cepstrum is an even sequence on the index n, since Cs(z) =
log |S(z)|, is real and even. These properties gives that the inverse cosine trans-
form can be applied to Cs(z) to get cs(n). The index n in cs(n) is now the so
called quefrency - high-quefrency equals high n and vice versa. Now that cs(n)
has been calculated one will get hold of ch(n), which is the cepstrum of the vocal

3By logarithm the natural logarithm is assumed if not stated otherwise

Chapter 3. From Speech To Feature Vectors 27

tract filter. The vocal tract filter has ”slow” spectral variations and the excitation
signal has ”fast” variations. This property corresponds to low-quefrency for the
vocal tract filter and high-quefrency for the excitation signal. Fig. 3.11 shows the
quefrency domain operations. Note that the P in the cepstrum for the excitation
is the corresponding pitch.

50 100 150 200 250

0

0.5

1

1.5

3P2PP

n

c s(n
)=

c h(n
)+

c u(n
)

50 100 150 200 250

0

0.5

1

1.5

3P2PP

n

c u(n
)

50 100 150 200 250

0

0.5

1

1.5

n

c h(n
)

Figure 3.11: Quefrency functions for vocal tract model

To extract the vocal tract cepstrum one can apply a low-pass “lifter” to cs(n).
Liftering is filtering in cepstrum domain. One easy way to do this is to drop some
of the cepstrum coefficients at the end. This can be formulated as a window which
cs(n) is to be multiplicated with:

l1(n) =

{
1, n = 0, 1, . . . , L− 1
0, else

(3.19)

Where the length, L, is the chosen to extract ch(n). In Fig. 3.11 a good choice
of L would be 75. An other lifter which has also been proven to give a good
recognition result is [1]:

l2(n) =

{
1 + L−1

2
sin
(

πn
L−1

)
, n = 0, 1, . . . , L− 1

0, else
(3.20)

Both lifters can be seen in Fig. 3.12.
Now the cepstrum for the vocal tract, ch(n), can be calculated by (using second
lifter):

ch(n) ≈ cs(n) · l2(n) (3.21)

28 Chapter 3. From Speech To Feature Vectors

0 (L−1)/2 L−1

1

n

l 1(n
)

0 (L−1)/2 L−1

1+(L−1)/2

n

l 2(n
)

Figure 3.12: Lifters l1(n) and l2(n)

Mel scale

As mentioned in Ch. 2, psychophysical studies (studies of human auditory per-
ception [2]) has shown that human perception of the frequency contents of sound,
for speech signals does not follow a linear scale. Thus for each tone with an actual
frequency, F , measured in Hz, a subjective pitch is measured on a scale called
the “mel” scale4. As reference for the mel scale, 1000 Hz is usually said to be
1000 mels. As a nonlinear transformation of the frequency scale, the following
formula is used:

Fmel = 2595 · log10(1 +
FHz

700
) (3.22)

This nonlinear transformation can be seen in Fig. 3.13.

To apply the mel scale to the cepstrum, a filterbank of K triangular bandpass
filters is applied to |S(z)|. These triangular bandpass filters has centrum frequen-
cies in K equally spaced mel values. The equally spaced mel values correspond
to different frequency values, that is the inverse of (3.22):

FHz = 700 · (10
Fmel
2595 − 1) (3.23)

If for example one wantsK mel scaled coefficients in the range 0-5000 Hz (Nyquist
range), the first thing to do is to use (3.22) to get Fmel corresponding to FHz =

4From the experiments by Stevens and Volkman (1940) [2]

Chapter 3. From Speech To Feature Vectors 29

0 2000 4000 6000 8000 10000 12000 14000 16000
0

500

1000

1500

2000

2500

3000

3500

4000

F
Hz

F
m

el

Figure 3.13: Transformation from Hz to mels

5000. Now the calculation of the centrum frequency in the equally spaced mel
scale can easily be done by dividing the calculated Fmel with K. Now the equally
spaced mel values are calculated and the reverse operation is done to get back to
FHz. In Fig. 3.14 this is illustrated for K = 10.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
0

500

1000

1500

2000

F
Hz

F
m

el

Figure 3.14: Equally spaced mel values

30 Chapter 3. From Speech To Feature Vectors

Now the centrum of the triangular filter is found in Hz and the triangular band-
pass filters can be found. The width of each filter is just the distance to the
previous centrum times 2 (the first centrum frequency has zero as its previous
centrum value). Fig. 3.15 shows the mel scaled filter bank when K = 10.

0 1000 2000 3000 4000 5000 6000 7000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
Hz

M
ag

ni
tu

de
 o

f m
el

 fi
lte

r
tr

ia
ng

le
s

Figure 3.15: Mel scale filter bank

The bandlimits for these filters, when K = 10 (i.e. the bandlimits in Fig. 3.15)
and when K = 20 can be seen in Tab. 3.1 and Tab. 3.2.

Filter Lower limit [Hz] Upper limit [Hz]

1 0 326.6253
2 163.3126 566.1408
3 364.7267 861.5363
4 613.1315 1225.8486
5 919.4901 1675.1564
6 1297.3232 2229.2893
7 1763.3063 2912.7036
8 2338.0049 3755.561
9 3046.7829 4795.0602
10 3920.9215 6077.0785

Table 3.1: Bandlimits when K = 10

Every triangular filter now will give one new mel spectrum coefficient, mk, by
summing up the filtered result. The chain of calculating a mel-cepstum for a
speech frame will be described in the following section.

Chapter 3. From Speech To Feature Vectors 31

Filter Lower limit [Hz] Upper limit [Hz]

1 0 154.759
2 77.3795 249.2458
3 163.3126 354.1774
4 258.745 470.7084
5 364.7267 600.121
6 482.4239 743.8391
7 613.1315 903.4442
8 758.2878 1080.6923
9 919.4901 1277.5338
10 1098.5119 1496.1345
11 1297.3232 1738.8999
12 1518.1115 2008.501
13 1763.3063 2307.9044
14 2035.6053 2640.4045
15 2338.0049 3009.6599
16 2673.8324 3419.7335
17 3046.7829 3875.1375
18 3460.9602 4380.8829
19 3920.9215 4942.5344
20 4431.728 5566.272

Table 3.2: Bandlimits when K = 20

32 Chapter 3. From Speech To Feature Vectors

Mel-Cepstrum

All steps to create mel-cepstrum coefficients from a speech frame will be described
in this section. The sampling rate used in this description is Fs =16 kHz and the
block size K = 320. The steps for this operation can be viewed in Fig. 3.16.

N-point
DFT

|X2(n; m)| Mel scaled
Filterbank

log(mk)IDCTLifter

Mel-Cepstrum

mk

x2(k; m) X2(n; m) |X2(n; m)|

log(mk)cs(n; m)ch(n; m)

Figure 3.16: The steps in creation of Mel-Cepstrum

The first step is to make the block length to a power of 2 length (N = 2i) which
enables a fast radix-2 algorithm to be used for calculating the FFT of the block.
In this case K = 320 gives an FFT of length 512, which means that the block
will be zeropadded with 192 zeros. After applying an N-point FFT to x2(k;m)
one will get X2(n;m). After this, the magnitude of X2(n;m) is calculated and is
used with the mel scale filter bank. The mel spectrum coefficients are then the
sum of the filtered result. This can be described by:

mk =
N−1∑
n=0

|X2(n;m)|Hmel
k (n) (3.24)

Where Hmel
k (n) is one triangular filter. Here 20 filters5 are used in the range

0-5000 Hz and these filters are illustrated in Fig. 3.17 as FFT vectors.
After the mel spectrum coefficients are calculated, as in (3.24), the logarithm is
taken and the inverse discrete cosine transform is applied as:

cs(n;m) =
N−1∑
k=0

αk · log (mk) cos

(
π(2n+ 1)k

2N

)
, n = 0, 1, . . . , N − 1 (3.25)

Where: α0 =
√

1
N

αk =
√

2
N
, 1 ≤ k ≤ N − 1

(3.26)

5Please recall Tab. 3.2

Chapter 3. From Speech To Feature Vectors 33

0 50 100 150 200 250
0

0.5

1

n

H
1m

el
(n

)

0 50 100 150 200 250
0

0.5

1

n

H
2m

el
(n

)

0 50 100 150 200 250
0

0.5

1

n

H
20m

el
(n

)

Figure 3.17: Mel scale filters as FFT vectors

Note that N is now the number of wanted cepstrum coefficients, not the FFT
length. Note also that only K values, mk, are available for the calculation.
Usually N = K, otherwise one need to zeropad or truncate the mk values to N
wanted values. N values of the frame mel cepstrum are extracted, cs(n;m), and
the liftering takes place. The liftering length, L, has to be chosen and a good
choice for removing the pitch is L = 2

3
N . This can be described by (using second

lifter):

ch(n;m) = cs(n;m) ·
(
1 +

L− 1

2
sin
(

πn

L− 1

))
, n = 0, 1, . . . , L− 1 (3.27)

Note that this operation zeros out (or cuts away) some of the last mel cepstrum
coefficients6. After this step the final mel cepstrum values are found. A way to
interpret these values visually, is to make an FFT of ch(n;m) to see its spectral
information. The spectral information given is actually log |H(n;m)|, which is
the log of the magnitude for the vocal tract in mel scale. To get the magnitude
for the vocal tract filter the following formula can be used:

|H(n;m)| =
∣∣∣eFFTN{ch(n;m)}

∣∣∣ (3.28)

6Please recall Fig. 3.12

34 Chapter 3. From Speech To Feature Vectors

Note that the N-points in |H(n;m)| are now represented in melscale, so |H(n;m)|
is actually in mel scale and not ordinary frequency scale. This is illustrated for
a speech file in Fig. 3.18, sampling rate was 16 kHz, the range used for the mel
filterbank was 0-5000 Hz and an 512 point FFT was used.

0.5 1 1.5 2 2.5 3 3.5

x 10
4

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

n

s(
n)

20

40

60

80

100

120

Time [Block #]

F
re

qu
en

cy
 [m

el
s]

10 20 30 40 50 60 70 80 90 100 110
0

500

1000

1500

2000

Figure 3.18: Spectral representation of cepstrum coefficients

3.3.3 Energy measures

An extra measure to augment the coefficients derived from linear prediction or
mel-cepstrum, is the log of signal energy. This means that, for every frame, an
extra energy term is added. This energy term is calculated as:

Em = log
K−1∑
k=0

x2
2(k;m) (3.29)

3.3.4 Delta and Acceleration Coefficients

Spectral transitions are believed to play an important role in human speech per-
ception. Therefore it is desired to add information about time difference, or
delta coefficients and also acceleration coefficients (second time derivative). The
notation for mel-cepstrum will be used in this section, but the same equations

Chapter 3. From Speech To Feature Vectors 35

can also be applied to linear prediction coefficients. One direct way to get delta
coefficients is:

∆ch(n;m) = ch(n;m+ 1) − ch(n;m) (3.30)

This delta approximation will be quite noisy and some way to smooth it is de-
sired. This is why the time derivative, ∂ch(n;m)/∂m, is normally obtained by
polynomial approximation. The approximation is done by fitting a polynomial
over a segment of the mel-cepstral trajectory. The polynomial fit has to be done
individually for each of the mel-cepstral coefficients ch(n;m), n = 0, 2, . . . , N −1.
Consider fitting a segment of mel-cepstrum trajectory, ch(n;m+p), p = −P,−P+
1, . . . , P by a second-order polynomial h1(n;m) + h2(n;m)p + h3(n;m)p2. The
parameters h1(n;m),h2(n;m) and h3(n;m) has to be chosen to minimize some
criterium. The criterium to be minimized, is the least square. This gives that
the following function has to be minimized:

E =
P∑

p=−P

[
ch(n;m+ p) −

(
h1(n;m) + h2(n;m)p+ h3(n;m)p2

)]2
(3.31)

Differentiating E with respect to h1(n;m),h2(n;m) and h3(n;m) and setting the
result to zero, lead to three simultaneous equations (The index (n;m) for h1,h2

and h3 is dropped for simplicity):

∂E

∂h1

= −2 ·
P∑

p=−P

[
ch(n;m+ p) − h1 − h2p− h3p

2
]

= 0

∂E

∂h2

= −2 ·
P∑

p=−P

[
ch(n;m+ p)p− h1p− h2p

2 − h3p
3
]

= 0

∂E

∂h3

= −2 ·
P∑

p=−P

[
ch(n;m+ p)p2 − h1p

2 − h2p
3 − h3p

4
]

= 0

(3.32)

The solution to (3.32), can after some calculations, be found as:

h2 =

P∑
p=−P

ch(n;m+ p)p

TP

(3.33)

h3 =

TP

P∑
p=−P

ch(n;m+ p) − (2P + 1)
P∑

p=−P

ch(n;m+ p)p2

T 2
P − (2P + 1)

P∑
p=−P

p4

(3.34)

36 Chapter 3. From Speech To Feature Vectors

h1 =
1

2P + 1

 P∑
p=−P

ch(n;m+ p) − h3TP

 (3.35)

Where:

TP =
P∑

p=−P

p2 (3.36)

To illustrate the approximation on a typical mel-cepstrum trajectory, see Fig. 3.19.

0 10 20 30 40 50 60

−1

0

1

2

3

4

Time [Block #]

M
el

−
C

ep
st

ru
m

 c
oe

ffi
ci

en
t a

m
pl

itu
de

Coefficients
Polynomial fit

Figure 3.19: 2nd-order polynomial approximation, fitting width is 7 (P = 3)

With the approximation curve, h1+h2p+h3p
2, an approximation of the derivative

can be found as:

∂ch(n;m+ p)

∂p

∣∣∣∣∣
p=0

� ∂ (h1 + h2p+ h3p
2)

∂p

∣∣∣∣∣
p=0

= lim
p→0

(h2 + 2h3p) = h2 (3.37)

From this point on the estimate ∂ch(n;m+p)
∂p

∣∣∣
p=0

is denoted δ[1](n;m), which is the

same as the delta coefficients. An explicit expression for the delta coefficients is
given by adding (3.33) to (3.37):

δ[1](n;m) = h2(n;m) =

P∑
p=−P

ch(n;m+ p)p

TP

(3.38)

Chapter 3. From Speech To Feature Vectors 37

Knowing the polynomial approximation it is also possible to get the second deriva-
tive, the acceleration coefficients, by taking the second derivative of the approxi-
mation polynomial. This leads to the second derivative approximation:

∂2ch(n;m+ p)

∂p2

∣∣∣∣∣
p=0

� ∂2 (h1 + h2p+ h3p
2)

∂p2

∣∣∣∣∣
p=0

= lim
p→0

(2h3) = 2h3 (3.39)

The acceleration coefficients will be denoted δ[2](n;m) and by using (3.34) and
(3.39), the following formula, for the acceleration coefficients will be used:

δ[2](n;m) = 2h3(n;m) =

2

TP

P∑
p=−P

ch(n;m+ p) − (2P + 1)
P∑

p=−P

ch(n;m+ p)p2

T 2

P − (2P + 1)
P∑

p=−P

p4

(3.40)
The delta and acceleration coefficients can now be augmented to the feature
vectors to get more relevant information about the speech. The choice of the
fitting width (fitting width = 2P + 1) adds a delay of P blocks to the system. A
good choice is P = 3, which gives a good approximation and not too long delay
[1].

3.3.5 Summary

Different measures for each block has been presented and the final choice of
measures will be done, representing the step from x2(k;m) to x3(n;m) will be
described here, see Fig. 3.1. The coefficients chosen are the energy measure, mel-
cepstrum coefficients and the delta and acceleration coefficients calculated from
the mel-cepstrum coefficients. The vectors x3(n;m) are build up as in Fig. 3.20.

ch(1; m)Em ch(2; m) · · · ch(n; m) δ[1](1; m) δ[1](2; m) · · · δ[1](n; m) δ[2](1; m) δ[2](2; m) · · · δ[2](n; m)

Figure 3.20: Measures saved in vector for block m

The process to extract the features can be viewed in Fig. 3.21.
The outputs seen in Fig. 3.21 are the desired features, x3(n;m), saved in a vector
(see Fig. 3.20).

38 Chapter 3. From Speech To Feature Vectors

N-point
DFT

|X2(n; m)| Mel scaled
Filterbank

log(mk)IDCTLifter

log
K−1∑
k=0

x2
2(k; m)

Delta
Calculation

Acceleration
Calculation

Feature Extraction

mk

X2(n; m) |X2(n; m)|x2(k; m)

Em

ch(n; m)

δ[1](n; m)

δ[2](n; m)

log(mk)cs(n; m)

Figure 3.21: Steps in Feature Extraction

Chapter 3. From Speech To Feature Vectors 39

3.4 Postprocessing

The final touch of the features will be done in this section. Two more steps are
included to get the final feature vectors. These steps can be viewed in Fig. 3.22.

Weight
Function

Normalization

Postprocessing

x3(n; m) x′
3(n; m) fx(n; m) = ot

Figure 3.22: Steps in Postprocessing

After the desired features are chosen, these can be weighted with some weight
function to give some features more or less influence. For example it might
be desired to weight down some of the first mel-cepstrum coefficients, if a low
frequency noise is present. This is done by a weight function:

x′3(n;m) = x3(n;m) · w(n) n = 0, 2, . . . , N − 1 (3.41)

The weight function, w(n), is a way to be able to fine tune the speech recognizer
for a given task. Assume w(n) = 1, but keep in mind that this window can be
adjusted to get better speech representation for some tasks.

The next step is the normalization, meaning that the feature vectors are normal-
ized over time to get zero mean. The mean vector, called fµ̂(n), can be calculated
as:

fµ̂(n) =
1

M

M−1∑
m=0

x′3(n;m) (3.42)

To normalize the feature vectors, the following operation is applied:

fx(n;m) = x′3(n;m) − fµ̂(n) (3.43)

For training purpose can equations (3.42) and (3.43) be applied for some fix
number of feature vectors, but when the recognition phase is done in real time
it is necessary to calculate the mean vector online. Online calculation is done by
setting the start mean vector to zero and update the mean for each new feature
vector. The normalization procedure will force the feature vectors to the same
numerical range. This property is found to make the speech recognition system
more robust to noise and also gives less mismatch between training and recogni-
tion environments.

40 Chapter 3. From Speech To Feature Vectors

This will conclude the feature extraction process. To simplify the notation in
Ch. 4, the feature vectors, fx(n;m), will be denoted O = (o1,o2, . . . ,oT) where
ot ∈ RD. That is the dimension of the vectors is N for fx(n;m) and D for ot.
The number of vectors M in fx(n;m) corresponds to T for O. Note that for a
single m will fx(n;m) correspond to ot (single observation).

Chapter 4

Hidden Markov Model

This chapter will describe a method to train and recognize speech utterance
from given observations, ot ∈ RD, where t is a time index and D is the vector
dimension. A complete sequence of observations used to describe the utterance
will be denoted O = (o1,o2, . . . ,oT). The utterance may be a word, a phoneme,
or, in principle, a complete sentence or paragraph. The method described here is
the Hidden Markov Model or HMM. The HMM is an stochastic approach which
models the given problem as a “doubly stochastic process” in which the observed
data are thought to be the result of having passed the “true” (hidden) process
through a second process. Both processes are to be characterized using only the
one that could be observed. The problem with this approach, is that one do not
know anything about the Markov chains that generate the speech. The number
of states in the model is unknown, there probabilistic functions are unknown and
one can not tell from which state an observation was produced. These properties
are hidden, and thereby the name hidden Markov model.

4.1 Discrete-Time Markov Model

This section will describe the theory of Markov chains, here the hidden part is
uncovered. The system in this section is thereby an Observable Markov Model.
Consider a system that may be described at any time being one of a set of N
distinct states index by 1, 2, . . . , N . At regular spaced, discrete times, the system
undergoes a change of state (possibly back to same state) according to a set of
probabilities associated with the state. The time instances for a state change is
denoted t and the actual state at time t as qt. In the case of a first order Markov
chain, the state transition probabilities do not depend on the whole history of
the process, just the preceding state is taken into account. This is the Markov
property and is defined as:

P (qt = j|qt−1 = i, qt−2 = k, . . .) = P (qt = j|qt−1 = i) (4.1)

41

42 Chapter 4. Hidden Markov Model

Also consider that the right hand of (4.1) is independent of time, which leads to
a set of state transitions probabilities, aij, of the form:

aij = P (qt = j|qt−1 = i) , 1 ≤ i, j ≤ N (4.2)

These state probabilities, aij, has the following properties (due to standard
stochastic constrains) :

aij ≥ 0 ∀j, i
N∑

j=1

aij = 1 ∀i (4.3)

The state transition probabilities for all states in a model can be described by a
transition probability matrix:

A =

a11 a12 . . . a1N

a21 a22 . . . a2N
...

...
. . .

...
aN1 aN2 . . . aNN

N×N

(4.4)

The only thing remaining to describe the system is the initial state distribution
vector (the probability to start in some state). And this vector is described by:

π =

π1 = P (q1 = 1)
π2 = P (q1 = 2)

...
πN = P (q1 = N)

N×1

(4.5)

The stochastic property for the initial state distribution vector is:

N∑
i=1

πi = 1 (4.6)

Where the πi is defined as:

πi = P (q1 = i), 1 ≤ i ≤ N (4.7)

These are the properties and equations for describing a Markov process. The
Markov model can be described by A and π.

4.1.1 Markov Model of Weather

In this section an example of a discrete time Markov process will be presented to
set ideas about Markov chains. Here a model of the weather will be presented,
consider a four state Markov model of the weather, see Fig. 4.1.
Assume that once a day (e.g. in the morning), the weather is observed as being
one of the following:

Chapter 4. Hidden Markov Model 43

State 1 State 2

State 3 State 4

a12

a21

a13a31 a24a42

a34

a43

a14

a41

a23

a32

a11 a22

a33 a44

Figure 4.1: Markov model of the weather

• State 1: cloudy

• State 2: sunny

• State 3: rainy

• State 4: windy

Given the model in Fig. 4.1, it is now possible to answer several interesting ques-
tions about the weather patterns over time. For example, what is the probability
to get the sequence “sunny, rainy, sunny, windy, cloudy, cloudy” in six consecutive
days? The first thing to do is to define the state sequence, O, as:

O = (sunny, rainy, sunny,windy, cloudy, cloudy) = (2, 3, 2, 4, 1, 1)

Given this sequence and the model of Fig. 4.1, the calculation of the probability
of the observation sequence given a Markov model, P (O|A,π), can directly be
determined as:

P (O|A,π) = P (2, 3, 2, 4, 1, 1|A,π)

= P (2)P (3|2)P (2|3)P (4|2)P (1|4)P (1|1)

= π2 · a23 · a32 · a24 · a41 · a11

44 Chapter 4. Hidden Markov Model

In a more general case, this calculation of the probability for a state sequence
q = (q1, q2, . . . , qT) will be:

P (q|A,π) = πq1 · aq1q2 · aq2q3 · . . . · aqT−1qT
(4.8)

Another question of interest is to find the probability that a the system stays in
the same state, given that the system is in a known state, for exactly d days.
This corresponds to the following observation sequence:

O = (i, i, i, . . . , i, j
= i)

day 1 2 3 d d+ 1

And the following probability (using Bayes rule):

P (O|A,π, q1 = i) = P (O, q1 = i|A,π)/P (q1 = i)

= πi(aii)
d−1(1 − aii)/πi

= (aii)
d−1(1 − aii)

= pi(d) (4.9)

This probability, pi(d), can be seen as the state duration distribution. Here the
characteristic distribution in a Markov chain appears, namely the exponential
distribution. Based on pi(d) it is also possible to find the expected number of
observations (duration) in a state, conditioned on starting in that state as:

E[di] =
∞∑

d=1

d · pi(d)

=
∞∑

d=1

d · ad−1
ii (1 − aii)

= (1 − aii)
∂

∂aii

(∞∑
d=1

ad
ii

)

= (1 − aii)
∂

∂aii

(
aii

1 − aii

)
=

1

(1 − aii)
(4.10)

4.2 Discrete-Time Hidden Markov Model

The discrete-time Markov model described in previous section is too restrictive
to be applicable to many problems of interest. Therefore it will be extended to

Chapter 4. Hidden Markov Model 45

the discrete-time hidden Markov model. The extension done is that every state
will now not be deterministic (e.g. sunny), instead it will be probabilistic. This
means that every state generates a observation, ot, according to some proba-
bilistic function. The production of observations in this stochastic approach is
characterized by a set of observation probability measures, B = {bj(ot)}N

j=1, in
which the probabilistic function for each state, j, is:

bj(ot) = P (ot|qt = j) (4.11)

To set ideas of how the hidden Markov model works, the so called urn and ball
model will be presented.

4.2.1 The Urn and Ball Model

Assume that there are N large glass urns in a room. Within each urn are a
quantity of colored balls. Assume that there are M distinct colors of the balls.
Lets make an example, consider a set of N urns containing colored balls of M =
6 different colors (R = red, O=orange, B=black, G=green, B=blue, P=purple),
see Fig. 4.2.

Urn1 Urn2 Urn3 UrnN

P(R)=14% P(R)=44% P(R)=8% P(R)=3%

P(O)=8% P(O)=8% P(O)=8% P(O)=8%

P(B)=5% P(B)=8% P(B)=11% P(B)=8%

P(G)=3% P(G)=16% P(G)=54% P(G)=11%

P(B)=3% P(B)=8% P(B)=11% P(B)=67%

P(P)=67% P(P)=16% P(P)=8% P(P)=3%

Figure 4.2: Urn and Ball example

The steps for generating an observation sequence is as follows for this urn and
ball example:

1. Choose an initial state (here state equals urn) q1 = i according to the initial
state distribution π.

2. Set t = 1 (clock, t = 1, 2, . . . , T).

46 Chapter 4. Hidden Markov Model

3. Choose a ball from the selected urn (state) according to the symbol proba-
bility distribution in state i, i.e., bj(ot) (for example is the probability for a
purple ball in the first urn 0,67, see Fig. 4.2). This colored ball represents
the observation ot. Put the ball back to the urn.

4. Transit to a new state (urn) qt+1 = j according to the state-transition
probability distribution for state i, i.e., aij.

5. Set t = t+ 1; return to step 3 if t < T ; otherwise, terminate the procedure.

This steps describes how an hidden Markov model works when it is generating
the observation sequence. It should be noted that the colors of the balls in each
urn may be the same, and the distinction among various urns is the way the
collection of the colored balls is composed. Therefore, an isolated observation of
a particular colored ball does not immediately tell which urn it is drawn from.
Note that the link between the urn and ball example and an example in a speech
recognition task, is that an urn is equal to a state and a color is equal to a feature
vector (the observation).

4.2.2 Discrete Observation Densities

The urn and ball example described in previous section is an example of a discrete
observation density HMM. This because there are M distinct colors. In general
the discrete observation density HMMs are based on partitioning the probability
density function (pdf) of observations into a discrete set of small cells and sym-
bols v1,v2, . . . ,vM one symbol representing each cell. This partitioning subject
is usually called vector quantization and there exists several analysis methods for
this topic [1]. After a vector quantization is performed, a codebook is created of
the mean vectors for every cluster.

The corresponding symbol for the observation is determined by the nearest neigh-
bor rule, i.e. select the symbol of the cell with the nearest codebook vector. To
make a parallel to the urn and ball model, this means that if a dark gray ball is
observed, will it probably be closest to the black color. In this case the symbols
v1,v2, . . . ,vM are represented by one color each (e.g. v1 =red). The observa-
tion symbol probability distribution, B = {bj(ot)}N

j=1 will now have the symbol
distribution in state j, bj(ot), defined as:

bj(ot) = bj(k) = P (ot = vk|qt = j) , 1 ≤ k ≤M (4.12)

The estimation of the probabilities bj(k) is normally accomplished in two steps,
first the determination of the codebook and then the estimation of the sets of ob-
servation probabilities for each codebook vector in each state. The major problem

Chapter 4. Hidden Markov Model 47

with discrete output probability is that the vector quantization operation parti-
tions the continuous acoustic space into separate regions destroying the original
signal structure. As the output distributions of different states are typically
highly overlapping the partitioning introduces small errors. The unreliability of
parameter estimates due to the finiteness of the training data prevents the pre-
sentation of very large codebooks. This introduces quantization errors which may
cause degradation in the discrete HMM performance when the observed feature
vectors are intermediate between two codebook symbols [1]. This is why contin-
uous observation densities can be used instead to increase the recognition rate,
but this approach also gives that more calculations is needed.

4.2.3 Continuous Observation Densities

To create continuous observation density HMMs, bj(ot):s are created as some
parametric probability density functions or mixtures of them. To be able to rees-
timate the parameters of the probability density function (pdf) some restriction
must be placed on the model for the pdf. This restriction is that the pdf is any
log-concave or elliptically symmetric density [1]. The most general representation
of the pdf, for which a reestimation procedure has been formulated, is a finite
mixture of the form:

bj(ot) =
M∑

k=1

cjkbjk(ot), j = 1, 2, . . . , N (4.13)

Where M is the number of mixtures and the following stochastic constraints for
the mixture weights, cjk, holds:

M∑
k=1

cjk = 1 j = 1, 2, . . . , N

cjk ≥ 0 j = 1, 2, . . . , N, k = 1, 2, . . . ,M

(4.14)

And bjk(ot) is a D-dimensional log-concave or elliptically symmetric density with
mean vector µjk and covariance matrix Σjk:

bjk(ot) = N
(
ot,µjk,Σjk

)
(4.15)

The most used D-dimensional log-concave or elliptically symmetric density, is
the Gaussian density. The Gaussian density can be found as:

bjk(ot) = N
(
ot,µjk,Σjk

)
=

1

(2π)D/2|Σjk|1/2
e
−1

2

(
ot − µjk

)T
Σ−1

jk

(
ot − µjk

)
(4.16)

To approximate simple observation sources, the mixture Gaussians provide an
easy way to gain a considerable accuracy due to the flexibility and convenient

48 Chapter 4. Hidden Markov Model

estimation of the pdfs. If the observation source generates a complicated high-
dimensional pdf, the mixture Gaussians become computationally difficult to treat,
due to the excessive number of parameters and large covariance matrices.

When huge number of parameters are to be estimated, the practical problem
is the availability of the necessary amount of well representative training data.
With insufficient training data some parameters will get more or less arbitrary
values and especially for the covariance matrices, this may have drastical conse-
quences.

As the length of the feature vectors are increased, the size of the covariance
matrices increases in square proportional to the vector dimension. If feature
vectors are designed to avoid redundant components, the off diagonal elements
of the covariance matrices are usually small. This suggest to the covariance
approximation by diagonal matrices. The diagonality also provides a simpler and
faster implementation for the probability computation reducing (4.16) to:

bjk(ot) = N
(
ot,µjk,Σjk

)
=

1

(2π)D/2|Σjk|1/2
e
−1

2

(
ot − µjk

)T
Σ−1

jk

(
ot − µjk

)

=
1

(2π)D/2
(∏D

l=1 σjkl

)1/2
e
−

D∑
l=1

(
otl − µjkl

)2

2σ2
jkl

(4.17)
Where the variance terms σjk1, σjk2, . . . , σjkD are the diagonal elements of the
covariance matrix Σjk.

4.2.4 Types of Hidden Markov Models

Different kinds of structures for HMMs can be used. The structure is defined
by the transition matrix, A. The most general structure is the ergodic or fully
connected HMM. In this model can every state be reached from every other state
of the model. As shown in Fig. 4.3a, for an N = 4 state model, this model has
the property 0 < aij < 1 (the zero and the one has to be excluded, otherwise is
the ergodic property not fulfilled). The state transition matrix, A, for an ergodic
model, can be described by:

A =

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

4×4

(4.18)

Chapter 4. Hidden Markov Model 49

(a)

(b)

(c)

State 1 State 2

State 3 State 4

a12

a21

a13a31 a24a42

a34

a43

a14

a41

a23

a32

State 1 State 2 State 3 State 4

a34a12 a23

State 1 State 2 State 3 State 4

a34a12

a13

a23

a24

a11 a22

a33 a44

a11 a22 a33 a44

a11 a22 a33 a44

Figure 4.3: Different structures for HMMs

50 Chapter 4. Hidden Markov Model

In speech recognition, it is desirable to use a model which models the observations
in a successive manner - since this is the property of speech. The models that
fulfills this modelling technique, is the left-right model or Bakis model, see Figs.
4.3b,c. The property for a left-right model is:

aij = 0, j < i (4.19)

That is, no jumps can be made to a previous states. The lengths of the transitions
are usually restricted to some maximum length, typical two or three:

aij = 0, j > i+ ∆ (4.20)

Note that, for a left-right model, the state transitions coefficients for the last
state has the following property:

aNN = 1
aNj = 0, j < N

(4.21)

In Fig. 4.3b and Fig. 4.3c two left-right models are presented. In Fig. 4.3b is
∆ = 1 and the state transition matrix, A, will be:

A =

a11 a12 0 0
0 a22 a23 0
0 0 a33 a34

0 0 0 a44

4×4

(4.22)

And in Fig. 4.3c is ∆ = 2 and the state transition matrix, A, will be:

A =

a11 a12 a13 0
0 a22 a23 a24

0 0 a33 a34

0 0 0 a44

4×4

(4.23)

The choice of constrained model structure like a left-right model requires no
modification in training algorithms (described later in Problem 3 - Parameter
Estimation). This because any state probability set to zero will remain zero in
the training algorithms.

4.2.5 Summary of elements for an Hidden Markov Model

The elements of a discrete-time hidden Markov model will now be summarized.
These elements will be used throughout the thesis:

1. Number of states N . Although the states are hidden, for many practical
applications there is often some physical significance attached to the states
or to sets of states of the model [1]. For instance in the urn and ball model,

Chapter 4. Hidden Markov Model 51

the states corresponds to the urns. The labels for the individual states is
{1, 2, . . . , N}, and the state at time t is denoted qt.

2. Model parameter M . If discrete observation densities are used, the pa-
rameter M is the number of classes or cells that should be used, e.g. M
equals the number of colors in the urn and ball example. If continuous
observation densities are used, M is represented by the number of mixtures
in every state.

3. Initial state distribution π = {πi}N
i=1, in which πi is defined as:

πi = P (q1 = i) (4.24)

4. State transition probability distribution A = [aij] where:

aij = P (qt+1 = j|qt = i) , 1 ≤ i, j ≤ N (4.25)

5. Observation symbol probability distribution, B = {bj(ot)}N
j=1, in which the

probabilistic function for each state, j, is:

bj(ot) = P (ot|qt = j) (4.26)

The calculation of bj(ot) can be found with discrete- or continuous obser-
vation densities. In this thesis, are the continuous observation densities
used.

It should now be clear that a complete specification of an HMM requires two
model parameters N and M . The specification of the three sets of probability
measures π, A and B are also necessary. For convenience will these probability
measures use the notation, λ:

λ = (A,B,π) (4.27)

4.3 Three Basic Problems for Hidden Markov

Models

Given the basics of an HMM from the previous section, three basic problems arise
for applying the model in a speech recognition task:

Problem 1

Given the observation sequence O = (o1,o2, . . . ,oT ,), and the model
λ = (A,B,π), how is the probability of the observation sequence,

52 Chapter 4. Hidden Markov Model

given the model, computed? That is, how is P (O|λ) computed effi-
ciently?

Problem 2

Given the observation sequence O = (o1,o2, . . . ,oT ,), and the model
λ = (A,B,π), how is a corresponding state sequence, q = (q1, q2, . . . , qT),
chosen to be optimal in some sense (i.e., best “explains” the observa-
tions)?

Problem 3

How are the probability measures, λ = (A,B,π), adjusted to maxi-
mize P (O|λ)?

The first problem can be seen as the recognition problem. With some trained
models, each model represents a word, which model is the most likely if an ob-
servation is given (i.e. what word is spoken)? In the second problem the hidden
part of the model is attempted to be uncovered. It should be clear, that for all
except the case of degenerated models, there is no “correct” state sequence to
be found. Thereby it is a problem to be solved best possible with some optimal
criteria. The third problem can be seen as the training problem. That is given
the training sequences, create a model for each word. The training problem is the
crucial one for most applications of HMMs, because it will optimally adapt the
model parameters to observed training data - i.e., it will create the best models
for real phenomena [1].

4.4 Solution to Problem 1 - Probability Evalu-

ation

The aim of this problem is to find the probability of the observation sequence,
O = (o1,o2, . . . ,oT ,), given the model λ, i.e., P (O|λ). Because the observations
produced by states are assumed to be independent of each other and the time t,
the probability of observation sequence O = (o1,o2, . . . ,oT) being generated by
a certain state sequence q can be calculated by a product:

P (O|q, B) = bq1(o1) · bq2(o2) · . . . · bqT
(oT) (4.28)

And the probability of the state sequence, q can be found as1:

P (q|A,π) = πq1 · aq1q2 · aq2q3 · . . . · aqT−1qT
(4.29)

The joint probability of O and q, i.e., the probability that O and q occur simul-
taneously, is simply the product of the above two terms, i.e.:

1Explained earlier in Sec. 4.1.1

Chapter 4. Hidden Markov Model 53

P (O,q|λ) = P (O|q, B) · P (q|A,π)

= πq1bq1(o1)aq1q2bq2(o2) · . . . · aqT−1qT
bqT

(oT)

= πq1

T∏
t=2

aqt−1qtbqt(ot)

(4.30)

The aim was to find P (O|λ), and this probability of O (given the model λ) is
obtained by summing the joint probability over all possible state sequences q,
giving:

P (O|λ) =
∑
all q

P (O|q, B) · P (q|A,π)

=
∑

q1,q2,...,qT

πq1bq1(o1)aq1q2bq2(o2) · . . . · aqT−1qT
bqT

(oT)

=
∑

q1,q2,...,qT

πq1

T∏
t=2

aqt−1qtbqt(ot)

(4.31)

The interpretation of the computation in 4.31 is the following. Initially at time
t = 1 the process starts by jumping to state q1 with probability πq1 , and generate
the observation symbol o1 with probability bq1(o1). The clock changes from t to
t+1 and a transition from q1 to q2 will occur with probability aq1q2 , and the sym-
bol o2 will be generated with probability bq2(o2). The process continues in this
manner until the last transition is made (at time T), i.e., a transition from qT−1

to qT will occur with probability aqT−1qT
, and the symbol oT will be generated

with probability bqT
(oT).

This direct computation has one major drawback. It is infeasible due to the
exponential growth of computations as a function of sequence length T . To be
precise, it needs (2T − 1)NT multiplications, and NT − 1 additions [1]. Even for
small values of N and T ; e.g., for N = 5 (states), T = 100 (observations), there
is a need for (2 · 100− 1)5100 ≈ 1.6 · 1072 multiplications and 5100 − 1 ≈ 8.0 · 1069

additions! Clearly a more efficient procedure is required to solve this problem.
An excellent tool which cuts the computational requirements to linear, relative
to T , is the well known forward algorithm.

4.4.1 The Forward Algorithm

Consider a forward variable αt(i), defined as:

αt(i) = P (o1o2 . . .ot, qt = i|λ) (4.32)

54 Chapter 4. Hidden Markov Model

Where t represents time and i is the state. This gives that αt(i) will be the
probability of the partial observation sequence, o1o2 . . .ot, (until time t) when
being in state i at time t. The forward variable can be calculated inductively, see
Fig. 4.4.

State 1 State 1 State 1

State 2 State 2 State 2

State 3 State 3 State 3

...
...

...

State N State N State N

aq1q3

aq2q3

aq3q3

aqN q3

Time

St
at

e

αt(1)

αt(2)

αt(3)

αt(N)

αt+1(3)

t − 1 t t + 1

Figure 4.4: Forward Procedure - Induction Step

αt+1(i) is found by summing the forward variable for all N states at time t
multiplied with their corresponding state transition probability, aij, and by the
emission probability bj(ot + 1). This can be done with the following procedure:

1. Initialization

Set t = 1; (4.33)

α1(i) = πibi(o1), 1 ≤ i ≤ N (4.34)

2. Induction

αt+1(j) = bj(ot+1)
N∑

i=1

αt(i)aij, 1 ≤ j ≤ N (4.35)

3. Update time

Set t = t+ 1;
Return to step 2 if t < T ;
Otherwise, terminate the algorithm (goto step 4).

Chapter 4. Hidden Markov Model 55

4. Termination

P (O|λ) =
N∑

i=1

αT (i) (4.36)

If the forward algorithm is used there is a need for N(N+1)(T −1)+N multipli-
cations and N(N − 1)(T − 1) additions. Again for N = 5 (states), T = 100
(observations), this yields 5(5 + 1)(100 − 1) + 5 = 2975 multiplications and
5(5 − 1)(100 − 1) = 1980 additions. This is quite an improvement compared
to the direct method (1072 multiplications and 1069 additions).

4.4.2 The Backward Algorithm

The recursion described in the forward algorithm, can also be done in the reverse
time. By defining the backward variable βt(i) as:

βt(i) = P (ot+1ot+2 . . .oT |qt = i, λ) (4.37)

That is, the probability of the partial observation sequence from t+1 to the end,
given state i at time t and the model λ. Notice that the definition for the forward
variable is a joint probability whereas the backward probability is a conditional
probability. In a similar manner (according to the forward algorithm), can the
backward be calculated inductively, see Fig. 4.5.

State 1 State 1 State 1

State 2 State 2 State 2

State 3 State 3 State 3

...
...

...

State N State N State N

aq1q3

aq2q3

aq3q3

aqN q3

Time

St
at

e

βt+1(1)

βt+1(2)

βt+1(3)

βt+1(N)

βt(3)

t t + 1 t + 2

Figure 4.5: Backward Procedure - Induction Step

The backward algorithm includes the following steps:

56 Chapter 4. Hidden Markov Model

1. Initialization

Set t = T − 1;

βT (i) = 1, 1 ≤ i ≤ N (4.38)

2. Induction

βt(i) =
N∑

j=1

βt+1(i)aijbj(ot+1), 1 ≤ i ≤ N (4.39)

3. Update time

Set t = t− 1;
Return to step 2 if t > 0;
Otherwise, terminate the algorithm.

Note that the initialization step 1 arbitrarily defines βT (i) to be 1 for all i.

4.4.3 Scaling the Forward and Backward Variables

The calculation of αt(i) and βt(i) involves multiplication with probabilities. All
these probabilities have a value less than 1 (generally significantly less than 1),
and as t starts to grow large, each term of αt(i) or βt(i) starts to head exponen-
tially to zero. For sufficiently large t (e.g., 100 or more) the dynamic range of
αt(i) and βt(i) computation will exceed the precision range of essentially any ma-
chine (even in double precision) [1]. The basic scaling procedure multiplies αt(i)
by a scaling coefficient that is dependent only of the time t and independent of
the state i. The scaling factor for the forward variable is denoted ct (scaling is
done every time t for all states i - 1 ≤ i ≤ N) . This factor will also be used for
scaling the backward variable, βt(i). Scaling αt(i) and βt(i) with the same scale
factor will show useful in problem 3 (parameter estimation).

Consider the computation of the forward variable, αt(i). In the scaled variant
of the forward algorithm some extra notations will be used. αt(i) denote the
unscaled forward variable, α̂t(i) denote the scaled and iterated variant of αt(i),̂̂αt(i) denote the local version of αt(i) before scaling and ct will represent the
scaling coefficient at each time. Here follows the scaled forward algorithm:

1. Initialization

Chapter 4. Hidden Markov Model 57

Set t = 2;

α1(i) = πibi(o1), 1 ≤ i ≤ N (4.40)̂̂α1(i) = α1(i), 1 ≤ i ≤ N (4.41)

c1 =
1

N∑
i=1

α1(i)

(4.42)

α̂1(i) = c1α1(i) (4.43)

2. Induction

̂̂αt(i) = bi(ot)
N∑

j=1

α̂t−1(j)aji, 1 ≤ i ≤ N (4.44)

ct =
1

N∑
i=1

̂̂αt(i)

(4.45)

α̂t(i) = ct ̂̂αt(i), 1 ≤ i ≤ N (4.46)

3. Update time

Set t = t+ 1;
Return to step 2 if t ≤ T ;
Otherwise, terminate the algorithm (goto step 4).

4. Termination

logP (O|λ) = −
T∑

t=1

log ct (4.47)

The main difference between the scaled and the none scaled forward algorithm
lies in steps two and four. In step two can (4.46) be rewritten if (4.44) and (4.45)
are used:

58 Chapter 4. Hidden Markov Model

α̂t(i) = ct ̂̂αt(i)

=
1

N∑
k=1

bk(ot)
N∑

j=1

α̂t−1(j)ajk

 ·
bi(ot)

N∑
j=1

α̂t−1(j)aji

=

bi(ot)
N∑

j=1

α̂t−1(j)aji

N∑
k=1

bk(ot)
N∑

j=1

α̂t−1(j)ajk

, 1 ≤ i ≤ N

(4.48)

By induction, the scaled forward variable can be found in terms of the none scaled
as:

α̂t−1(j) =

(
t−1∏
τ=1

cτ

)
αt−1(j), 1 ≤ j ≤ N (4.49)

The ordinary induction step can be found as (same as (4.35) but with one time
unit shift):

αt(i) = bi(ot)
N∑

j=1

αt−1(j)aji, 1 ≤ i ≤ N (4.50)

With (4.49) and (4.50) it is now possible to rewrite (4.48) as:

Chapter 4. Hidden Markov Model 59

α̂t(i) =

bi(ot)
N∑

j=1

α̂t−1(j)aji

N∑
k=1

bk(ot)
N∑

j=1

α̂t−1(j)ajk

=

bi(ot)
N∑

j=1

(
t−1∏
τ=1

cτ

)
αt−1(j)aji

N∑
k=1

bk(ot)
N∑

j=1

(
t−1∏
τ=1

cτ

)
αt−1(j)ajk

=

(
t−1∏
τ=1

cτ

)bi(ot)
N∑

j=1

αt−1(j)aji

(

t−1∏
τ=1

cτ

)
N∑

k=1

bk(ot)
N∑

j=1

αt−1(j)ajk

=
αt(i)

N∑
k=1

αt(k)

, 1 ≤ i ≤ N

(4.51)

As (4.51) shows, each αt(i) is scaled by the sum over all states of αt(i) when the
scaled forward algorithm is applied.

The termination (step 4) of the scaled forward algorithm, evaluation of P (O|λ),
must be done in a different way. This because the sum of α̂T (i) can not be used,
because α̂T (i) is scaled already. However the following properties can be used:

T∏
τ=1

cτ
N∑

i=1

αT (i) = 1 (4.52)

T∏
τ=1

cτ · P (O|λ) = 1 (4.53)

P (O|λ) =
1

T∏
τ=1

cτ

(4.54)

As (4.54) shows can P (O|λ) be found, but the problem is that if (4.54) is used
the result will still be very small (and probable out of the dynamic range for a
computer). If the logarithm is taken on both sides the following equation can be
used:

60 Chapter 4. Hidden Markov Model

logP (O|λ) =
1

T∏
τ=1

cτ

= −
T∑

t=1

log ct (4.55)

This is exactly what is done in the termination step of the scaled forward algo-
rithm. The logarithm of P (O|λ) is often just as useful as P (O|λ), because in
most cases, this measure is used as comparison with other probabilities (for other
models).

The scaled backward algorithm can be found more easily, since it will use the
same scale factor as the forward algorithm. The notations used is similar to the
forward variables notations, βt(i) denote the unscaled backward variable, β̂t(i)

denote the scaled and iterated variant of βt(i),
̂̂
βt(i) denote the local version of

βt(i) before scaling and ct will represent the scaling coefficient at each time. Here
follows the scaled backward algorithm:

1. Initialization

Set t = T − 1;

βT (i) = 1, 1 ≤ i ≤ N (4.56)

β̂T (i) = cTβT (i), 1 ≤ i ≤ N (4.57)

2. Induction

̂̂
βt(i) =

N∑
j=1

β̂t+1(j)aijbj(ot+1), 1 ≤ i ≤ N (4.58)

β̂t(i) = ct
̂̂
βt(i), 1 ≤ i ≤ N (4.59)

3. Update time

Set t = t− 1;
Return to step 2 if t > 0;
Otherwise, terminate the algorithm.

4.5 Solution to Problem 2 - “Optimal” State

Sequence

The problem is to find the optimal sequence of states to a given observation
sequence and model. Unlike problem one, for which an exact solution can be

Chapter 4. Hidden Markov Model 61

found, there are several possible ways of solving this problem. The difficulty
lies with the definition of the optimal state sequence, that is, there are several
possible optimality criteria [1]. One optimal criteria is to choose the states, qt,
that are individually most likely at each time t. To find this state sequence a the
following probability variable is needed:

γt(i) = P (qt = i|O, λ) (4.60)

That is, the probability of being in state i at time t given the observation sequence,
O, and the model λ. Other ways to look at γt(i) can be:

γt(i) = P (qt = i|O, λ)

=
P (O, qt = i|λ)

P (O|λ)

=
P (O, qt = i|λ)

N∑
i=1

P (O, qt = i|λ)

(4.61)

And since αt(i) = P (o1o2 . . .ot, qt = i|λ) and βt(i) = P (ot+1ot+2 . . .oT |qt = i, λ),
can P (O, qt = i|λ) be found as a joint probability:

P (O, qt = i|λ) = P (o1o2 . . .ot, qt = i|λ) · P (ot+1ot+2 . . .oT |qt = i, λ) (4.62)

With (4.62) it is now possible to rewrite (4.61) as:

γt(i) =
αt(i)βt(i)

N∑
i=1

αt(i)βt(i)

(4.63)

When γt(i) is calculated according to (4.63), the most likely state at time t, q∗t ,
will be found by:

q∗t = arg max
1≤i≤N

[γt(i)] , 1 ≤ t ≤ T (4.64)

Even if (4.64) maximizes the expected number of correct states, there could
be some problems with the resulting state sequence. This because the state
transition probabilities have not been taken into account. For example what
happens when some state transitions have zero probability (aij = 0)? This means
that the found optimal path may not be valid. Obviously a method generating
a path that is guaranteed to be valid would be preferably. Fortunately such a
method exist, based on dynamic programming, namely the Viterbi algorithm.
Even though γt(i) could not be used for this purpose, it will be useful in problem
3 (parameter estimation).

62 Chapter 4. Hidden Markov Model

4.5.1 The Viterbi Algorithm

This algorithm is similar to the forward algorithm. The main difference is that
the forward algorithm uses summing over previous states, whereas the Viterbi
algorithm uses maximization. The aim for the Viterbi algorithm is to find the
single best state sequence, q = (q1, q2, . . . , qT), for the given observation sequence
O = (o1,o2, . . . ,oT) and a model λ. Consider the following quantity:

δt(i) = max
q1,q2,...,qt−1

P (q1q2 . . . qt−1, qt = i,o1o2 . . .ot|λ) (4.65)

That is the probability of observing o1o2 . . .ot using the best path that ends in
state i at time t, given the model λ. By using induction can δt+1(i) be found as:

δt+1(i) = bj(ot+1) max
1≤i≤N

[δt(i)aij] (4.66)

To actually retrieve the state sequence, it is necessary to keep track of the ar-
gument that maximizes (4.66), for each t and j . This is done by saving the
argument in an array ψt(j). Here follows the complete Viterbi algorithm:

1. Initialization

Set t = 2;

δ1(i) = πibi(o1), 1 ≤ i ≤ N (4.67)

ψ1(i) = 0, 1 ≤ i ≤ N (4.68)

2. Induction

δt(j) = bj(ot) max
1≤i≤N

δt−1(i)aij, 1 ≤ j ≤ N (4.69)

ψt(j) = arg max
1≤i≤N

[δt−1(i)aij] , 1 ≤ j ≤ N (4.70)

3. Update time

Set t = t+ 1;
Return to step 2 if t ≤ T ;
Otherwise, terminate the algorithm (goto step 4).

4. Termination

P ∗ = max
1≤i≤N

[δT (i)] (4.71)

q∗T = arg max
1≤i≤N

[δT (i)] (4.72)

Chapter 4. Hidden Markov Model 63

5. Path (state sequence) backtracking

(a) Initialization

Set t = T − 1

(b) Backtracking

q∗t = ψt+1

(
q∗t+1

)
(4.73)

(c) Update time

Set t = t− 1;
Return to step (b) if t ≥ 1;
Otherwise, terminate the algorithm.

The same problem as for the forward and backward algorithm occurs here. That
is the algorithm involves multiplication with probabilities and the precision range
will be exceeded. This is why an alternative Viterbi algorithm is needed.

4.5.2 The Alternative Viterbi Algorithm

As mentioned the original Viterbi algorithm involves multiplications with proba-
bilities. One way to avoid this is to take the logarithm of the model parameters,
giving that the multiplications become additions. Obviously will this logarithm
become a problem when some model parameters has zeros present. This is of-
ten the case for A and π and can be avoided by adding a small number to the
matrixes. Here follows the alternative Viterbi algorithm:

1. Preprocessing

π̃i = log (πi) , 1 ≤ i ≤ N (4.74)

ãij = log (aij) , 1 ≤ i, j ≤ N (4.75)

2. Initialization

Set t = 2;

b̃i(o1) = log (bi(o1)) , 1 ≤ i ≤ N (4.76)

δ̃1(i) = log (δ1(i))

= log (πibi(o1))

= π̃i + b̃i(o1), 1 ≤ i ≤ N (4.77)

ψ1(i) = 0, 1 ≤ i ≤ N (4.78)

64 Chapter 4. Hidden Markov Model

3. Induction

b̃j(ot) = log (bj(ot)) , 1 ≤ j ≤ N (4.79)

δ̃t(j) = log (δt(j))

= log
(
bj(ot) max

1≤i≤N
δt−1(i)aij

)
= b̃j(ot) + max

1≤i≤N

[
δ̃t−1(i) + ãij

]
, 1 ≤ j ≤ N (4.80)

ψt(j) = arg max
1≤i≤N

[
δ̃t−1(i) + ãij

]
, 1 ≤ j ≤ N (4.81)

4. Update time

Set t = t+ 1;
Return to step 3 if t ≤ T ;
Otherwise, terminate the algorithm (goto step 5).

5. Termination

P̃ ∗ = max
1≤i≤N

[
δ̃T (i)

]
(4.82)

q∗T = arg max
1≤i≤N

[
δ̃T (i)

]
(4.83)

6. Path (state sequence) backtracking

(a) Initialization

Set t = T − 1

(b) Backtracking

q∗t = ψt+1

(
q∗t+1

)
(4.84)

(c) Update time

Set t = t− 1;
Return to step (b) if t ≥ 1;
Otherwise, terminate the algorithm.

To get a better insight of how the Viterbi (and the alternative Viterbi) works,
consider a model with N = 3 states and an observation of length T = 8. In the
initialization (t = 1) is δ1(1), δ1(2) and δ1(3) found. Lets assume that δ1(2) is
the maximum. Next time (t = 2) three variables will be used namely δ2(1), δ2(2)
and δ2(3). Lets assume that δ2(1) is now the maximum. In the same manner will
the following variables δ3(3), δ4(2), δ5(2), δ6(1), δ7(3) and δ8(3) be the maximum
at their time, see Fig. 4.6.
As Fig. 4.6 shows it easy to see that the Viterbi algorithm is working with the
lattice structure.

Chapter 4. Hidden Markov Model 65

State 1 State 1 State 1 State 1 State 1 State 1 State 1 State 1

State 2 State 2 State 2 State 2 State 2 State 2 State 2 State 2

State 3 State 3 State 3 State 3 State 3 State 3 State 3 State 3

Time

St
at

e

1 2 3 4 5 6 7 8

Figure 4.6: Example of Viterbi search

4.6 Solution to Problem 3 - Parameter Estima-

tion

The third problem is concerned with the estimation of the model parameters,
λ = (A,B,π). The problem can be formulated as:

λ∗ = arg max
λ

[P (O|λ)] (4.85)

Given an observation O, find the model λ∗ from all possible λ that maximizes
P (O|λ). This problem is the most difficult of the three problems. This because
there is no known way to analytically find the model parameters that maximizes
the probability of the observation sequence in a closed form. However can the
model parameters be chosen to locally maximize the likelihood P (O|λ). Some
common used methods for solving this problem is Baum-Welch method (also
known as expectation-maximation method) or gradient technics. Both of these
methods uses iterations to improve the likelihood P (O|λ), however there are some
advantages with the Baum-Welch method compared to the gradient technics:

• Baum-Welch is numerically stable with the likelihood non-decreasing with
every iteration.

• Baum-Welch converges to a local optima.

• Baum-Welch has linear convergence.

This is why the Baum-Welch is used in this thesis. This section will derive the
reestimation equations used in the Baum-Welch method.

66 Chapter 4. Hidden Markov Model

The model λ, has three terms to describe namely the state transition probability
distribution A, the initial state distribution π and the observation symbol prob-
ability distribution B. Since continuous observation densities are used, will B be
represented by2 cjk,µjk and Σjk. To describe the procedure for reestimation, the
following probability will prove useful:

ξt(i, j) = P (qt = i, qt+1 = j|O, λ) =
P (qt = i, qt+1 = j,O|λ)

P (O|λ)
(4.86)

That is the probability of being in state i at time t, and state j at time t + 1,
given the model λ and the observation sequence O. The paths that satisfy the
conditions required by (4.86) are illustrated in Fig. 4.7.

State 1 State 1

State 2 State 2

State 3 State i State j State 3

...
...

State N State N

a1i

a2i

a3i

aNi

aijbj(ot+1)

aj1

aj2

aj3

ajN

Time

αt(i) βt+1(j)

t − 1 t t + 1 t + 2

Figure 4.7: Computation of ξt(i, j)

By using (4.2), (4.11), (4.32), (4.37), (4.62) and (4.86) can ξt(i, j) be found as:

ξt(i, j) =
αt(i)aijbj(ot+1)βt+1(j)

P (O|λ)

=
αt(i)aijbj(ot+1)βt+1(j)

N∑
i=1

N∑
j=1

αt(i)aijbj(ot+1)βt+1(j)

(4.87)

As mentioned in problem 2 is γt(i) the probability of being in state i at time t,
given the entire observation sequence O and the model λ. Hence the relation
between γt(i) and ξt(i, j) can be found by using (4.60) and (4.86):

2See equations 4.13-4.16

Chapter 4. Hidden Markov Model 67

γt(i) = P (qt = i|O, λ) =
N∑

j=1

P (qt = i, qt+1 = j|O, λ) =
N∑

j=1

ξt(i, j) (4.88)

If the sum over time t is applied to γt(i), one will get a quantity that can be
interpreted as the expected (over time) number of times that state i is visited, or
equivalently, the expected number of transitions made from state i (if the time
slot t = T is excluded) [1]. If the same summation is done over ξt(i, j), one will
get the expected number of transitions from state i to state j. The term γ1(i)
will also prove to be useful. Conclusion:

γ1(i) = probability of starting in state i (4.89)
T−1∑
t=1

γt(i) = expected number of transitions from state i in O (4.90)

T−1∑
t=1

ξt(i, j) = expected number of transitions from state i to state j in O

(4.91)

Given the above definitions it is possible to derive the reestimation formulas for
π and A:

πi = expected frequency (number of times) in state i at time t = 1
= γ1(i)

=
α1(i)β1(i)

N∑
i=1

α1(i)β1(i)

=
α1(i)β1(i)

N∑
i=1

αT (i)

(4.92)

And:

68 Chapter 4. Hidden Markov Model

aij = expected number of transitions from state i to state j
expected number of transitions from state i

=

T−1∑
t=1

ξt(i, j)

T−1∑
t=1

γt(i)

=

T−1∑
t=1

αt(i)aijbj(ot+1)βt+1(j)

T−1∑
t=1

αt(i)βt(i)

(4.93)

In the derivation of (4.92) and (4.93), the following probabilities are useful to get
a better understanding:

P (O|, λ) =
N∑

i=1

αt(i)βt(i) =
N∑

i=1

αT (i)

P (O, qt = i|, λ) = αt(i)βt(i)

P (O, qt = i, qt+1 = j|, λ) = αt(i)aijbj(ot+1)βt+1(j)

(4.94)

However is (4.87) and (4.63), and thereby (4.92) and (4.93), found by using the
unscaled forward and backward variables. With scaled variables will ξt(i, j) be
found as:

Chapter 4. Hidden Markov Model 69

ξt(i, j) =
α̂t(i)aijbj(ot+1)β̂t+1(j)

N∑
i=1

N∑
j=1

α̂t(i)aijbj(ot+1)β̂t+1(j)

=

(
t∏

τ=1

cτ

)
αt(i)aijbj(ot+1)

 T∏
τ=t+1

cτ

 βt+1(j)

N∑
i=1

N∑
j=1

(
t∏

τ=1

cτ

)
αt(i)aijbj(ot+1)

 T∏
τ=t+1

cτ

 βt+1(j)

=

(
t∏

τ=1

cτ

) T∏
τ=t+1

cτ

αt(i)aijbj(ot+1)βt+1(j)(
t∏

τ=1

cτ

) T∏
τ=t+1

cτ

 N∑
i=1

N∑
j=1

αt(i)aijbj(ot+1)βt+1(j)

=
αt(i)aijbj(ot+1)βt+1(j)

N∑
i=1

N∑
j=1

αt(i)aijbj(ot+1)βt+1(j)

(4.95)

And the scaled γt(i) will be:

γt(i) =
α̂t(i)β̂t(i)

N∑
i=1

α̂t(i)β̂t(i)

=

(
t∏

τ=1

cτ

)
αt(i)

(
T∏

τ=t

cτ

)
βt(i)

N∑
i=1

(
t∏

τ=1

cτ

)
αt(i)

(
T∏

τ=t

cτ

)
βt(i)

=

(
t∏

τ=1

cτ

)(
T∏

τ=t

cτ

)
αt(i)βt(i)(

t∏
τ=1

cτ

)(
T∏

τ=t

cτ

)
N∑

i=1

αt(i)βt(i)

=
αt(i)βt(i)

N∑
i=1

αt(i)βt(i)

(4.96)

As (4.95) and (4.96) shows, ξt(i, j) and γt(i) are the same if scaled or not scaled

70 Chapter 4. Hidden Markov Model

forward and backward variables are used. Herein lies the elegance with using
a scale factor that is dependent of just time, and not dependent of the state.
A closer look at (4.95) shows that ξt(i, j) can be found easier when the scaled
forward and backward variables are used:

ξt(i, j) =
α̂t(i)aijbj(ot+1)β̂t+1(j)

N∑
i=1

N∑
j=1

α̂t(i)aijbj(ot+1)β̂t+1(j)

=
α̂t(i)aijbj(ot+1)β̂t+1(j)

N∑
i=1

α̂t(i)

 N∑
j=1

aijbj(ot+1)β̂t+1(j)

=
α̂t(i)aijbj(ot+1)β̂t+1(j)

N∑
i=1

α̂t(i)β̂t(j)

=
α̂t(i)aijbj(ot+1)β̂t+1(j)

1∑N
i=1 αt(i)βt(j)

N∑
i=1

αt(i)βt(j)

= α̂t(i)aijbj(ot+1)β̂t+1(j)

(4.97)

Since π and A uses ξt(i, j) and γt(i) for calculation, will these probabilities also
be indepent of which forward or backward variables are used (scaled or unscaled).
Thereby can (4.92) and (4.93) be found, without numerical problems, as:

πi =
α̂1(i)β̂1(i)

N∑
i=1

α̂T (i)

(4.98)

And:

aij =

T−1∑
t=1

α̂t(i)aijbj(ot+1)β̂t+1(j)

T−1∑
t=1

α̂t(i)β̂t(i)

(4.99)

The reestimation of cjk,µjk and Σjk is a bit more complicated. However if the
model has only one state j and one mixture, it would be an easy averaging task3:

3as transpose is ′ used , this because no confusion with observation time T should be made

Chapter 4. Hidden Markov Model 71

cj = 1 (4.100)

µj =
1

T

T∑
t=1

ot (4.101)

Σj =
1

T

T∑
t=1

(
ot − µj

) (
ot − µj

)′
(4.102)

In practice, of course, there are multiple states and multiple mixtures and there
are no direct assignment of the observation vectors to individual states because
the underlying state sequence is unknown. Since the full likelihood of each obser-
vation sequence is based on the summation of all possible state sequences, each
observation vector ot contributes to the computation of the likelihood for each
state j. In other words instead of assigning each observation vector to a specific
state, each observations i assigned to every state and is weighted with the prob-
ability of the model being in that state accounted for that specific mixture when
the vector was observed. This probability, for state j and mixture k (there are
M mixtures), is found by4:

γt(j, k) =
αt(j)βt(j)

N∑
i=1

αt(j)βt(j)

· cjkN
(
ot,µjk,Σjk

)
M∑

k=1

cjkN
(
ot,µjk,Σjk

) (4.103)

The reestimation formula for cjk is the ratio between the expected number of
times the system is in state j using the kth mixture component, and the expected
number of times the system is in state j. That is:

cjk =

T∑
t=1

γt(j, k)

T∑
t=1

M∑
k=1

γt(j, k)

(4.104)

To find µjk and Σjk one can weight the simple averages in (4.101) and (4.102)
by the probability of being in state j and using mixture k when observing ot:

µjk =

T∑
t=1

γt(j, k)ot

T∑
t=1

γt(j, k)

(4.105)

4γt(j, k) is a generalization of γt(j)

72 Chapter 4. Hidden Markov Model

Σjk =

T∑
t=1

γt(j, k)
(
ot − µj

) (
ot − µj

)′
T∑

t=1

γt(j, k)

(4.106)

The reestimation formulas described in this section, are performed based on one
training sample. This will of course not be sufficient to get reliable estimates
for a training sample, especially when left-right models are used. To get reliable
estimates it is convenient to use multiple observation sequences.

4.6.1 Multiple Observation Sequences

In the Baum-Welch method, many parameters are to be estimated. The more
parameters that has to be estimated, the more training examples are needed to
get robust and reliable estimates. If only one observation sequence is used to
train the model then would the model perform good recognition on this particu-
lar sample, but might give low recognition rate when testing other utterances of
the same word. That is the model will be overtrained to this specific word, this
can also give numerical problems to the reestimation procedure.

The modification of the reestimation procedure is straightforward and is as fol-
lows. Lets denote a set of R observation sequences as:

O =
[
O(1),O(2) . . . ,O(R)

]
(4.107)

Where O(r) =
(
o

(r)
1 ,o

(r)
2 , . . . ,o

(r)
Tr

)
is the rth observation sequence and Tr is the

rth observation sequence length. The new function P (O|λ) to maximize ,accord-
ing to (4.85), will now be:

P (O|λ) =
R∏

r=1

P
(
O(r)|λ

)
(4.108)

The method for achieving this maximation problem is similar to the procedure
with only one observation of sequences. The variables αt(j), βt(j), γt(j, k) and
ξt(i, j) are found for every training sample. Then the reestimation is performed on
the accumulated values. In this way are the new parameters a kind of averaging
of the optima given by the individual training sequences. This procedure is then
repeated until a optima is found, or some maximum limit of iterations is reached
(typically 40). The reestimation formulas will now be:

Chapter 4. Hidden Markov Model 73

πi =

R∑
r=1

α̂
(r)
1 (i)β̂

(r)
1 (i)

R∑
r=1

N∑
i=1

α̂
(r)
Tr

(i)

(4.109)

aij =

R∑
r=1

Tr−1∑
t=1

α̂
(r)
t (i)aijbj(o

(r)
t+1)β̂

(r)
t+1(j)

R∑
r=1

Tr−1∑
t=1

α̂
(r)
t (i)β̂

(r)
t (i)

(4.110)

cjk =

R∑
r=1

Tr∑
t=1

γ
(r)
t (j, k)

R∑
r=1

Tr∑
t=1

M∑
k=1

γ
(r)
t (j, k)

(4.111)

µjk =

R∑
r=1

Tr∑
t=1

γ
(r)
t (j, k)o

(r)
t

R∑
r=1

Tr∑
t=1

γ
(r)
t (j, k)

(4.112)

Σjk =

R∑
r=1

Tr∑
t=1

γ
(r)
t (j, k)

(
o

(r)
t − µj

) (
o

(r)
t − µj

)′
R∑

r=1

Tr∑
t=1

γ
(r)
t (j, k)

(4.113)

These are the final formulas used for the reestimation. During training is the
parameter P̃ ∗, see (4.82), is found for every training sample in every iteration
(using the alternative Viterbi algorithm). This probabilities are then added to
get a total probability. When this total probability not increases anymore the
optimum is reached.

4.6.2 Initial Estimates of HMM Parameters

Before the reestimation formulas can be applied for training, it is important to
get good initial parameters so that the reestimation leads to the global maximum
or as close as possible to it. An adequate choice for π and A is the uniform
distribution. But since left-right models are used, π will have probability one for
the first state and zero for the other states. For example will the left-right model
in Fig. 4.3b have the following initial π and A:

74 Chapter 4. Hidden Markov Model

π =

1
0
0
0

4×1

(4.114)

A =

0.5 0.5 0 0
0 0.5 0.5 0
0 0 0.5 0.5
0 0 0 1

4×4

(4.115)

The parameters for the emission distribution needs good initial estimations, to
get a rapid and proper convergence. This is done by using uniform segmentation
into the states of the model, for every training sample. After segmentation,
all observations from the state j is collected from all training samples. Then
a clustering algorithm is used to get the initial parameters for state j and this
procedure is done for every state. The clustering algorithm used in this thesis
is the well known k-means algorithm. Before the clustering proceeds one has to
choose the number of clusters, K. In this task is the number of clusters equal to
the number of mixtures, that is, K = M .

The K-Means Algorithm

1. Initialization

Choose K vectors from the training vectors, here denoted x, at
random. These vectors will be the centroids µk, which is to be
found correctly.

2. Recursion

For each vector in the training set, let every vector belong to
a cluster k. This is done by choosing the cluster closest to the
vector:

k∗ = arg min
k

[d (x, µk)] (4.116)

Where d (x, µk) is a distance measure, here is the Euclidian dis-
tance measure used:

d (x, µk) =
√

(x− µk)
T (x− µk) (4.117)

3. Test

Chapter 4. Hidden Markov Model 75

Recomputed the centroids, µk, by taking a mean of the vectors
that belong to this centroid. This is done for every µk. If no
vectors belongs to some µk for some value k - create new µk by
choosing a random vector from x. If there has been no change
of the centroids from the previous step goto step 4, otherwise go
back to step 2.

4. Termination

From this clustering (done for one state j), the following param-
eters are found:

cjk = number of vectors classified in cluster k of state j

divided by the number of vectors in state j

µjk = sample mean of vectors classified in cluster k of state j

Σjk = sample covariance matrix of the vectors classified in

cluster k of state j

4.6.3 Numerical Issues

One problem with training HMM parameters with the reestimation formulas, is
that the number of training observation may not be sufficient. There is always an
inadequate number of occurrences of low probability events to give food estimates
of the model parameters. This has the effect that the mixture weights and the
diagonal values in the covariance matrix can be zero, which is undesired. To
avoid this a numerical floor ε is set:

cjk =

{
cjk, if cjk ≥ ε
ε otherwise

(4.118)

And the same for the diagonal values in the covariance matrix:

Σjk(d, d) =

{
Σjk(d, d), if Σjk(d, d) ≥ ε
ε, otherwise

, 1 ≤ d ≤ D (4.119)

The numerical floor value is typical in the range of 10−10 ≤ ε ≤ 10−3.

An other numerical problem occurs when γt(j, k) is calculated by (4.103). The
problem lies in finding:

cjkN
(
ot,µjk,Σjk

)
M∑

k=1

cjkN
(
ot,µjk,Σjk

) (4.120)

76 Chapter 4. Hidden Markov Model

The problem is that N
(
ot,µjk,Σjk

)
can actually become zero for every mixture,

hence a division by zero occurs. This typically occurs when the dimension of the
observations is large. The reason why N

(
ot,µjk,Σjk

)
becomes zero, can be seen

in the definition:

N
(
ot,µjk,Σjk

)
=

1

(2π)D/2|Σjk|1/2
e
−1

2

(
ot − µjk

)T
Σ−1

jk

(
ot − µjk

)
(4.121)

Looking on the exponent it is easy to see that if −1
2

(
ot − µjk

)T
Σ−1

jk

(
ot − µjk

)
is a large negative number, it will give that the whole expression becomes zero.
The solution to this problem will be that a scale factor eb will be multiplied with
(4.120) in both numerator and denominator. That is:

cjkN
(
ot,µjk,Σjk

)
· eb

M∑
k=1

cjkN
(
ot,µjk,Σjk

)
· eb

(4.122)

The effect of multiplying with this exponential factor can be seen in the definition
of the normal distribution:

N
(
ot,µjk,Σjk

)
· eb =

1

(2π)D/2|Σjk|1/2
e
−1

2

(
ot − µjk

)T
Σ−1

jk

(
ot − µjk

)
· eb

=
1

(2π)D/2|Σjk|1/2
e
−1

2

(
ot − µjk

)T
Σ−1

jk

(
ot − µjk

)
+ b

(4.123)

Hence the large negative exponential term can be adjusted to be a smaller value.
If b is chosen as the minimum absolute exponential value from all mixtures, as:

b = min
k

∣∣∣∣−1

2

(
ot − µjk

)T
Σ−1

jk

(
ot − µjk

)∣∣∣∣ (4.124)

This gives that the denominator in (4.120) is always nonzero. Hence the division
by zero will not occur, and (4.120) will still get a correct value.

Chapter 5

Speech Quality Assessment

This chapter will discuss different methods to measure the quality of speech.
One type of quality assignment is the classical signal-to-noise ratio (SNR). The
classical SNR measure weights all time domain errors in the speech waveform, but
because of that the speech energy generally is time varying, this measure is a poor
estimator of speech quality for a broad range of speech distorsions [2]. To enhance
the quality measurement there exist other methods of which the following are to
be discussed in this chapter: The segmental SNR (SNRseg−mean,SNRseg−median)
and the Itakura Measure. To get an introduction to the basic knowledge about
quality measure, the classical SNR will now be discussed.

5.1 The Classical SNR

The classical SNR (SNRclassical) quality measure, discussed in this section, has one
benefit in its mathematical simplicity. The classical SNR represents an average
error over time and frequency for a processed signal.

Before the calculation of the classical SNR can be performed, some dependent
values need to be calculated.

Let s(n) denote a noise-free signal at time n and ŝ(n) the corresponding dis-
torted(noisy) signal. These signals are assumed to be energy signals.

In a general case the energy of a discrete time signal x(n) is defined as:

Ex =
∞∑

n=−∞
|x(n)|2 (5.1)

The signal x(n) is called an energy signal if:

0 < Ex <∞ (5.2)

77

78 Chapter 5. Speech Quality Assessment

With this definition in mind, the time error signal can be written as:

ε(n) = s(n) − ŝ(n) (5.3)

The error energy is then

Eε =
∞∑

n=−∞
ε2(n) (5.4)

The energy in a speech signal s(n) is:

Es =
∞∑

n=−∞
s2(n) (5.5)

Combining (5.4) and (5.5) the classical SNR is formulated as:

SNRclassical = 10 log10

Es

Eε

= 10 log10

∑
n

s2(n)∑
n

[s(n) − ŝ(n)]2
(5.6)

As mentioned earlier this SNR measure is not well suited as a qualitative measure
of speech quality. If it is assumed that the noise distortion is broadband then
the SNR should vary on a frame-by-frame basis. A reason for this is that if the
noisy speech signal ŝ(n) contain parts where it is no speech, just noise, then the
classical SNR is very poor because it measures over the whole signal. The result
from this gives that the classical SNR does not show the correct SNR between
signal and noise, if silent parts are present.

One approach to get around this problem is to identify the silent parts. To iden-
tify the silent parts in the original speech waveform detect the non-silent parts
(speech parts) by using a voice activation detection1. Having detected the non-
silent parts, the silent parts have automatically been identified. To improve the
signal-noise-ratio, the silent parts are excluded, calculating the SNRclassical only
for the non-silent parts of the speech waveform.

If voice activation detection is not possible to perform other quality measures can
be useful. These methods take both silent and non-silent parts into consideration,
calculating the SNR measure over short frames (about 20-30 ms) and the results
are averaged. The method performing this task will be discussed in the following
section.

1Please recall Ch. 3 Sec. 3.1.2

Chapter 5. Speech Quality Assessment 79

5.2 The Segmental SNR

The segmental SNR (SNRseg−mean) is formulated as:

SNRseg−mean =
1

M

M−1∑
j=0

10 log10

mj∑
n=mj−N+1

s2(n)

mj∑
n=mj−N+1

[s(n) − ŝ(n)]2

 (5.7)

where m0,m1,...,mM−1 are the end times for the M frames, each of which is length
N . The segments are produced by windowing the speech, with window length
typically chosen to be 15 to 20 ms2[9].

Problems can, in some cases, arise with the SNRseg−mean measure if there are long
intervals of silence in the utterance. In segments in which the original speech is
nearly zero, any amount of noise will give rise to a large negative signal-to-noise
ratio for that segment, which could appreciably bias the overall measure of the
SNRseg−mean. Further calculating the SNRseg−mean as a mean value of all SNR
values for each frame, gives a poor estimate of the reality, because it take all
values in consideration. A better approach is to calculate the segmental SNR on
a median basis, which is not as sensitive, to a large deviation between SNR value
for each frame, as the mean value approach. Rewriting 5.7 gives:

SNRseg−median = median

10 log10

mj∑
n=mj−N+1

s2(n)

mj∑
n=mj−N+1

[s(n) − ŝ(n)]2

(5.8)

where the mathematical function median(x), for a sequence x(n) (that has to be
sorted), gives two results depending on whether x(n) is an odd or even sequence.
For an odd sequence median(x) is equal to the middle value of x(n) and for an
even sequence median(x) is equal to a mean of the two middle values of x(n).

The SNRseg−median can be calculated either with respect to the whole sequence
or with respect to only to the non-silent parts of the speech waveform. Minor
problems can arise when calculating the Segmental SNR on a median basis, if
the speech waveform consists of mostly silent parts that can be distorted by for
example additive white gaussian noise. Calculating the SNRseg−median for these
parts give rise to a large negative SNR value in those frames consisting of nearly
just noise.

2Block length K = 320 and Fs = 16 kHz gives 20 ms frames

80 Chapter 5. Speech Quality Assessment

5.3 Comparison between SNR measures

To get a better understanding of the theory presented earlier it is useful to make
some practical experiments on a real speech signal.

In the comparison a noise-free speech signal s(n) are used and distorted by ad-
ditive white gaussian noise d(n) resulting in the signal ŝk(n) = s(n) + d(n) · α · k
with time index n. Here α is a constant that, together with 1 ≤ k ≤ K, linearly
decade the amount of noise d(n) added to the speech signal s(n), see Fig. 5.1.

2000 4000 6000 8000 10000 12000 14000 16000

−0.5

0

0.5

s(
n)

2000 4000 6000 8000 10000 12000 14000 16000

−0.5

0

0.5

s ha
t(n

Time [s]

Figure 5.1: s(n) and ŝ(n)

This comparison will try to show the differences between the SNR methods
(SNRclassical,SNRseg−mean and SNRseg−median)

3 and which one to choose in rele-
vance to the tasks in this thesis. For each value of k a new SNR value are
calculated for each one of the SNR methods, see Fig. 5.2.

Constant Value

K 100
α 0.0015

Table 5.1: Choosen values in the SNR measures

Based on the SNR calculations, made in this chapter, the method finally chosen
to be used further on is the classical SNR with silence removal. In this way the

3Please recall Secs. 5.1,5.2

Chapter 5. Speech Quality Assessment 81

0 10 20 30 40 50 60 70 80 90 100
−10

0

10

20

30

40

50

k

S
ig

na
l−

T
o−

N
oi

se
 R

at
io

 [d
B

]

SNR
classical

SNR

seg−mean

SNR
seg−median

Figure 5.2: Signal-To-Noise Ratio [dB]

SNR will be more relevant to use. This because in a speech recognizer only the
non-silent parts are of interest.

5.4 The Itakura Measure

Measures based on SNR, which obtain a distortion measure based on sample-by-
sample differences in the original and processed time waveforms, do not provide
a meaningful measure of performance when the two waveforms differ in their
phase spectra. Distance measures that are sensitive to variations in the speech
spectrum are therefore needed. One of the more successful is the Itakura Measure
which measures the distance between two Linear Prediction (LP) vectors, â(m)
and b̂(m′). Since these parameters bear a close relationship to the short-term
spectra of the speech frames from which they were drawn, the Itakura Measure
seek to learn how similar the corresponding spectra are.

Since the LP parameters in the vectors, â(m) and b̂(m′), are highly correlated
an estimated correlation matrix is appropriate. The matrix, created based on the
clean speech signal s(n), is formulated as:

R̃s(m)
def
=

[
rs(0;m) rT

s (m)
rs(m) Rs(m)

]
(5.9)

R̃s(m) signifies the (M + 1)× (M + 1) augmented correlation matrix where M is

82 Chapter 5. Speech Quality Assessment

the order of the LP solution. Rs(m) is the (short-term) autocorrelation matrix
obtained by Toeplitz operation on rs(m). The LP vectors are found by using, for
example, the Levinson-Durbin Recursion (L-D Recursion) [3].

The starting point for the L-D recursion can be formulated as:

R̃s(m) × [1 −â(1;m) −â(2;m) · · · −â(M ;m)]T

= [ξ(m) 0 0 · · · 0]T
(5.10)

where ξ(m) denotes the Mean Squared Error (MSE)4 associated with the predic-
tion of the frame f(n;m) over all time using parameters â(m) [2]. By defining
α(m) as:

α(m)
def
= [1 −â(1;m) −â(2;m) · · · −â(M ;m)]T

= [1 −âT (m)]T
(5.11)

the scalar ξâ(m) can be computed as:

ξâ(m) = αT (m)R̃s(m)α(m) (5.12)

Using coefficients b̂(1;m′), . . . , b̂(M ;m′) [The elements of LP vector b̂(m′)] to
predict the frame f(n;m). The vector b̂(m′) can be derived from any frame in
any signal. There will be a certain MSE associated with this prediction, defined
as:

ξb̂(m) = βT (m′)R̃s(m)β(m′) (5.13)

with

β(m′) def
= [1 −b̂T (m)]T (5.14)

Comparing these two scalars (ξâ(m) and ξb̂(m)) with respect to prediction error
it is known that:

ξâ(m) ≤ ξb̂(m) (5.15)

because ξâ(m) is the best possible prediction error in the sense of minimizing the
average squared prediction error [2].

Finally a measure of how ”far” LP vector b̂(m′) is from LP vector â(m) is per-
formed by calculating the the Itakura Distance which is defined as [2]:

d1[â(m), b̂(m′)] def
= log

ξb̂(m)

ξâ(m)
= log

βT (m′)R̃s(m)β(m′)

αT (m′)R̃s(m)α(m)
(5.16)

4Please recall Eq. (5.4)

Chapter 5. Speech Quality Assessment 83

This measure will always be positive because of the condition in Eq. (5.15).
This measure is not a metric because it does not have the required property of
symmetry as:

d1[â(m), b̂(m′)]
= d1[b̂(m′), â(m)] (5.17)

If a symmetric measure is desired, a combination can be formed such as:

d̃1[â(m), b̂(m′)] =
1

2
[d1[â(m), b̂(m′)] + d1[b̂(m′), â(m)]] (5.18)

In addition to symmetry, this measure also has the property that if the processed
spectrum is identical to the original, the resulting distance is zero.

In the Ikatura measure, reusing s(n) and ŝ(n) from Sec. 5.3, a calculation of the
distance between s(n) and ŝ(n) are performed resulting in the Itakura distance,
see Fig. 5.3.

2000 4000 6000 8000 10000 12000 14000 16000

−0.5

0

0.5

Time [s]

s(
n)

2000 4000 6000 8000 10000 12000 14000 16000

−0.5

0

0.5

Time [s]

s ha
t(n

5 10 15 20 25 30 35 40 45 50 55
0

0.5

1

1.5

Time [Block #]

D
is

ta
nc

e
M

ea
su

re

Figure 5.3: Itakura Measure, s(n) different to ŝ(n)

From this test one can see that the Itakura Distance is low (near zero) if the
difference between spectra of s(n) and ŝ(n) are small and in contradiction to
this, give rise to a large distance value if the difference between s(n) and ŝ(n) are
large. Hence the Itakura measure is used to get a better view of where noise is
present.

Chapter 6

Practical Experimental Results

To test the theory presented earlier and get a practical experience of the speech
recognition recognizer, described in this thesis, the recognizer was implemented
in Matlab. The implementation was based on equations found in Ch. 3 and Ch. 4.
Using this implementation the words zero to nine, spoken by one female and one
male speaker, was used in the training phase. To test the recognizer in a real
environment some noise recordings in a car has been done.

6.1 Measurements in car

In order to verify the performance of the speech recognizer in noisy environ-
ment, noise measurements were performed in two situations in a car. Noise were
recorded partly when the car was not moving and partly when it was moving.
Both recordings were made with the engine running.

The recordings were made placing a loudspeaker in the front passenger seat, sim-
ulating a speaking passenger present, see Fig. 6.1a, this to get the actual signal
to noise ratio in the car. In the measurements two microphones were used in dif-
ferent positions. One microphone was placed in the front window, right in front
of the simulated passenger, see Fig. 6.1b. The second microphone was positioned
to right, in the middle over the passenger door, see Fig. 6.1c.

With these recordings the speech recognizer can be evaluated in different signal
to noise ratio (SNR) environments with the noise from the car.

6.2 Performance in noisy environment

Before any evaluation can be done, the speech recognizer has to be trained. To get
a reliable training, for the female and the male speaker, 20 samples of each word
were recorded, in an environment free from external disturbances. The training

85

86 Chapter 6. Practical Experimental Results

Figure 6.1: Overview of measurement equipment

results in ten models (one for each word) for each speaker. These models repre-
sents a statistical model (hidden Markov model, HMM) of each word. The HMM
for each word has 15 states and 3 mixtures1, the structure of the model is the
left-right model with ∆ = 2, see Fig. 4.3c.

To evaluate the performance of the speech recognizer the trained models were
used, recognizing the utterances zero to nine, in different SNR environments. In
the evaluation, three different kinds of additive noise were used, white gaussian
noise (N1), noise in a car with engine running - car not moving (N2) and noise
in a car with engine running - car moving (N3). The spectrogram for these noises
can be found in Fig. 6.2.

1Please recall Ch. 4 Sec. 4.2.3

Chapter 6. Practical Experimental Results 87

20

40

60

80

100

Time [Block #]

F
re

qu
en

cy
 [H

z]

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

2000

4000

6000

8000

20

40

60

80

Time [Block #]

F
re

qu
en

cy
 [H

z]

(b)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

500

1000

1500

0.5 1 1.5 2 2.5 3

x 10
4

−1

−0.5

0

0.5

1

1.5
N3N1 N2

n

N
oi

se
s

(c)

Figure 6.2: Properties of noises N1, N2 and N3

The spectrum for N1, shows that all frequencies will be influenced by this noise.
N2 on the other hand has its influence mainly in the lower frequencies and this is
also the case for N3. A closer look at the differences between N2 and N3, shows
that N3 has more influence in the higher frequencies than N2, especially in the
frequency range 100-1500 Hz.

The word recognition rate (WRR) in relationship to the SNR for the female
speaker with N1, N2 and N3 can be found in Fig. 6.3, and the result for the male
speaker can be found in Fig. 6.4. The actual SNR levels in the car environment
are found in Tab. 6.1.

Mic position N2 N3

Front 0.85295 -10.4454
Right 6.1878 -8.1028

Table 6.1: SNR [dB] levels in car

88 Chapter 6. Practical Experimental Results

 −30 −20 −10 0 10 20 30 Clean
10

20

30

40

50

60

70

80

90

100

SNR [dB]

W
R

R
 [%

]

Female Speaker

N1
N2
N3

Figure 6.3: Recognition Rates - Female speaker

 −30 −20 −10 0 10 20 30 Clean
10

20

30

40

50

60

70

80

90

100

SNR [dB]

W
R

R
 [%

]

Male Speaker

N1
N2
N3

Figure 6.4: Recognition Rates - Male speaker

Chapter 6. Practical Experimental Results 89

Studying Fig. 6.3 and Tab. 6.1 the actual recognition rates can be found in Tab.
6.2.

Female Male
Mic position N2 N3 N2 N3

Front 100 94.7 100 78.1
Right 100 99.5 100 89.8

Table 6.2: Word Recognition Rates [%] with actual SNR

This is fairly good results, considering that the noise in the car is rather high.
Notice that placing the microphone to the right2 will give better performance,
probably because its placement is closer to the speaker. Adding some extra noise
source (for example the fan in the car is turned on) the recognition rate will
decrease. It would be desired to have a higher SNR to get further away from the
critical area, approximately 0 dB and below. This might be done by applying
some noise reduction algorithms.

2Please recall Fig. 6.1b

Chapter 7

Summary and Conclusions

The theory of hidden Markov model have been studied thoroughly. Together with
the signal processing of speech signals, a speech recognizer has been implemented
in Matlab. The speech recognizer simulation was found to perform good results
(75-100%) in a car with the engine running. The comparison between, according
to the recognition rate, white gaussian noise and the noise recorded in the car,
shows that the recognizer is more robust to the noise in the car1. The reason to
this is that the noise in the car mainly affects the low frequencies (0-2000 Hz),
whilst the white gaussian noise affects all frequencies.

7.1 Further Work

Further improvements and expansions may be achieved by using one or more of
the following suggestions:

• The speech recognizer is implemented in Matlab and because of that it runs
slow. Implementing the speech recognizer in C or assembler will be desired
to get a faster execution time.

• In a noisy environment, like in a car, noise reduction algorithms are pre-
ferred to enhance signal to noise ratio. Algorithms useful can be based on
adaptive noise reduction, spectral subtraction or beam forming.

• Record a larger evaluation database, for different speakers and different
environments, to get more test cases.

• Try different setting in the speech recognizer, for example change the model
structure, the number of states or mixtures. More or less measures of the
speech can be added to the feature vectors, that is experiment with the
feature vector dimension and its content.

1Please recall Fig. 6.3

91

Appendix A

Phonemes

A.1 Continuant

The continuant sounds are vowels, fricatives, affricates and nasals.

A.1.1 Vowels

Vowels are phonated and are normally among the phonemes with highest am-
plitude. Vowels can vary widely in duration (typically 40-400 ms)[2] and are
spectrally well defined. Vowels are produced by exciting an fixed vocal tract
shape with quasi-periodic pulses of air caused by the vibration of the vocal cords.
Variations in the cross-sectional area along the vocal tract determines the for-
mants1 of the vowels.

Vowels are differentiated by the position of the tongue-hump. The tongue-hump
position divides the vowels into three groups: front, middle, back.

A.1.2 Consonants

All forms of excitation discussed in Sec. 2.2.1 may be involved by consonants.
Factors that affect these types of sounds (consonants) are whether the tone of
the vocal cords are present or not, precise dynamic movement of the vocal tract
articulators and how the talker articulates. Consonants that are classified as
continuant might not require a motion of the vocal tract.

Fricatives

Fricatives are produced by exciting the vocal tract with steady airstream that
becomes turbulent at some point of constriction. Depending on the form of

1Please recall Section 2.2.3

93

94 Appendix A. Phonemes

excitation the fricatives are divided into two groups, unvoiced and voiced. Those
with simple unvoiced excitation are usually called unvoiced fricatives while those
of mixed excitation are called voiced fricatives.

Affricates

Affricates are formed by transitions from a stop2 to a fricative. The unvoiced
affricate is formed when an unvoiced stop, followed by a transition to the unvoiced
fricative are produced. The voiced affricate is formed by producing a voiced stop
followed by a vocal tract transition to the voiced fricative.

Nasals

Nasal consonants are voiced sounds produced by the waveform exciting an open
nasal cavity and closed oral cavity. Their waveform resemble vowels, but are
normally weaker in energy due to limited ability of the nasal cavity to radiate
sound. When forming a nasal the front of the vocal tract are completely closed
either with the lips or the tongue. The velum is opened wide to allow sound
propagation through the nasal cavity. Nasal formants have a bandwidth that
are normally wider than those for vowels. When phonemes precede or follow a
nasal sound, it gives that those phonemes become nasalized. The nasalization
produces phonemes with broader bandwidths and are less peaked than those
without nasal coupling. This is caused by damping of the formant resonance by
the loss of energy through the opening into the nasal cavity[2].

A.2 Non-Continuant

The non-continuant sounds are diphthongs, liquids, glides and stops.

A.2.1 Diphthongs

A diphthong involve a movement from one vowel toward another. When a sound
is produced and one wish to determine if a specific part of this sound is a vowel
or diphthong it depends on how the sound are produced. If the vocal tract
does not maintain a constant shape, or if the sound cannot be sustained without
articulatory movement, and both vocal targets are vowels, then the sound is a
diphthong.

A.2.2 Semivowels

Semivowels are classified as either liquids or glides. Liquids have spectral char-
acteristics similar to vowels, but are normally weaker than most vowels due to

2Please recall Sec. A.2.3

Appendix A. Phonemes 95

their more constricted vocal tract. A glide consists of one target position, with
associated formant transitions toward and away from the target. Glides can be
viewed as transient sounds as they maintain the target position for much less
time than vowels.

A.2.3 Stops

Sounds in which the airstream enters the oral cavity and is stopped for a brief
period are called stops. Stops are transient, non-continuant sounds that are
produced by building up pressure behind a total constriction somewhere along
the vocal tract, and suddenly release this pressure. This sudden explosion and
aspiration of air characterizes the stop consonants.

Bibliography

[1] Rabiner Lawrence, Juang Bing-Hwang. Fundamentals of Speech Recognition,
Prentice Hall , New Jersey, 1993, ISBN 0-13-015157-2

[2] Deller John R., Jr., Hansen John J.L., Proakis John G. , Discrete-Time
Processing of Speech Signals, IEEE Press, ISBN 0-7803-5386-2

[3] Hayes H. Monson, Statistical Digital Signal Processing and Modeling, John
Wiley & Sons Inc. , Toronto, 1996, ISBN 0-471-59431-8

[4] Proakis John G., Manolakis Dimitris G., Digital Signal Processing, princi-
ples, algorithms, and applications, Third Edition, Prentice Hall , New Jersey,
1996, ISBN 0-13-394338-9

[5] Jelinek Frederick, Statistical Methods for Speech Recognition, MIT Press,
1998, ISBN 0-262-10066-5

[6] Baum L.E., Eagon J. A., An inequality with applications to statistical estima-
tion for probabilistic functions of Markov processe and to model for ecology,
Bulletin of American Mathematical Society, 73:360-363, 1967

[7] Baum L.E., Petrie T., Soules G et al., A maximization technique in the
statistical analysis of probabilistic functions of Markov chains, Annals of
mathematical Statistics 41:164-171, 1970

[8] Baum L.E., An inequality and associated maximisation technique in statis-
tical estimation for probabilistic functions of Markov processes, Inequalities
3:1-8, 1972

[9] Quackenbush Schuler R., Barnwell III Thomas P., Clements Mark A., Ob-
jective Measures of Speech Quality, Prentice Hall, New Jersey, 1988, ISBN
0-13-629056-6

[10] Young Steve, A Review of Large-vocabulary Continuous-speech Recognition,
IEEE SP Magazine, 13:45-57, 1996, ISSN 1053-5888

[11] Mammone Richard J., Zhang Xiaoyu, Ramachandran Ravi P., Robust
Speaker Recognition, IEEE SP Magazine, 13:58-71, 1996, ISSN 1053-5888

97

98 Bibliography

[12] Davis K. H., Biddulph R. and Balashek S., Automatic Recognition of Spoken
Digits, J. Acoust. Soc. Am., 24 (6):637-642, 1952

[13] Forgie J. W. and Forgie C. D., Results Obtained From a Vowel Recognition
Computer Program, J. Acoust. Soc. Am., 31 (11):1480-1489, 1959

[14] Velichko V. M. and Zagoruyko N. G., Automatic Recognition of 200 Words,
Int. J. Man-Machine Studies, 2:223, 1970

[15] Sakoe H. and Chiba S., Dynamic Programming Algorithm Optimization for
Spoken Word Recognition, IEEE Trans. Acoustics, Speech, Signal Proc.,
ASSP-26 (1):43-49, 1978

[16] Itakura F., Minimum Prediction Residual Applied to Speech Recogntition,
IEEE Trans. Acoustics, Speech, Signal Proc., ASSP-23 (1):67-72, 1975

[17] Rabiner L. R., Levinson S. E., Rosenberg A. E. and Wilpon J. G., Speaker In-
dependent Recognition of Isolated Words using Clustering Techniques, IEEE
Trans. Acoustics, Speech, Signal Proc., ASSP-27:336-349, 1979

Master Thesis MEE-01-27
Copyright c© 2002 by authors

All rights reserved

Printed by Kaserntryckeriet AB, Karlskrona 2002

