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Unit 2

2 KNOWLEDGE WITHIN A GROUP

INTRODUCTION

In this unit, we introduce some special notions of knowledgewithin multi-agent
systems that are of great importance both in everyday life and in computer science:
common knowledge and implicit knowledge within a group.

The notion ofCommon knowledgearises from David Lewis’Convention: A
Philosophical Study, Cambridge (MA), Harvard University Press, 1969. One of
the questions in his book is about the convention of driving on a certain side of
the road. What kind of knowledge is needed for every driver tofeel reasonably
safe? Suppose that all Dutch drivers drive on the right side of the road. That fact
by itself is not enough to make all drivers feel safe: they would want to know
that all other drivers drive on the right side, as well. Thus,it seems necessary
that “everybody knows that everybody drives on the right side”. Now imagine
the strange situation where everyone drives on the right because they know that all
others drive on the right, but that everyone holds the following false belief: “except
for myself, everyone else drives on the right just by habit, and would continue to
do so no matter what he expected others to do”. Lewis argues that in this imaginary
situation one cannot really say that there is a convention todrive on the right. After
giving some more complex imaginary examples, Lewis proposes that if there is a
convention among a group thatϕ, then everyone knowsϕ, everyone knows that
everyone knowsϕ, everyone knows that everyone knows that everyone knows
ϕ, and so on ad infinitum. In such a case we say that the group has common
knowledge ofϕ.

Another example in which common knowledge is important, even though you
may never have realized it, is in everyday conversations like the following. Sup-
pose a lecturer asks a student “Did you make the exercises?”,referring to exercises
2.1 and 2.2 of this unit. Of course to understand each other the lecturer and the
student must both know that “the exercises” refers to exercises 2.1 and 2.2 of this
unit, but also they must know that they both know it (so that they will know that
the student’s answer is appropriate to the lecturer’s question), they must know that
they both know that they both know it (so that they will know that the lecturer’s re-
sponse to the student’s answer is appropriate), and so on. The subject of common
knowledge and its applications will be formally defined and extensively treated in
2.1, 2.2 and 2.3 below.

The notion ofimplicit or distributed knowledgealso helps to understand pro-
cesses within a group of people or collaborating agents. Suppose that you know
that all students of modal logic are at least 19 years old, andI know that Kripke is
17 years old, then together we have distributed knowledge that Kripke is not a stu-
dent of modal logic. In general, we have distributed knowledge ofϕ if by putting
our knowledge togetherϕ may be deduced, even if none of us individually knows
ϕ. The subject of distributed knowledge is treated in 2.4 below. (Actually, Kripke
was 17 when he invented what is now called Kripke semantics.)
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STUDY GOALS

After studying this unit you are supposed to be able to

– semantics:determine the truth value of sentences including the E, C and
I-operators in relevant Kripke models

– syntax: make axiomatic derivations inKEC (m), S5EC(m), KI (m), andS5I(m),
the systems incorporating common knowledge and distributed knowledge.

– theory: understand soundness and completeness ofKEC (m) andS5EC(m),
with respect to the intended Kripke models

– modelling: analyze the ‘Muddy Children puzzle’ using Kripke models for
S5EC(m)

– modelling: understand how properties of distributed systems can be de-
scribed using the notion of common knowledge

– theory: understand soundness ofKI (m) andS5I(m), the systems incorporat-
ing distributed knowledge, with respect to the intended Kripke models

RECOMMENDATIONS FOR STUDYING

This unit requires about 30 hours of study. It goes with Sections 2.1, 2.2, and 2.3
of the textbook by Meyer and Van der Hoek. When reading the textbook, you may
skip subsections 2.1.4 and 2.1.5 about completeness; thereis an alternative simpler
proof in section 2.2 of this study guide.

MAIN TEXT

2.1 COMMON KNOWLEDGE

Read section 2.1 of the textbook,
but skip subsections 2.1.4 and 2.1.5.

EXERCISE 2.1 Determine the value of the following propositions at the given world in the
picture on page??.

a (M,w1) |= C(p∨q)

b (M,w1) |= C(p∨q)→ (Cp∨Cq)

c (M,w1) |= C(p∧q)

d (M,w1) |= C(p∧q)↔ (Cp∧Cq)

e (M,w1) |= C(p∨q) →CC(p∨q)

f (M,w1) |= ¬Cp→C¬Cp.
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EXERCISE 2.1,
continued

Here follows the Kripke model in which propositionsa to f should be evalu-
ated.

b b

b ¬p,q

w3

p,¬q

w2

p,q

w1

R2 R2

R1

R2

R1,R2

R1,R2 R1,R2

EXERCISE 2.2 Let Ekϕ(k ≥ 0) be defined byE0ϕ = ϕ,Ek+1ϕ = E(Ekϕ). Then,E0ϕ = ϕ
E2ϕ = E(E1ϕ) = E(E(E0ϕ)) = EEϕ and so on. Given this definition, it can be
shown in general that ifM is anS5n Kripke model withn states,M |= Enϕ ↔Cϕ.
Let us first look at a concrete example.

a Show thatM |= E7ϕ ↔ Cϕ holds in a specific model based on the Kripke
structure〈S,R1,R2,R3〉 given below. Let the language be given byP =
{p, q}. First, devise a formulaϕ and a truth assignmentπ so that for
M = 〈S,π,R1,R2,R3〉, we haveM |= E7ϕ ↔ Cϕ. Explain whyE7ϕ ↔ Cϕ
holds; then, show why this would be true for any formulaϕ and any truth
assignmentπ on the given structure.

b b b b b b b

w1 w2 w3 w4 w5 w6 w7

R1 R2 R3 R1 R2 R3

b Prove that, in fact,M |= Enϕ ↔Cϕ holds inall Kripke modelsM with n states.

c Finally, take the model above, and expand it to an infinitely repeating sequence,
so that the set of worldsS′ is the set of all natural numbers. Accessibility
relations alternate as follows: (wi , wi+1) ∈ R1 iff i modulo 3 = 1, (wi , wi+1)
∈R2 iff i modulo 3 = 2 and (wi, wi+1) ∈R3 iff i modulo 3 = 0. Give a formula
ψ and a truth assignmentπ′, and letM′ = 〈S′,π′,R1,R2,R3〉 so that for every
n≥ 0,M 2 Enψ ↔Cψ. Explain your answer.

EXERCISE 2.3 Make exercise 2.1.2.1 and 2.1.3.1 from the textbook.
muddy children page 56 line 4 from

bottom
In fact, the muddy children problem is a more general versionof the problem

of the wise persons in Unit 1. The statement “there is at leastone child with mud
on its head” is common knowledge for the children in the situation after the father
makes his utterance, similar to the common knowledge in the wise persons’ puzzle
that at least one of Abelard and Heloise wears a red hat. In chapter 1, common
knowledge was not yet introduced, so we used the facts about the number of red
and white hats as background knowledge to restrict the number of worlds in our
Kripke model.

muddy children
formalization

page 57 line 1 from
bottom

There is a mistake in the definition ofRi(s,s′). It should be as follows:

Ri(s,s
′) ⇔ sj = s′j for all j 6= i.

Notice that this definition ofRi(s,s′) is the dual of the definition ofRi in the case
of distributed systems (see section 1.8 of the textbook), whereRi(s,s′) iff si = s′i .
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2.2 AN ALTERNATIVE COMPLETENESS PROOF FOR EPISTEMIC

LOGIC WITH COMMON KNOWLEDGE

completeness of
KEC (m)

page 47, after
Theorem 2.1.3

We will give a simpler completeness proof than the one from the book. Ours is
inspired by R. Fagin, J.Y. Halpern, Y. Moses and M.Y. Vardi,Reasoning about
Knowledge, MIT Press, Cambridge (MA), 1995, pp. 67–69. Their definition of
KEC (m) differs from the one in the textbook by Meyer and van der Hoek;Fagin
and his coauthors even interpretCϕ differently, so thatCϕ does not implyϕ in their
system. Thus we need to adapt their ideas. The method of proofis one used often
in modal logic when you try to prove completeness with respect to finite models,
for example when you want to show decidability of a system.

We have to prove that, supposing thatKEC (m) 6⊢ ϕ, there is a modelM ∈ K(m)

and aw∈ M such that(M,w) 6|= ϕ. There will be four steps:

1 A finite set of formulasΦ, theclosureof ϕ, will be constructed that containsϕ
and all its subformulas, plus certain other formulas that are needed in step 4
below to show that an appropriate valuation falsifyingϕ at a certain world
can be defined. The setΦ is also closed under single negations.

2 A “Lindenbaümchen” lemma will be proved: a consistent set of sentences from
Φ can always be extended to a set that is maximally consistent in Φ.

3 These finitely many maximally consistent sets will correspond to the states in
the Kripke countermodel againstϕ, and appropriate accessibility relations
and a valuation will be defined on these states.

4 It will be shown, using induction on all formulas inΦ, that the model con-
structed in step 3 indeed contains a world in whichϕ is false. This is the
most complex step in the proof.

The completeness proof ofKEC (m) can be adapted for the systemsTEC(m),
S4EC(m) andS5EC(m) as well. We leave this to the reader (see EXERCISE 2.11,
which includes a hint). Let us start with step 1, the definition of the closure ofϕ.

closure ofϕ Below, we will define the closure of a sentenceϕ. You can view this closure
as the set of formulas that arerelevantfor making a countermodel againstϕ. In
the completeness proof ofK (m), we used the set of all formulas in the language
to create a countermodel. But now we make do with a smaller setof formulas, so
that the countermodel will be finite.

Definition Theclosureof ϕ with respect toKEC (m) is the minimal setΦ of
Lm

KEC-formulas such that:

a. ϕ ∈ Φ.

b. If ψ ∈ Φ andχ is a subformula ofψ, thenχ ∈ Φ.

c. If ψ ∈ Φ andψ itself is not a negation, then¬ψ ∈ Φ.

d. If Cψ ∈ Φ thenECψ ∈ Φ.

e. If Eψ ∈ Φ thenKiψ ∈ Φ for all i ≤ m.

EXAMPLE 2.1 The closure ofCp∨Cqwith respect toKEC (2) is

Φ = {Cp∨Cq,¬(Cp∨Cq),

Cp,¬Cp,ECp,¬ECp,K1Cp,¬K1Cp,K2Cp,¬K2Cp, p,¬p

Cq,¬Cq,ECq,¬ECq,K1Cq,¬K1Cq,K2Cq,¬K2Cq,q,¬q}

EXERCISE 2.4 Show that for every formulaϕ, the closureΦ of ϕ with respect toKEC (m) is a
finiteset of formulas.
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This finishes step 1 of the completeness proof. The next definition leads up to
the Lindenbaümchen Lemma, step 2 of the proof.

maximal
consistency inΦ

Definition A finite set of formulasΓ such thatΓ ⊂ Φ is maximallyKEC (m)-
consistent inΦ if and only if:

a. Γ is KEC (m)-consistent, i.e.KEC (m) 6⊢ ¬(
V

ψ∈Γ ψ). (cf. textbook p. 14, def.
1.4.2)

b. There is noΓ′ ⊂ Φ such thatΓ ⊂ Γ′ andΓ′ is still KEC (m)-consistent.

EXAMPLE 2.2 For the closureΦ of Cp∨Cq with respect toKEC (2), which is presented in
EXAMPLE 2.1, here follows one maximallyKEC (m)-consistent set inΦ:

Γ = {Cp∨Cq,Cp,ECp,K1Cp,K2Cp, p,

¬Cq,¬ECq,¬K1Cq,¬K2Cq,q}

Lindenbäumchen
Lemma

Lindenbaümchen LemmaLet Φ be the closure ofϕ with respect toKEC (m).
If Γ ⊂ Φ is KEC (m)-consistent, then there is a setΓ′ ⊇ Γ which is maximally
KEC (m)-consistent inΦ.

EXERCISE 2.5 This exercise concerns the definition of maximallyKEC (m)-consistent sets in
a closureΦ.

a. Explain for each of the following sets of formulas, why it isor isn’t maxi-
mally KEC (m)-consistent sets inΦ:

Γ1 = {Cp∨Cq,Cp,ECp,K1Cp,K2Cp,¬p,

¬Cq,¬ECq,¬K1Cq,¬K2Cq,¬q}

Γ2 = {¬(Cp∨Cq),¬Cp,ECp,K1Cp,K2Cp, p,

¬Cq,ECq,K1Cq,K2Cq,q}

Γ3 = {Cp∨Cq,Cp,¬ECp,¬K1Cp,K2Cp, p,

¬Cq,¬ECq,¬K1Cq,¬K2Cq,q}

b. Show that, if a closureΦ of some formulaϕ contains 2∗n elements, thenΦ
has at most 2n maximallyKEC (m)-consistent subsets.

c. Prove the LindenbaümchenLemma. Hint: adapt the proof of Lemma 1.4.3(i)
on page 15 of the textbook (the Lindenbaum Lemma).

Definition of the
countermodel

Now we are ready to take step 3, namely to define the modelMϕ =< Sϕ,π,R1, . . . ,Rm>

that will turn out to contain a world where¬ϕ holds. Thus, we need to choose a
set of states, a truth assignmentπ, and a set ofmaccessibility relationsR1, . . . ,Rm.

– As domain of states, we take one statesΓ for each maximallyKEC (m)-
consistentΓ ⊂ Φ. Note that, becauseΦ is finite, there are only finitely
many maximally consistent sets contained in it, so there areonly finitely
many states. Formally, we define CONΦ = {Γ | Γ is maximallyKEC (m)-
consistent inΦ} andSϕ = {sΓ | Γ ∈ CONΦ}.



Unit 2 Knowledge within a group 6

– To make a truth assignmentπ, we want to conform to the propositional
atoms that are contained in the maximally consistent sets corresponding to
each world. Thus, we defineπ(sΓ)(p) = 1 if and only if p ∈ Γ. Note that
this makes all propositional atoms that do not occur inϕ false in every world
of the model.

– We define the relationsRi as follows:Ri = {(sΓ,s∆) | ψ ∈ ∆ for all ψ such
thatKiψ ∈ Γ}. Take care! This definition implies that ifΓ does not contain
any formula of the formKiψ, then there areRi arrows fromsΓ to all worlds
in the model.

Finite Truth Lemma It will turn out that using this definition, we not only have(Mϕ,sΓ) |= p iff
p ∈ Γ for propositional atomsp, but such an equivalence holds for all relevant
formulas. This is proved in the Finite Truth Lemma, the main result of step 4:

Finite Truth Lemma If Γ ∈CONΦ, then for allψ ∈ Φ it holds that(Mϕ,sΓ) |=
ψ iff ψ ∈ Γ.

Proof The proof depends on the Finite Valuation Lemma on page??. We leave
the proof, which works by induction on the structure ofψ, to the reader.

EXERCISE 2.6 Prove the Finite Truth Lemma from the Finite Valuation Lemmaon page??.
Use a proof by induction on the structure of the formula. Remember that you may
use the five equivalencesa up toeof the Finite Valuation Lemma in your proof of
the Finite Truth Lemma. (If you want, you may postpone this exercise until you
have worked through the proof of the Finite Valuation Lemma).

completeness of
KEC (m) from Finite
Truth Lemma

From the Finite Truth Lemma, completeness is almost immediate.
Completeness TheoremIf KEC (m) 6⊢ ϕ, then there is a modelM ∈ K(m) and a

w∈ M such that(M,w) 6|= ϕ.

Proof SupposeKEC (m) 6⊢ ϕ. TakeMϕ as defined in step 3. Now, using the
Lindenbaümchen Lemma and the fact that¬ϕ ∈ Φ, there is a maximally consistent
Γ ∈ Φ such that¬ϕ ∈ Γ. By the Finite Truth Lemma, this implies that(Mϕ,sΓ) |=
¬ϕ, thus(Mϕ,sΓ) 6|= ϕ. QED.

In order to prove the Finite Truth Lemma, we need to prove someessential
properties of maximallyKEC (m)-consistent sets inΦ, namely the Finite Valuation
Lemma and the Consequence Lemma.

Finite Valuation
Lemma

Finite Valuation Lemma If Γ is maximallyKEC (m)-consistent in some clo-
sureΦ, then for allψ,χ it holds that:

a. If ¬ψ ∈ Φ, then¬ψ ∈ Γ iff ψ 6∈ Γ.

b. If ψ∧χ ∈ Φ, thenψ∧χ ∈ Γ iff ψ ∈ Γ andχ ∈ Γ.

c. If Kiψ ∈ Φ, thenKiψ ∈ Γ iff ψ ∈ ∆ for all ∆ with (sΓ,s∆) ∈ Ri .

d. If Eψ ∈ Φ, thenEψ ∈ Γ iff ψ ∈ ∆ for all ∆ and alli ≤ msuch that(sΓ,s∆) ∈
Ri .

e. If Cψ ∈ Φ, thenCψ ∈ Γ iff ψ ∈ ∆ for all ∆ such thatsΓ −→→ s∆.

Consequence
Lemma

Consequence LemmaIf Γ ∈ CONΦ, ψ1, . . . ,ψn ∈ Γ, χ ∈ Φ andKEC (m) ⊢
ψ1 → (ψ2 → (. . . (ψn → χ) . . .)), thenχ ∈ Γ.

EXERCISE 2.7 Provea andb of the Finite Valuation Lemma. (Hint: see the proof of lemma
1.4.3 (ii) on pp. 16,17 of the textbook.) Moreover, show thatfrom a andb, sim-
ilar lemmas follow for all other standard propositional connectives. Why are the
conditions that¬ψ ∈ Φ, respectivelyψ∧χ ∈ Φ, needed? Give concrete counterex-
amples toa andb where these conditions are left out.

EXERCISE 2.8 Prove the Consequence Lemma. (Hint: usea andb of the Finite Valuation
Lemma, and see the proof of lemma 1.4.3 (ii)(4) on pp. 16,17 ofthe textbook.)
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Proof of Finite
Valuation Lemma,
continued

Proof of c, d and e of the Finite Valuation Lemma We will now prove the
hard parts of the Finite Valuation Lemma. The proof ofc is quite similar to the
normal completeness proof ofK (m), see Theorem 1.4.7 on pp. 18–22 of the text-
book. As is to be expected, the proof ofe, involving common knowledge, is by far
the hardest. Supposing first that the relevant formulas are in Φ, we will prove the
three equivalences below, mostly using contraposition forthe⇐-sides.

c: the Ki-caseSupposeKiψ ∈ Φ.

⇒ SupposeKiψ ∈ Γ, and suppose that(sΓ,s∆) ∈ Ri . Then by definition ofRi , we
immediately haveψ ∈ ∆, as desired.

⇐ Suppose, by contraposition, thatKiψ 6∈ Γ. We need to show that there is a∆
such that(sΓ,s∆) ∈ Ri andψ 6∈ ∆. It suffices to show the followingClaim:
the set of formulas∆′ = {χ | Kiχ ∈ Γ}∪{¬ψ} is KEC (m)-consistent. For if
the claim is true, then by the Lindenbaümchen Lemma there exists a max-
imally KEC (m)-consistent∆ ⊇ ∆′ in Φ. By the definitions of∆′ andRi we
have(sΓ,s∆) ∈ Ri , and bya of the Valuation Lemma we haveψ 6∈ ∆, as we
wanted to prove. So let us prove the claim. In order to derive acontradiction,
suppose∆′ is notKEC (m)-consistent. Because∆′ is finite, we may suppose
that{χ | Kiχ ∈ Γ} = {χ1, . . . ,χn}. Then by definition of inconsistency,

KEC (m) ⊢ ¬(χ1∧ . . .∧χn∧¬ψ).

By propositional reasoning, we get

KEC (m) ⊢ χ1 → (χ2 → (. . . (χn → ψ) . . .)).

Then by necessitation (R2) plus a number of applications of (A2) and more
propositional reasoning, we derive

KEC (m) ⊢ Kiχ1 → (Kiχ2 → (. . . (Kiχn → Kiψ) . . .)).

However, we know thatKiχ1, . . . ,Kiχn ∈ Γ andKiψ ∈ Φ, so by the Conse-
quence Lemma, we haveKiψ ∈ Γ, contradicting our starting assumption.

d: the E-caseSupposeEψ ∈ Φ; then by the construction ofΦ alsoKiψ ∈ Φ
for all i ≤ m.

⇒ SupposeEψ ∈ Γ. Axiom (A6) and some easy propositional reasoning gives
us KEC (m) ⊢ Eψ → Kiψ. BecauseKiψ ∈ Φ we can use the Consequence
Lemma and derive thatKiψ ∈ Γ for all i ≤ m. Thus, by the⇒-step of the
Ki-case, we haveψ ∈ ∆ for all ∆ and all i ≤ m such that(sΓ,s∆) ∈ Ri , as
desired.

⇐ The proof is very similar to the⇒-step, this time using (A6) and the⇐-step
of theKi-case.

e: the C-caseSupposeCψ ∈ Φ; then by the construction ofΦ alsoECψ ∈ Φ
andψ ∈ Φ.

⇒ SupposeCψ ∈ Γ. We will prove by induction that for allk ≥ 0 and all∆, if
sΓ −→k s∆, thenψ,Cψ ∈ ∆. (Note that this is stronger than what is actu-
ally needed for the⇒-step. We have “loaded” the induction hypothesis by
showing that not onlyψ ∈ ∆, but alsoCψ ∈ ∆). Let us begin by proving the
base step:

k=0 Suppose thatsΓ −→0 s∆; this means thatΓ = ∆. Thus we need only to
show thatψ ∈ Γ. But this follows fromCψ ∈ Γ by the axiom thatKEC (m) ⊢
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Cψ → ψ (A7), the fact thatψ ∈ Φ and the Consequence Lemma.

k=n+1 Suppose thatsΓ −→n+1 s∆, then there is a∆′ such thatsΓ −→n s∆′ and
s∆′ −→ s∆. By the induction hypothesis, we haveψ,Cψ∈∆′. By axiom (A8)
we know thatKEC (m) ⊢ Cψ → ECψ, and becauseCψ ∈ ∆′ andECψ ∈ Φ
we may apply the Consequence Lemma to concludeECψ ∈ ∆′. But then by
the⇒-step of theE-case, we know thatCψ ∈ ∆. From this finally, as in the
base case, we conclude thatψ ∈ ∆ as well, and we are finished.

⇐ This is by far the hardest part of the proof. This time we work directly, not by
contraposition. So supposeψ ∈ ∆ for all ∆ with sΓ −→→ s∆. We will have to
prove thatCψ ∈ Γ.

First a general remark. Because eachs∆ corresponds to afinite set of for-
mulas∆, we can represent each∆ as the finite conjunction of its formulas,
denoted asϕ∆. Note that here we make crucial use of the fact that we re-
stricted ourselves to the finite closureΦ.

Now we defineW as{Λ ∈ CONΦ | ψ ∈ ∆ for all ∆ with sΛ −→→ s∆}. So
in particular,Γ ∈W. Intuitively, we wantW to become the set of worlds in
whichCψ holds.

Now let ϕW =
W

Λ∈W ϕΛ. This formula is the disjunction of the descriptions
of all states corresponding toW. From the finiteness ofW, we may conclude
thatϕW is a formula ofLm

KEC. Similarly, we defineϕW =
W

Θ∈W ϕΘ, where
W = {Θ ∈ CONΦ | Θ 6∈W}.

Our aim is to prove the followingClaim:

KEC (m) ⊢ ϕW → EϕW.

First, let’s show how this claim helps us to prove the desiredconclusion
Cψ∈Γ. From the claim, we may conclude by (R3) and (A10) thatKEC (m) ⊢
ϕW → CϕW. Then, becauseψ ∈ Λ for all Λ ∈ W andψ occurs in all con-
junctionsϕΛ for all Λ ∈ W, we haveKEC (m) ⊢ ϕW → ψ. Thus, using
(R3) we deriveKEC (m) ⊢ C(ϕW → ψ), from which it follows by (A9) that
KEC (m) ⊢CϕW →Cψ. Combined with the fact thatKEC (m) ⊢ ϕW →CϕW

and some propositional logic, this givesKEC (m) ⊢ ϕW →Cψ. Now because
ϕΓ is one of the disjuncts ofϕW, we haveKEC (m) ⊢ ϕΓ → Cψ. Finally,
using the Consequence Lemma and some propositional reasoning, we con-
cludeCψ ∈ Γ, exactly what we set out to prove.

Thus, it “only” remains for us to prove the claimKEC (m) ⊢ ϕW →EϕW. We
do this in five steps.

a. We first show that for alli ≤mand for allΛ∈W andΘ∈W, KEC (m) ⊢
ϕΛ → Ki¬ϕΘ.

Proof By definition ofW andW, we haveψ ∈ ∆ for all ∆ with sΛ −→
→ s∆, but there is a∆′ such thatsΘ −→→ s∆′ andψ 6∈ ∆′. Therefore,
(sΛ,sΘ) 6∈ Ri for any i ≤ m. Choose ani ≤ m. By definition of Ri ,
there is a formulaχi such thatKiχi ∈ Λ while χi 6∈ Θ. As Θ is maxi-
mally KEC (m)-consistent inΦ, we haveKEC (m) ⊢ ϕΘ →¬χi , thus by
contrapositionKEC (m) ⊢ χi → ¬ϕΘ. Using (R2) and (A2) we derive
KEC (m) ⊢ Kiχi → Ki¬ϕΘ, and asKiχi ∈ Λ, we haveKEC (m) ⊢ ϕΛ →
Ki¬ϕΘ.

b. Now we show thatKEC (m) ⊢ ϕΛ → Ki(
V

Θ∈W¬ϕΘ). In fact, this fol-
lows froma by propositional logic and exercise 1.4.1.2 (i) on p. 14 of
the textbook.
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c. Here we show thatKEC (m) ⊢
W

∆∈CONΦ ϕ∆.

Proof Suppose on the contrary that the formula¬
W

∆∈CONΦ ϕ∆, which
is equivalent by De Morgan’s laws to

V

∆∈CONΦ ¬ϕ∆, isKEC (m)-consistent.
Then we can find for every∆ ∈ CONΦ a conjunctψ∆ of ϕ∆ such that
∆ := {¬ψ∆ | ∆ ∈ CONΦ} is KEC (m)-consistent. (Check this conclu-
sion for yourself as EXERCISE 2.9.)

Thus, by the Lindenbaümchen Lemma, there is a set of formulasΘ⊇∆
which is maximallyKEC (m) consistent inΦ. Now we come to the
desired contradiction by diagonalization:Θ contains bothψΘ (which
was defined as a conjunct ofϕΘ) and, becauseΘ ⊇ ∆, also¬ψΘ .

d. KEC (m) ⊢ ϕW ↔ (
V

Θ∈W¬ϕΘ).

Proof: show how this follows fromc as EXERCISE 2.10.

e. Here we show the final claim thatKEC (m) ⊢ ϕW → EϕW. Proof: By
b and d we have for alli ≤ m KEC (m) ⊢ ϕΓ → KiϕW, so by (A6)
KEC (m) ⊢ ϕΓ → EϕW, and finally, becauseΓ ∈W, our claim holds.

EXERCISE 2.9 Prove the missing step in partc of the⇐-direction of the C-case in the Fi-
nite Valuation Lemma. Thus, check that∆ := {¬ψ∆ | ∆ ∈ CONΦ} is KEC (m)-
consistent.

EXERCISE 2.10 Prove the missing step in partd of the⇐-direction of the C-case in the Finite
Valuation Lemma. Thus, show howKEC (m) ⊢ ϕW ↔ (

V

Θ∈W¬ϕΘ) follows from
partc.

EXERCISE 2.11∗ As mentioned before, the completeness proof ofKEC (m) can be adapted for
the systemsTEC(m), S4EC(m) and S5EC(m) as well. Make the adaptation for
S5EC(m). Hint: see also Proposition 1.6.5 and Corollary 1.6.6 from the textbook.
In order to be able to get a finite countermodel, you need to change the definition
of the closureΦ of ϕ so thatΦ contains the formulaKiKiψ for relevant formulas
Kiψ, and so that it containsKi¬Kiψ for relevant formulas¬Kiψ. Be careful to
preserve the finiteness ofΦ when doing this!

2.3 COMMON KNOWLEDGE IN DISTRIBUTED SYSTEMS

Read section 2.2 of the textbook.
runs and time page 59, def. 2.2. Intuitively, you may view a run as the sequence of global states through time.

Notice that time here is viewed as isomorphic to the natural numbers, or a finite
part of them. This is a usual assumption in computer science,because computers
proceed in discrete time steps. When you do not want to demanda fixed time
bound on a process from the beginning, you allow time to run over the infinite set
of natural numbers.

Of course there are many other assumptions about the structure of time that
are suitable to model different situations. Time could be continuous like the real
numbers or even branching towards the future like a tree, where each possible
action leads you into another branch. You can find an enjoyable discussion of many
possibilities in Johan van Benthem,The Logic of Time, second edition, Reidel,
Dordrecht, 1991.

For an example of a run, look at the picture that goes with EXERCISE 1.20
in Unit 1 of this course. A run in this Kripke model could be(0,0) → (0,1) →
(1,0)→ (1,1)→ (0,0). Note that there need not be an accessibility arrow between
two global states for them to appear in succession in a run.

increase of common
knowledge

page 59, line 7 from
bottom

Why is it interesting to look at distributed systems in whichcommon knowl-
edge increases during some run? In practical cases, you wantto model situations
in which common knowledge isestablishedby communication so that different
processors can coordinate their actions. In such cases, it has to be possible that
common knowledge increases. The rest of section 2.2 investigates when such
increase happens. It turns out that this is very rare, and even impossible if the
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communication channels are imperfect (see for example the Coordinated Attack
Problem explained on page 64 of the textbook).

EXERCISE 2.12 This exercise refers to a distributed system with two processors, A and B.
Each can be in one of three local states, 0, 1 or 2. Its associated Kripke model
M = 〈S,π,RA,RB〉 is specified by the figure below, withP = {p}. The arrows at
the edges are intended to wrap around the figure in the indicated directions, with
solid lines for processor A and dotted lines for processor B.

b b b

b b b

b b b

p

(0,0)

p

(1,0)

¬p

(2,0)

¬p

(0,1)

¬p

(1,1)

p

(2,1)

p

(0,2)

¬p

(1,2)

p

(2,2)

RB RB

RB RB

RB RB

RA

RA

RA

RA

RA

RA

b b

b b

b b

b b b

b b b

a In the above Kripke model, can common knowledge change over the course of
a run? If so, give an example, and explain. If not, explain whynot.

b Now, remove states (2,1) and (1,2) fromS. Can common knowledge (still)
change over the course of a run? If so, give an example, and explain. If not,
explain why not.

c Finally, in addition to removing (2,1) and (1,2), remove states (2,0) and (0,2)
from S. Can common knowledge (still) change over the course of a run? If
so, give an example, and explain. If not, explain why not.

EXERCISE 2.13 Make exercise 2.2.9 from the textbook, but give a different example than the
one given on p. 261 of the textbook.

EXERCISE 2.14 Make exercise 2.2.13 from the textbook, but give a differentexample than the
one given on p. 261 of the textbook.

EXERCISE 2.15 Make exercise 2.2.14 from the textbook.
Coordinated Attackpage 64, example

2.2.16
See R. Fagin, J.Y. Halpern, Y. Moses and M.Y. Vardi,Reasoning about Knowl-

edge, MIT Press, Cambridge (MA), 1995, Chapter 6 for an extensivediscussion of
the problems and possible partial solutions to the problemsrelated to establishing
common knowledge when messages can get lost.

2.4 IMPLICIT KNOWLEDGE

Read section 2.3 of the textbook.
definition of implicit
knowledge

page 65, definition
2.3.1

In order to understand the semantic definition of implicit knowledge, it may
help to write it in contraposition:

(M,s) 6|= Iϕ ⇔ there is at with (s,t) ∈ R1∩ . . .∩Rn and(M,t) |= ¬ϕ.
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EXERCISE 2.16 This exercise refers to the example about Kripke in the introduction of this
unit. Because we use a propositional instead of a predicate modal language, we
need to simplify a bit. Letp stand for “Kripke is at least 19 years old” andq for
“Kripke is a student of modal logic”. Suppose, for the sake ofconcreteness, that
agent 2 is Kripke’s mother, and you are agent 1. Consider the model pictured on
page??, and show the following:

a (M,w1) |= K1(q→ p).

b (M,w1) |= ¬K2(q→ p).

c (M,w1) |= K2¬p

d (M,w1) |= ¬K1¬p

e (M,w1) |= ¬K1¬q∧¬K2¬q.

f M |= (¬p∧ (q→ p)) →¬q.

g (M,w1) |= I¬q.

EXERCISE 2.16,
continued

The Kripke model in which propositionsa tog should be shown to hold follows
on the next page.

b

b

bw2

¬p,q
w3

p,q

w1

¬p,¬q

R2 R1

R1,R2

R1,R2

R1,R2

EXERCISE 2.17 Make exercise 2.3.1.1 from the textbook.
EXERCISE 2.18 Make exercise 2.3.1.2 from the textbook.
completeness of
KI (m)

page 67, theorem 2.3.2There is a small typing error in the third line of the proof: instead of Exercise
2.3.1.1, you need Exercise 2.3.1.2.

EXERCISE 2.19 Show the following semantically, using completeness.

a KI (m) ⊢ (Iϕ∧ I(ϕ → ψ)) → Iψ

b TI (m) ⊢ Iϕ → ϕ

c S4I(m) ⊢ Iϕ → II ϕ

d S5I(m) ⊢ ¬Iϕ → I¬Iϕ

rule (R4) page 67, l. 12 from
bottom

A nice application of rule (R4) is related to exercise 2.16 ofthis unit. Take
ψ1 = q→ p andψ2 = ¬p. We haveKI (m) ⊢ ((q→ p)∧¬p) →¬q (see Exercise
2.16 (f)), so by rule (R4),KI (m) ⊢ (K1(q→ p)∧K2¬p) → I¬q.

EXERCISE 2.20 Make exercise 2.3.3 from the textbook.
EXERCISE 2.21 Take the Kripke models associated to distributed systems asdefined in section

1.8 of the textbook. Show that in such modelsM the following holds:

M |= ϕ ↔ Iϕ.
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2.5 BELIEF

Read section 2.4 of the textbook.
EXERCISE 2.22 This exercise concerns a combination of logics for knowledge and belief. We

define the new logicEpist(m) for magents. This logic consists of the following:

– The axioms and rules ofS5(m) for the knowledge operatorsKi ;

– The axioms and rules ofKD45(m) (also called ‘weakS5(m)’) for the belief
operatorsBi ;

– a new mixed axiomKiϕ → Biϕ for i = 1, . . . ,m.

The Kripke models have relations for both types of operators. Let us denote the
models asM = 〈S,π,RK

1 , . . . ,RK
m,RB

1 , . . . ,RB
m〉, whereS is the set of states,π the

valuation, and for the accessibility relations, the superscripts K andB stand for
knowledge and belief, respectively.

a. Show for all Kripke modelsM = 〈S,π,RK
1 , . . . ,RK

m,RB
1 , . . . ,RB

m〉: If the model
M satisfies the property that for allv,w∈ S, (vRB

i w⇒ vRK
i w), then Ki p→

Bi p holds throughout the model.

b. Bonus Suppose we have a structure〈S,RK
1 , . . . ,RK

m,RB
1 , . . . ,RB

m〉, in which
for somei ≤ m and for somev,w ∈ S one hasvRB

i w but not vRK
i w. Show

that you can then find a valuationπ′ on this structure such that forM′ =
〈S,π′,RK

1 , . . . ,RK
m,RB

1, . . . ,RB
m〉 you can show(M′,v) 6|= Ki p→ Bi p.

Note: in the terminology of the Advanced Logic course, thesefirst two items
imply that the axiomKi p → Bi p characterizesthe class of Kripke models
that satisfy the property for allv,w∈ S, (vRB

i w⇒ vRB
i w).

c. Give an interesting ‘mixed’ theorem ofEpist(m) and prove it axiomatically.


