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Chapter 1

Introduction

The traveler’s dilemma [1, 2], is described with the following parable.

Two travelers returning home from a remote island, where they bought identical
antiques (or, rather, what the local tribal chief, while choking on suppressed
laughter, described as “antiques”), discover that the airline has managed to
smash these, as airlines generally do. The airline manager who is described
by his juniors as a “corporate whiz”, by which they mean a “man of low cun-
ning,” assures the passengers of adequate compensation. But since he does not
know the cost of the antique, he offers the following scheme.
Each of the two travelers has to write down on a piece of paper the cost of the
antique. This can be any value between 2 units of money and 100 units. Denote
the number chosen by traveler i by ni. If both write the same number, that is,
ni = nj, then it is reasonable to assume that they are telling the truth (so ar-
gues the manager) and so each of these travelers will be paid ni (or nj) units of
money.
If traveler i writes a larger number than the other (i.e., ni > nj), then it is
reasonable to assume (so it seems to the manager) that j is being honest and i

is lying. In that case the manager will treat the lower number, that is, nj, as the
real cost and will pay traveler i the sum of nj − 2 and pay j the sum of nj + 2.
traveler i is paid 2 units less as penalty for lying and j is paid 2 units more as
reward for being so honest in relation to the other traveler.
Given that each traveler or player wants to maximize his payoff (or compensa-
tion) what outcome should one expect to see in the above game? In other words,
which pair of strategies, (ni,nj), will be chosen by the players?

In this paper, we will analyze the Traveler’s Dilemma from several angles, and
try some variations on it, like changing the reward. From these analyses we will
try to explain this apparent contradiction between classical game theory and
human behaviour.
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Chapter 2

Game Theory and the

Traveler’s Dilemma

The traveler’s dilemma was originally created as an example of a conflict be-
tween intuition and game-theoretic reasoning. In this chapter we will explore
what game theory can be used to analyze the game, what basic assumptions
it makes about the players’ behaviour, and how this relates to actual human
behaviour.

In this chapter we will use π(p, q) to denote the payoff for player one (using
strategy p) playing against player two (using strategy q). For the traveler’s
dilemma, this function is:

π(p, q) =







p p = q

p + 2 p < q

q − 2 p > q

2.1 Nash Equilibria

One very important tool in game theory is a so-called Nash equilibrium [3], it
defines a kind of optimal strategy. It is informally defined as a set of strategies
(one for each player), such that no player can do better by choosing another
strategy while keeping the others’ strategies fixed. That is, if all choices of all
players are known to everyone, no one would want to be the only one to switch
strategies. In a two player game, it would be a pair of strategies p, q such that
π(p′, q) ≤ π(p, q) ∀p′ 6= p and π(p, q′) ≤ π(p, q) ∀q′ 6= q.

A strict Nash equilibrium is a set of strategies such that any player will do
strictly worse by switching, so in a two-player game it would be a pair of strate-
gies p, q such that π(p′, q) < π(p, q) ∀p′ 6= p, etc.
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This situation is not always (in fact, usually isn’t) the optimal outcome for
everyone. For example, in the prisoner’s dilemma, the (strict) Nash equilibrium
would be both players defecting, but the optimal outcome is both players co-
operating. However, cooperation is not a Nash equilibrium because unilaterally
defecting is a locally better strategy.

Likewise, in the traveler’s dilemma a Nash equilibrium is (2, 2). No player
can do better by choosing a higher value, because they would be picking the
higher value, and receive $0 as a result of the other player’s choice of 2. This
is also the only Nash equilibrium in the game, because with any other pair of
strategies (x, y) 6= (2, 2), at least one player can improve their strategy by pick-
ing a value that is exactly one lower than the other player.

2.1.1 Rationalizable Nash Equilibria

There is also the concept of a rationalizable Nash equilibrium. This involves
repeated elimination of dominated strategies. A (weakly) dominated strategy is
a strategy p for which another strategy q exists such that ∀x π(q, x) ≥ π(p, x)
(and at least one x for which strict > holds). That is, q is a strategy with at
least an equal payoff, regardless of the other player’s strategy, and is strictly
better for at least one case. To find the rationalizable Nash equilibria, all dom-
inated strategies are eliminated for both players (equivalent to an assumption
of some rationality in both players), and this process is then repeated with the
remaining strategies until no changes occur. All remaining strategies are then
rationalizable Nash equilibria. The assumption of rationality made here seems
like a very reasonable one, when given the choice between ‘win $100’ and ‘win
$100 for sure, and possibily $101’, almost anyone would choose the latter. How-
ever, the iterative process doesn’t seem like something the average player would
intuitively apply in his reasoning, so this may cause problems, as we will see
later on.

Also note that in one experiment with game theory experts [9], one fifth of
all players played the strategy $100, which is strictly dominated even without
eliminating any strategies, so maybe even this very basic assumption of ratio-
niality is too big of an assumption even without the iterative elimination of
strategies.

In the traveler’s dilemma, (2, 2) is also the only rationalizable Nash equilib-
rium, because, as we can see in te following table, the choice of $100 is strictly
dominated by $99:

x π(100, x) π(99, x)
100 100 101
99 97 99
n < 99 n − 2 n − 2

Eliminating the strategy of playing $100 for both players, in the remaining
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choices of $2 – $99, the choice of $99 is strictly dominated by $98, according to
similar reasoning. This process of elimination can be repeated until the choices
are $2 – $3, where the choice of $3 is strictly dominated by $2, leaving $2 as
the only rational choice for both players.

Finding this rationalizable Nash equilibrium also clearly shows the reasoning
and assumptions necessary for a player to get to the conclusion that playing $2
is the ‘best’ strategy.

• I am a rational player, so I will not play the dominated strategy $100.

• You know I am a rational player, so you will not play the dominated
strategy $99.

• I know you know I am a rational player, so I will not play the dominated
strategy $98.

• You know I know you know I am a rational player, so you will not play
the dominated strategy $97.

• and so on until...

• (I know you know) × 48 I am a rational player, so I will not play the
dominated strategy $4.

• You know (I know you know) × 48 I am a rational player, so you will not
play the dominated strategy $3.

• I know this, therefore I will play $2.

The assumption is also clear, it has to be common knowledge that a player
will not play a dominated strategy. This seems like a very reasonable assump-
tion at first, but when looking at the above steps it is clear that hardly anyone
would reason that many levels deep. Indeed, it is practically impossible to imag-
ine the difference between “you know (I know you know) × 10” and “you don’t
know (I know you know) × 10”, let alone repeating this for another 80 steps.

Kripke models

If we would try to model the situation in a Kripke model, we would need a lot of
worlds. Because both players initially have no real knowledge about what choice
the other player will make, they should consider every legal number (every num-
ber from 2 to 100 in our case) as a possible choice of the other player. This
has as a consequence that the needed amount of worlds to model the situation
would be the square of the number of legal choices (99 in our case, with which
we would get a total number of 9801 worlds). A Kripke model with this much
worlds would not serve much of a purpose. To reduce the amount of worlds
in the Kripke model, we greatly reduced the number of legal number choices:
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every player can now only choose between the numbers 2, 3 and 4. This gives
the Kripke model shown in Figure 2.1.

3 2

3 3

3 4

2 3

2 2

2 4

4 2

4 4
4 3

Figure 2.1: The Kripke model of the situation where both players can choose
between the numbers 2, 3 and 4. The choices and relations of player 1 are shown
in red, the choices and relations of player 2 are shown in blue.

In this figure we can see that both players have in each world arrows to all
worlds where the choice of the player itself is the same, but where the choice
of the other player is different. This is because a player obviously knows which
number it chooses, but does not know which number the other player chooses.

If, in this situation, it would become common knowledge that choosing 4 is
not rational because it means playing the dominated strategy $4, and it is com-
mon knowledge that both players are rational, then the Kripke model can be
reduced to the Kripke model shown in Figure 2.2.

As can be seen by comparing this model to the previous one, this model
is the previous model but without the worlds where one of the players would
choose 4.
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3 2

3 3

2 3

2 2

Figure 2.2: The Kripke model with only the choice between 2 and 3. The choices
and relations of player 1 are shown in red, the choices and relations of player 2
are shown in blue.

Similar to removing all world with choice 4, all worlds with choice 3 can also be
removed, as playing $3 has now become a dominated strategy. This gives the
Kripke model shown in Figure 2.3.

2 2

Figure 2.3: The final Kripke model, with no choices at all. Both players will
choose the number 2, and this is common knowledge.

In this Kripke model, it is common knowledge that both players will play $2.
This is caused by the assumption that both players are rational and won’t play
dominated strategies, as described before. So in fact there is only one possible
world for both players, because they know both their choice and the choice of
the other player.

Another way to model the dilemma could have been to just have one world
where both players are rational and both players have reflexive arrows, so it is
common knowledge that they are rational. This would not be an interesting
Kripke model, but the model would be able to graphically support the “I know
that you know that I know ...”-reasoning as described before.

Either way, it does not seem to be very useful to model the (entire) situa-
tion in a Kripke model. You would either have an enormous amount of worlds,
or you could reason to the point that both players will play $2 and have only
one world. Both cases do not seem to give more insight into the situation.
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2.1.2 A bigger reward?

Increasing the honesty reward b given to the player with the lowest choice clearly
does not affect any of the results. The (rationalizable) Nash equilibria are still
at the minimum choice (to avoid negative payoffs, we will make this b, so the
possible choices are $b – $100). Even the reasoning needed to get to the Nash
equilibrium stays the same, for example with a reward of $10. In this case, the
strategies $91 – $99 now all dominate $100, the strategy $99 is not dominated
before $100 is eliminated, because no other strategy has a possible payoff of ≥
$109.

However, it is easier to be rewarded for an uncooperative strategy. When the
reward is two, choosing a value more than two below the other player’s choice
is worse than choosing the same strategy as him, and being more than three
below it even means the ‘completely irrational’ choice of $100 would have been
better.

Capra et al. [10] also looked at increasing the reward. They show that, as
the reward increases, the players are more and more intended to go to the Nash
equilibrium. For the low reward fees (from $1), the average claim is close to the
maximum claim. But as the reward increases, the players are willing to take
a bit more risk for a higher payoff. And finally, for the largest values of the
reward (with a maximum of $40), the average reaches the Nash equilibrium.

They conclude that, however the game should not be influenced by the
reward, according to the Nash equilibrium, in fact it is when tested in real
life. This does not mean that the Nash equilibrium is a wrong method, only
that it fails to explain human behaviour for this problem.

2.2 Evolutionary stable strategies

Closely related to the theory of Nash equilibria is the concept of an evolution-
ary stable strategy [3]. A strategy p is an Evolutionary Stable Strategy (ESS) if
a pure population of individuals using strategy p is stable against invasion by
any other strategy. That is, if a single q−strategists appears in a population of
p−strategists, he will have a lower fitness than everyone else, so he will be out-
competed by the p−strategists, eventually resulting once again in a population
consisting of only p−strategists.

Whereas in a Nash equilibrium no player can benefit from switching, in a
non-strict equilibrium a different strategy that has an identical payoff is still
allowed. This is justified by the assumption that a player has no incentive to
switch from the equilibrium, because it would not benefit him. However, in
an evolving population there does not need to be an incentive (i.e. a fitness
advantage) to switch, because genetic drift is sufficient to cause divergence from
the equilibrium in the absence of a penalty for doing so.
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Therefore, a stricter concept is needed, one of these is the evolutionary stable
strategy. Originally developed by John Maynard Smith [4] for use in theoretical
biology , it has also been used in game theory, economics and many other fields
of research.
It is defined as a strategy p for which for all other strategies q the following
conditions hold:

• π(p, p) > π(q, p) or

• π(p, p) = π(q, p) and π(q, q) < π(p, q)

The first condition is the same as for the strict Nash equilibrium, so all
strict Nash equilibria are evolutionary stable strategies. Maynard Smith’s sec-
ond condition signifies that even though the strategy q is neutral when playing
against p, the population of players who continue to play strategy p still have
an advantage over those playing strategy q, when meeting a q-strategist.

This definition shows that every ESS is also a (possibly non-strict) Nash
equilibrium, but not every non-strict Nash equilibria is an ESS. Consider a
game with the following payoff matrix:

C D
C (1,1) (0,0)
D (0,0) (0,0)

In this game (D,D) is a non-strict Nash equilibrium, but it is not an ESS,
because any number of C−strategists could invade the population, and would
then be at an advantage playing against each other.

C D
C (1,1) (1,1)
D (1,1) (0,0)

In this game (C,C) is a non-strict Nash equilibrium, and is also an ESS, be-
cause the 2nd condition holds: no more than one D−strategist could invade the
population without experiencing a penalty for meeting other D−strategists.

For the traveler’s dilemma, (2, 2) is also an ESS, simply because it is a strict
Nash equilibrium.

Sometimes a stronger definition is used, proposed by Thomas [5], which
stresses the importance of the payoff of invaders more: :

• π(p, p) ≥ π(q, p) and

• π(q, q) < π(p, q)

In this case, not all strict Nash equilibria are ESS. Also, any ESS according
to this definition is also an ESS according to Maynard Smith’s definition.
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For the traveler’s dilemma, (2, 2) is an evolutionary stable strategy according
to the first definition but not according to the second, after all π(100, 100) >

π(2, 100).

2.3 Simulation

Because we can not simulate human players, we will try to simulate a population
of ‘travelers’ evolving, and see if the Nash equilibrium appears as a result.

2.3.1 Methods

We simulated a population of travelers using a co-evolutionary genetic algorithm
[6]. A co-evolutionary GA does not use a fitness function to rate the various
solutions, but rates their performance when several members of the population
‘fight’ eachother in some way.

We used the genetic algorithms library ‘charlie’ [7], for the Ruby program-
ming language. Source code can be seen in the appendix. For the selection
algorithm, we used the built-in CoTournamentSelection. In this algorithm,
groups (tournaments) of size T were created, and all travelers play a single-shot
traveler’s dilemma against all others in the group. After all these games have
been played, the group was replaced by a normal round of roulette selection,
taking their total score over all these games as their fitness values. This means
the fitness of an individual is its average performance in playing single-shot trav-
eler’s dilemma games when facing other individuals in the tournament group. In
each generation, enough of these tournaments are played such that roughly the
entire population is replaced once, so the generations listed here are technically
‘generation equivalents’.

No crossover was used, since the genotype is only a single number. Mutation
rate was set at p = 0.5, that is, half of the children are different from both their
parents, and the other half are identical to one of their parents. Mutations were
applied by adding a Gaussian distributed random number (∼ N(0, s)) to the
gene, and then clamping it to the range (reward, 100). The population size was
set at the default 20 with random initialization, and the algorithm was run for
1000 generations.

The honesty reward was varied between 2 and 10, and for each different
reward the GA was run for a variety of mutation and tournament sizes. For the
tournament sizes we used the full possible range T = 2, 3, . . . , 19, 20, and for the
mutation sizes we used s = 0.1, 0.2, . . . , 9.9, 10, so in total 1900 runs were done
for each different reward.

We repeated all these tests using a population which was initialized at the
minimum value possible, which is the honesty reward. This way we could study
the non-ESS results in the other tests to see where they were caused by a failure
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to converge within the limited number of generations, and where the population
actually escaped from the ESS.

2.3.2 Results

Because of the vast amount of results (about 40 million generations) we can
not present, or even examine, all the data. Instead we only look at the average
move in the population at the end of a run, and visualized these results using
MATLAB.

The images can be interpreted as follows: On the horizontal axis is the
mutation size s, increasing from left to right and on the vertical axis is the tour-
nament size T , increasing from top to bottom. Each single rectangle, of which
there are 19× 100 = 1900 in each image, represents the average strategy in the
population after 1000 generations and is represented by a color which can be
looked up in the bar to the right of the image. In general bright red represents
a value close to the maximum 100, and blue a value close to the minimum value.

Figure 2.4 shows the results for the experiments with random initialization.
When using a tournament size of 2 the population converges to the mini-

mum value for all settings. This can be easily explained by the fact that the
fitness value in this case is just π(p, q), i.e. those individuals who simply have a
higher payout than their opponent, regardless of what this payout is, are more
successful. For bigger tournaments, an individual can ‘win’ every game and still
have the lowest average, for example a $2 player in a population of $100 play-
ers. These results then do not really represent what we want to model, which is
maximizing your payout itself and not your payout relative to a single opponent.
However, they can still be used as a baseline for the amount of convergence and
amount of drift when there is a clear selective pressure for the lower strategies.
Likewise, the bottom row, for a tournament with the entire population, is clos-
est to the actual traveler’s dilemma and therefore contains the most important
results.

Looking at figure 2.4(a), it is clear that most runs other than the T = 2
results converge to a high value, somewhere in the range $85 – $100. For higher
rewards, a front appears from which on one side (small tournament size and
especially, low mutation) the results converge to the minimum value, and on
the other side converge to a value near the maximum.

For larger reward, there are no longer any settings that don’t converge to
the minimum, although figure 2.6 shows this is just an effect of the maximum
mutation size.

These experiments were repeated starting with populations with every indi-
vidual at the minimum value, so right in the ESS. Maynard Smith’s definition
of an ESS suggests that it should be very unlikely for the population to escape
the ESS, but as can be seen in figure 2.5, the results are very similar. Only the
parts which had somewhat inconclusive results in the previous experiments now
clearly stay at the ESS, but this did not because the boundaries shift much,
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(i) b = 10

Figure 2.4: Results of the experiments with random initialization. The x−axis
has the mutation rate and the y−axis shows the tournament size.11
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(i) b = 10

Figure 2.5: Results of the experiments with initialization at the ESS.
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instead they just become sharper. For example, in the b = 4 figures in the
bottom T = 20 rows, the boundary to the right of which all results are ≥ 75 is
at about 3.7 − 3.9, whereas in the ESS results it is at about 4.5.

Clearly, the second definition of an evolutionary stable strategy is the better
one here, and also explains why the first definition fails.

Simple calculations show that when there is sufficient variation in the pop-
ulation, the strategy with the highest payoff is in fact above the average of the
other strategies. This explains the selective pressure towards higher strategies,
and with it possibly the strategies seen in real life.

2.4 Conclusion

Classic game theory fails to explain human behaviour when playing the trav-
eler’s dilemma, but can still be used to see what assumptions are being made.
Common knowledge of rationality rarely exists, because most people are just
not inclined to think more than a few levels deep. Even game theory experts
don’t assume this when playing against each other.

Instead of talking about rational or irrational choices, it may be better to
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Figure 2.6: Results for a higher reward b = 15 with mutation sizes up to 30 and
random initialization.
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see the game as one with various levels of cooperation. We think most people
would expect others to be cooperative (i.e. conspire against the insurance com-
pany), and would therefore pick a high value. Unlike some other games, even
uncooperative players who know for sure their opponent is cooperative are best
off picking a value above the average strategy of their opponents if they can not
estimate these strategies to within a very narrow range. This basically forces
them to be cooperative as the only optimal strategy.

Only when the reward for being uncooperative is high enough, and the vari-
ation in your opponents’ strategies is small enough, is it possible to play an
optimal strategy at the expense of all others, and will the strategies likely trend
towards the Nash equilibrium.
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Chapter 3

Real-life strategies

3.1 Theory of Mind

How humans may react can also be predicted using the paper by Verbrugge
and Mol [8]. This paper suggests that people may not use high order Theory of
Mind: they do not reason to the degree that their number of choice approaches
2. Or, they may assume that the other player does not use high order Theory
of Mind, so the other player will not reason to that same degree. Of course it
is also possible that both cases are true.

The paper also suggests that how pragmatic the player will be is dependent
on how cooperative the player is. If the player wants to maximize the common
profit, it will naturally choose a high number (probably 100). But if the player
is uncooperative, for example if he or she has a strong desire to ‘win’ the honesty
reward, then he or she will probably show less pragmatic behaviour, assuming
having a higher claim is less useful than being the one that obtains the honesty
reward.

Another situation that may occur is that one or both of the players will
assume cooperative or even altruistic behaviour (to some degree) from the other
player. This makes it more attractive to choose a higher number, even if the
player has a desire to obtain the honesty reward.

3.2 Game Theory Experts

Another approach to see what the logical result of the Traveler’s Dilemma would
be, when played by human players, is given by Becker et al. [9]

They wanted the participants that play the game to make the most logical
choice. Therefore, they addressed members of the illustre Game Theory Society.
These would, of all people, make the most logical decision. To encourage this,
one of the participants would receive a prize, equivalent with the performance
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of their strategy. And another, for the goodness of fit of their belief of the other
participants’ strategies.

Participation to the experiment consisted of two steps. First of all, all par-
ticipants had to specify what their belief was about what the other participants
were going to enter. This was done by giving a probability value to each value
in the strategy space {2, 3, ..., 100}. Second, all participants had to specify their
own strategy.

The participants had the choice to do two strategies: they could either play
on a single value (a pure strategy), or assign certain probabilities to a number
of values (a mixed strategy).

3.2.1 Results

51 participants entered a strategy, from whom 47 entered a belief of the average
strategy.

The average choice of the participants in Becker et al.’s experiment is shown
in Figure 3.1. The large averages at 31, 49 and 70 come from pure strategies with
those values. As can be seen, some of the participants actually played the Nash
equilibrium of 2. Also, 10 participants entered the ‘irrational’ strategy 100.
The authors call this strategy irrational, because the strategy 100 is strictly
dominated.

The Nash equilibrium was the least profitable strategy, as can be seen in
Figure 3.2. Note here that the payoffs shown are directly dependant on the
strategies of the other players. Therefore, the ultimate strategy differs per
experiment.

Figure 3.1: The average strategy, played by the participants in the experiment.
Image taken from [9].
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Figure 3.2: The payoff per strategy. As can be seen, the Nash equilibrium has
the lowest payoff, and the pure strategy 97 has the highest payoff. Image taken
from [9].

A nice result in the beliefs given by the participants, was that only 17 (out
of the 47) of the participants played a strategy that coincided with their belief
of the average strategy. From this we can deduce that some of the participants
deliberately avoided playing the average strategy, to gain a higher payoff.

Now, Becker et al. claim that the Traveler’s Dilemma becomes a game
of incomplete information. This must be the case, because there is no single
winning strategy. The only logical strategy that can be inferred is the Nash
equilibrium, and they claimed that this is an irrational choice.

Next, Becker et al. disregard all strategies but those that fall (partially) into
the interval [94, ..., 99]. Disregarding the players that chose the strategy 2 or
the strategy 100, of the remaining 38 participants, 27 (more or less) adhere to
this interval model.

After neglecting all strategies outside this interval model, a weight of 0.281
is not accounted for, the rest is contained in the model. They now think that
the resulting model is a reasonably good approximation to the weight of each
of these points becoming an equilibrium.

3.2.2 Conclusions

Becker et al. conclude that their resulting model is a good one for individual
predictions, because of the fact that all participants were experts in game theory.
They therefore conclude that the fact that their interval model is reasonably
high up the strategy space, indicates that these high values are not because the
participants did not understand the game (and therefore did not end up with
the Nash equilibrium 2), but the high result is the result of a robust pattern of
behaviour.
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While analyzing the game as a game of incomplete information, the authors
still have no arguments for the fact that almost 20 percent of the participants
chose the, to them, irrational strategy 100. However, they note that, when no
player would play the irrational strategy 100, all players would end up in the
Nash equilibrium of 2.

We can reason that, when there are participants that play the strategy 100,
there is no need for the other participants to go much lower than the honesty
reward below that. As shown in the second chapter, the choice for 100 is strictly
dominated, so there is no reason to take it. But if it is taken (for example as a
cooperative strategy) then it would be foolish to go much lower, and get a lower
payoff than you could have had.

Whilst if the strategy 100 was abandoned, the race for the just-a-bit-lower
claim would start, and finally, all players would indeed end up in the Nash equi-
librium of 2. But this reasoning is not mentioned by the authors.

We think that the way that Becker et al. handled the problem is curious.
The way they analyze the data is good, but how they handle the observed data,
and how they think about the contestants is remarkable.

First of all, they say some of the result is irrational, while they tried their
best to let the participants be as rational as possible. Next, they discard part
of the results, taking a range that fits them, and then saying that the results
can be fitted well inside that range. While a more statistical approach would
be to first try to analyze what the probable result would be, and then actually
compare the results with the model created at first.
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Chapter 4

Conclusion

In this paper we analyzed the Traveler’s Dilemma. While analyzing the dilemma
using classical game theory, we found the rationalizable Nash equilibrium in
which both players choose the number 2. However, human players do not make
this choice very often in practice, and even simulations done by computers seem
to indicate otherwise.
Changing the reward for being honest (or for just being lucky to have chosen the
lowest number) to a number higher than 2 should theoretically have no impact
on the strategy a player will use, but in practice it turns out that it actually
does have impact on the choices human players make. When the reward is high
enough, people tend to choose their number closer and closer to the Nash equi-
librium.

From these facts we can conclude that classical game theory does not give an
accurate description on how this game is played or should be played to maximize
profit. When looking at how humans play the game, it appears that humans
tend to assume some degree of cooperation from the other player. Human play-
ers realize that cooperating will increase the payout of both players, so a player
benefits from choosing a high number, assuming the other player chooses a high
number as well. Even game theory experts, who should know about the Nash
equilibrium and the theoretical problems in this dilemma, tend to assume a
degree of cooperation from the other player.

In short, the ‘optimal’ strategy provided by classical game theory does not
give a satisfying or realistic results, but looking at computer simulations or at
humans playing the game can provide better explanations on how the game is
played, or should be played, in practice.
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Appendix A

Simulation Code

All of these programs require a Ruby interpreter and the charlie library. The
latter can be installed by using the ’gem’ tool included with most Ruby distri-
butions (gem install charlie).

Test tool with graphic user interface. Population is displayed on screen
and stats (minimum, maximum, average and standard deviation) are written
to stats_history. Ruby/TK required (included in the windows ’one-click’
installer, for linux use the package libtcltk-ruby1.8).

%w[rubygems charlie tk].each{|x|require x}

class traveler < FloatListGenotype(1,2..100)

BONUS = 2

def choice

genes[0].between(2,100).round

end

def fight_points(other)

c,oc = choice, other.choice

c == oc ? [c,c] : c < oc ? [c+BONUS,c-BONUS] : [oc-BONUS,oc+BONUS]

end

use NullCrossover

end

BNS,PRB,SZ,GRP,GENS=*0..4

lbl = [["Bonus",2],["Mutation Probability",0.5],["Mutation Size (sigma)",5],["Selection Tournament Size",4],["Generations",1000]]

root = TkRoot.new() { title "Traveler’s Dilemma Simulation" }

mid,bottom = [0,0].map{ TkFrame.new(root).pack(’side’=>’top’,’fill’=>’x’,’expand’=>true) }

popcv = TkCanvas.new(mid) { width 816; height 100; }.pack

entries = lbl.map{|l,v|

f = TkFrame.new(bottom).pack(’side’=>’top’,’fill’=>’x’)

TkLabel.new(f) {text l }.pack(’side’=>’left’)

TkEntry.new(f) { set v }.pack(’side’=>’right’)

}

$paused = false

$thr = nil

TkButton.new(bottom) {text "[Run]" ;

command{ $thr.kill rescue nil

$thr = Thread.new{

history = []

traveler::BONUS = entries[BNS].get.to_f

klass = Class.new(traveler){

use ListMutator(:probability[entries[PRB].get.to_f],:gaussian[entries[SZ].get.to_f]), CoTournamentSelection(entries[GRP].get.to_i)

def mutate!; super; genes[0] = genes[0].between(traveler::BONUS,100); end

}

pop = Population.new(klass)

entries[GENS].get.to_i.times{|g| sleep 0.3 while $paused

gs = pop.evolve_silent(1).map(&:choice).sort

history << gs.stats

popcv.delete(’all’)

TkcLine.new(popcv,8*2,50,800,50)

gs.each{|x| TkcOval.new(popcv,8*x-5,45,8*x+5,55) }
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TkcText.new(popcv,400,75,:text=>"Generation #{g} : " + gs.map{|x|x.to_s}.join(’, ’))

}

File.open(’stats_history’,’w’){|f| history.transpose.each{|a| f << a.join(’ ’) << "\n" } }

}

}

}.pack

TkButton.new(bottom) {text "[Paused]" ; command{ $paused = !$paused } }.pack

Tk.mainloop

Program that generated most of our results. When given the reward as a
parameter, runs the algorithm for a variety of mutation and tournament size set-
tings and outputs the average strategy in the population after 1000 generations.
Ruby/TK not required.

require ’rubygems’
require ’charlie’

exit(puts "GIVE ARG!") unless ARGV[0]

BONUS = ARGV[0].to_i
MIN = BONUS
MAX = 100
class traveler < FloatListGenotype(1,MIN..MAX)

def choice
genes[0].between(MIN,MAX).round

end
def fight_points(other)

c,oc = choice, other.choice
c == oc ? [c,c] : c < oc ? [c+BONUS,c-BONUS] : [oc-BONUS,oc+BONUS]

end
end

for group_size in (2..20)
$stderr.puts group_size
for mut_size in (1..100).map{|x| x / 10.0 }

klass = Class.new(traveler){
use ListMutator(:probability[0.5],:gaussian[mut_size]), CoTournamentSelection(group_size)
def mutate!; super; genes[0] = genes[0].between(MIN,MAX); end

}
print Population.new(klass).evolve_silent(1000).map{|x| x.genes[0] }.average, ’ ’

end
puts

end
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