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Unit 2

2 KNOWLEDGE WITHIN A GROUP

INTRODUCTION

In this unit, we introduce some special notions of knowleddthin multi-agent
systems that are of great importance both in everyday lifldmoomputer science:
common knowledge and implicit knowledge within a group.

The notion ofCommon knowledgarises from David LewisConvention: A
Philosophical StudyCambridge (MA), Harvard University Press, 1969. One of
the questions in his book is about the convention of drivingaccertain side of
the road. What kind of knowledge is needed for every drivefiet reasonably
safe? Suppose that all Dutch drivers drive on the right sidheoroad. That fact
by itself is not enough to make all drivers feel safe: they Mtamant to know
that all other drivers drive on the right side, as well. Thiisseems necessary
that “everybody knows that everybody drives on the righe’sidNow imagine
the strange situation where everyone drives on the righauserthey know that all
others drive on the right, but that everyone holds the falhgfalse belief: “except
for myself, everyone else drives on the right just by halritj eould continue to
do so no matter what he expected others to do”. Lewis argaésitthis imaginary
situation one cannotreally say that there is a conventidnite on the right. After
giving some more complex imaginary examples, Lewis propdisat if there is a
convention among a group thét then everyone knowg, everyone knows that
everyone knowsp, everyone knows that everyone knows that everyone knows
¢, and so on ad infinitum. In such a case we say that the groupdmamon
knowledge ofp.

Another example in which common knowledge is importantpe@ugh you
may never have realized it, is in everyday conversatiorestlie following. Sup-
pose a lecturer asks a student “Did you make the exercised@iring to exercises
2.1 and 2.2 of this unit. Of course to understand each otleeteitturer and the
student must both know that “the exercises” refers to ezesc?.1 and 2.2 of this
unit, but also they must know that they both know it (so thatytivill know that
the student’s answer is appropriate to the lecturer’'s qudsthey must know that
they both know that they both know it (so that they will knowatlkhe lecturer’s re-
sponse to the student’s answer is appropriate), and so ansuifject of common
knowledge and its applications will be formally defined artkasively treated in
2.1,2.2 and 2.3 below.

The notion ofimplicit or distributed knowledgalso helps to understand pro-
cesses within a group of people or collaborating agents p&septhat you know
that all students of modal logic are at least 19 years old | &ndw that Kripke is
17 years old, then together we have distributed knowledaga<ttipke is not a stu-
dent of modal logic. In general, we have distributed knogkedfé if by putting
our knowledge together may be deduced, even if none of us individually knows
¢. The subject of distributed knowledge is treated in 2.4 Wweldctually, Kripke
was 17 when he invented what is now called Kripke semantics.)
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STUDY GOALS

After studying this unit you are supposed to be able to

— semantics: determine the truth value of sentences including the E, C and

I-operators in relevant Kripke models

— syntax: make axiomatic derivations KEC (), SSEC ), Kl (1), andSSly,
the systems incorporating common knowledge and distribkiewledge.

— theory: understand soundness and completene8&d ) andSS5EC ),
with respect to the intended Kripke models

— modelling: analyze the ‘Muddy Children puzzle’ using Kripke models for
S5ECm,

— modelling: understand how properties of distributed systems can be de-

scribed using the notion of common knowledge

— theory: understand soundnessKif , andS5ly,, the systems incorporat-
ing distributed knowledge, with respect to the intendegkeimodels

RECOMMENDATIONS FOR STUDYING

This unit requires about 30 hours of study. It goes with $eti2.1, 2.2, and 2.3
of the textbook by Meyer and Van der Hoek. When reading thibtek, you may
skip subsections 2.1.4 and 2.1.5 about completeness;sramalternative simpler
proof in section 2.2 of this study guide.

MAIN TEXT

2.1 COMMON KNOWLEDGE

Read section 2.1 of the textbook,
but skip subsections 2.1.4 and 2.1.5.
Determine the value of the following propositions at theegiworld in the
picture on pagé?.

a (M,w1) =C(pvaq)

b (M,w1) =C(pVva)— (CpvCa)
¢ (M,wi) =C(pAQ)

d (M,w1) =C(pAQ) < (CpACH)
e (M,w1) =C(pvag) —CC(pVa)
f (M,w1) E-Cp— C-Cp.
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Here follows the Kripke model in which propositioago f should be evalu-
ated.

p,q Ry p,—q
° °
G
Rl, 2 17R;
R> R>
W3
e —P,Q
&
Ri, Ry

Let EXd(k > 0) be defined byE®) = ¢,EX*1¢ = E(EX¢). Then,E% = ¢
E%0 = E(E'9) = E(E(E%)) = EE¢ and so on. Given this definition, it can be
shown in general that ¥ is anSy, Kripke model withn statesM = E"¢ < C¢.
Let us first look at a concrete example.

a Show thatM |= E’¢ « C¢ holds in a specific model based on the Kripke
structure(S Ry, Rz, R3) given below. Let the language be given By=
{p, q}. First, devise a formulg and a truth assignment so that for
M = (S TRy, Ry, Rs), we haveM |= E’¢ « C¢d. Explain whyE’¢ < Co
holds; then, show why this would be true for any formdiland any truth
assignmentton the given structure.

Ry R R3 Ry R> R3

e > o€ ——>0< -0 >0 > O ——> 0 > o
W1 W2 W3 Wz Wg We W7

b Prove that, in factVM = E"¢ — C¢ holds inall Kripke modelsM with n states.

¢ Finally, take the model above, and expand it to an infinitelyerating sequence,
so that the set of worldS' is the set of all natural numbers. Accessibility
relations alternate as follows: (ywvi;1) € Ry iffi modulo 3 =1, (w, wij;1)
€ Ry iffi modulo 3 =2 and (ww;.1) € Rziffi modulo 3 =0. Give a formula
W and a truth assignment, and letM’ = (S, 7, Ry, Rx, Rs) so that for every
n>0,M ¥ E"y « Cy. Explain your answer.

Make exercise 2.1.2.1 and 2.1.3.1 from the textbook.

page 56 line 4 from In fact, the muddy children problem is a more general versiaie problem

bottom

of the wise persons in Unit 1. The statement “there is at leastchild with mud

on its head” is common knowledge for the children in the situeafter the father
makes his utterance, similar to the common knowledge in itke persons’ puzzle
that at least one of Abelard and Heloise wears a red hat. Ipteh&, common
knowledge was not yet introduced, so we used the facts abeutumber of red
and white hats as background knowledge to restrict the nuwfbeorlds in our

Kripke model.

page 57 line 1 from There is a mistake in the definition Bf(s,s). It should be as follows:

bottom

Ri(ss) < sj=sforall j #i.

Notice that this definition oR;(s,s') is the dual of the definition dR; in the case
of distributed systems (see section 1.8 of the textbookgrefR(s,s) iff s = 5.



completeness of
KEC m)

closure ofp

EXAMPLE 2.1

EXERCISE 2.4

page 47, after
Theorem 2.1.3

Unit 2 Knowledge within a group 4

2.2 AN ALTERNATIVE COMPLETENESS PROOF FOR EPISTEMIC
LOGIC WITH COMMON KNOWLEDGE

We will give a simpler completeness proof than the one froenlithok. Ours is
inspired by R. Fagin, J.Y. Halpern, Y. Moses and M.Y. Vafdeasoning about
Knowledge MIT Press, Cambridge (MA), 1995, pp. 67—69. Their defimitaf
KEC () differs from the one in the textbook by Meyer and van der Hdedgin
and his coauthors even interp@d differently, so thaC¢ does notimplyp in their
system. Thus we need to adapt their ideas. The method of jgroat used often
in modal logic when you try to prove completeness with respefinite models,
for example when you want to show decidability of a system.

We have to prove that, supposing th&EC , t/ ¢, there is a modeWl € K
and aw € M such tha{M,w) (= ¢. There will be four steps:

1 Afinite set of formulasb, theclosureof ¢, will be constructed that contaiigs
and all its subformulas, plus certain other formulas thatremeded in step 4
below to show that an appropriate valuation falsifyingt a certain world
can be defined. The sétis also closed under single negations.

2 A‘“Lindenbaiimchen” lemma will be proved: a consistent etamtences from
@ can always be extended to a set that is maximally consigteht i

3 These finitely many maximally consistent sets will correspto the states in
the Kripke countermodel againgt and appropriate accessibility relations
and a valuation will be defined on these states.

4 1t will be shown, using induction on all formulas i, that the model con-
structed in step 3 indeed contains a world in whicks false. This is the
most complex step in the proof.

The completeness proof &EC ) can be adapted for the syste&C ),
S4EC ) andS5EC, as well. We leave this to the reader (see EXERCISE 2.11,
which includes a hint). Let us start with step 1, the definitid the closure ob.

Below, we will define the closure of a sentenfce You can view this closure
as the set of formulas that arelevantfor making a countermodel agairngst In
the completeness proof &f;;, we used the set of all formulas in the language
to create a countermodel. But now we make do with a smallesfdetmulas, so
that the countermodel will be finite.

Definition The closureof ¢ with respect taKEC ) is the minimal setb of
LRec-formulas such that:

a pecod.

b. If Y € d andy is a subformula oy, theny € @.

o

. If W e ®andy itself is not a negation, theay € &.
d. If Cy € b thenECY € .

e. If EQ e dthenKjp € @ foralli <m.

The closure o€pV Cqwith respect tKEC (,) is

® = {CpvCq—(CpvCaq),
Cp,~Cp,ECp,—-ECp K1Cp,=K1Cp,KzCp,~KCp, p,—p
Cq,—Cq,ECq -ECq K;Cq,—K1Cq,KoCq, —K2Ca,q, ~q}

Show that for every formulé, the closureb of ¢ with respect tKEC () is a
finite set of formulas.
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This finishes step 1 of the completeness proof. The next tiefileads up to
the Lindenbaiimchen Lemma, step 2 of the proof.
maximal Definition A finite set of formulad™ such that™ C ® is maximallyKEC -
consistency irp consistent ind if and only if:

a. [ isKEC ) -consistent, i.eKEC ) I/ =(Ayer W). (cf. textbook p. 14, def.
1.4.2)

b. Thereis nd”’ C @ such thaf” C I'" andl"" is still KEC y,-consistent.

EXAMPLE 2.2 For the closureb of CpV Cq with respect toKEC (), which is presented in
EXAMPLE 2.1, here follows one maximalKEC ,-consistent set ib:
r = {CpvCqCpECPKiCp,KLp,p,
-Cq,~ECq ~K1Cq,-K2Cq,q}
Lindenbaimchen Lindenbatimchen Lemmalet ® be the closure o with respect tdKEC (.
Lemma If I C ® is KEC y-consistent, then there is a €t ' which is maximally
KEC (m)-consistent ird.
EXERCISE 2.5 This exercise concerns the definition of maxima{lgC ., -consistent sets in
a closured.

a. Explain for each of the following sets of formulas, why itdsisn’t maxi-
mally KEC , -consistent sets if:

. = {CpvCq,CpECpPKiCp,KoCp,—p,
—-Cg,~ECq —K1Cq,—K>Cqg,—q}

. = {~(CpvCq),~-Cp,ECpKiCp,KLCp,p,
—Cq,ECq K1Cq,K>Ca,q}

N3 = {CpvCq,Cp,~ECp—KiCp,KCp,p,
—-Cg,~ECq —K1Cq,—K>Cq,q}

b. Show that, if a closur® of some formulap contains 2 n elements, the®
has at most2maximallyKEC  -consistent subsets.

¢. Provethe Lindenbaiimchen Lemma. Hint: adapt the prooéafina 1.4.3(i)
on page 15 of the textbook (the Lindenbaum Lemma).

Definition of the Now we are ready to take step 3, namely to define the mdget< S, T, Ry, ..., Rn >
countermodel that will turn out to contain a world where¢ holds. Thus, we need to choose a
set of states, a truth assignmentind a set ofn accessibility relationBy, . .., Ry.

— As domain of states, we take one statefor each maximallyKEC -
consistent™ C ®. Note that, becaus® is finite, there are only finitely
many maximally consistent sets contained in it, so thereoatg finitely
many states. Formally, we define CQN= {I" | I" is maximallyKEC (-
consistentird} andSy = {s- | € CONo }.



Unit 2 Knowledge within a group 6

— To make a truth assignmem we want to conform to the propositional
atoms that are contained in the maximally consistent setegmonding to
each world. Thus, we defirg(s-)(p) = 1 if and only if p € . Note that
this makes all propositional atoms that do not occur false in every world
of the model.

— We define the relationB; as follows:R = {(sr,sa) | W € A for all Y such
thatK;p € I'}. Take care! This definition implies thatlifdoes not contain
any formula of the fornK;, then there ar& arrows froms to all worlds
in the model.

Finite Truth Lemma It will turn out that using this definition, we not only hay®ly,sr) = p iff
p € I for propositional atoms, but such an equivalence holds for all relevant
formulas. This is proved in the Finite Truth Lemma, the maisult of step 4:
Finite Truth Lemma If I € CONo, then for all{ € ® it holds that(My,sr) =
wiff wer.
Proof The proof depends on the Finite Valuation Lemma on Ziy&\Ve leave
the proof, which works by induction on the structuralgfto the reader.
EXERCISE 2.6 Prove the Finite Truth Lemma from the Finite Valuation Lemomapage??.
Use a proof by induction on the structure of the formula. Reier that you may
use the five equivalencesup toe of the Finite Valuation Lemma in your proof of
the Finite Truth Lemma. (If you want, you may postpone thisreise until you
have worked through the proof of the Finite Valuation Lemma)

completeness of From the Finite Truth Lemma, completeness is almost imnedia
KEC () from Finite Completeness Theorenif KEC ) i/ ¢, then there is a modél € K, and a
Truth Lemma w € M such tha{M,w) (= ¢.

Proof SupposeKEC i, i/ ¢. TakeMy as defined in step 3. Now, using the
Lindenbaiimchen Lemma and the fact thétc ®, there is a maximally consistent
I € @ such that-¢ € I'. By the Finite Truth Lemma, this implies th@ily,sr) =

=@, thus(My,sr) = ¢. QED.

In order to prove the Finite Truth Lemma, we need to prove sessential
properties of maximaliKEC , -consistent sets i®, namely the Finite Valuation
Lemma and the Consequence Lemma.
Finite Valuation Finite Valuation Lemma If T is maximallyKEC y, -consistent in some clo-
Lemma sured, then for ally, x it holds that:

a lff-ped, then-weliff YgT.
b. fYAxed thenprxeliff el andyerl.
c. If Kip € &, thenKjp e T iff @ € Afor all A with (sr,) € R.

d. If Ey € @, thenEy e T iff Y € Aforall Aand alli < msuch tha{sr,s\) €
Ri.

e. If CY € @, thenCy T iff Y € Afor all A such thatsy —— sa.

Consequence Consequence Lemmdf I' € CONg, Y1,...,Un €T, X € ® andKEC (1
Lemma W1 — (W2 — (-..(Wn—X)...)), thenx eT.
EXERCISE 2.7 Provea andb of the Finite Valuation Lemma. (Hint: see the proof of lemma

1.4.3 (ii) on pp. 16,17 of the textbook.) Moreover, show thain a andb, sim-
ilar lemmas follow for all other standard propositional nentives. Why are the
conditions that-y € ®, respectivelyp A X € ®, needed? Give concrete counterex-
amples taa andb where these conditions are left out.

EXERCISE 2.8 Prove the Consequence Lemma. (Hint: asendb of the Finite Valuation
Lemma, and see the proof of lemma 1.4.3 (ii)(4) on pp. 16, tfh@fextbook.)
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Proof of ¢, d and e of the Finite Valuation Lemma We will now prove the
hard parts of the Finite Valuation Lemma. The proofcd§ quite similar to the
normal completeness proof &y, see Theorem 1.4.7 on pp. 18-22 of the text-
book. As is to be expected, the proofeinvolving common knowledge, is by far
the hardest. Supposing first that the relevant formulasrede ive will prove the
three equivalences below, mostly using contrapositioHfer=-sides.

c: the Kj-caseSuppos&; € ®.

= Suppos&;y € I', and suppose thésr,sa) € Ri. Then by definition oR;, we
immediately havep € A, as desired.

< Suppose, by contraposition, th&tp ¢ I'. We need to show that there ig\a
such that(sr,sa) € R andy € A. It suffices to show the followin@laim:
the set of formulad’ = {x | Kix € '} U{—-W} is KEC i, -consistent. For if
the claim is true, then by the Lindenbaiimchen Lemma theistsea max-
imally KEC (i -consistenA 2 A’ in ®. By the definitions of\" andR, we
have(sr,sh) € R, and bya of the Valuation Lemma we havg ¢ A, as we
wanted to prove. So let us prove the claim. In order to ders@radiction,
supposé’ is notKEC (,; -consistent. Becausk is finite, we may suppose
that{x | Kix €T} = {X1,.-.,Xn}- Then by definition of inconsistency,

KEC (m F =(X1 A ... AXn A—).
By propositional reasoning, we get

KEC m) X1 — (X2 = (---(Xn = W) ...).

Then by necessitation (R2) plus a number of application&aj and more
propositional reasoning, we derive

KEC (m) F Kix1 — (KiX2 = (... (KiXn — KiW)...)).

However, we know thakKiXs,...,Kixn € I' andK;p € ®, so by the Conse-
guence Lemma, we havgy € I, contradicting our starting assumption.

d: the E-caseSuppose&Ey € @; then by the construction @b alsoK;p € @
foralli <m.

= SupposeEy € I'. Axiom (A6) and some easy propositional reasoning gives
UsKEC iy F EY — Ki. Because&y € ® we can use the Consequence
Lemma and derive thd€;p € I for all i < m. Thus, by the=--step of the
Ki-case, we have € A for all A and alli < m such that(s-,s\) € R, as
desired.

< The proof is very similar to thes-step, this time using (A6) and the--step
of theKj-case.

e the C-caseSupposeCy € ®; then by the construction @b alsoECY € ®
andy € @.

= SupposeCy € I'. We will prove by induction that for alk > 0 and all4, if
s+ —K s, theny,Cy € A. (Note that this is stronger than what is actu-
ally needed for the=-step. We have “loaded” the induction hypothesis by
showing that not onlyp € A, but alsoCy € A). Let us begin by proving the
base step:

k=0 Suppose thag- —° s»; this means that = A. Thus we need only to
show thatp € I'. But this follows fromCy € I" by the axiom thaKEC () -
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Cy — Y (A7), the fact thatp € ® and the Consequence Lemma.

k=n+1 Suppose thag- —"*1s,, thenthere is &’ such thasr —" sy and
sy — Sa. By the induction hypothesis, we hapeCy € A'. By axiom (A8)
we know thatkEC , - Cy — ECY, and becaus€y € A" andECY € ®
we may apply the Consequence Lemma to concii@¢y € A'. But then by
the=--step of theE-case, we know tha@y € A. From this finally, as in the
base case, we conclude thiat A as well, and we are finished.

< This is by far the hardest part of the proof. This time we warkctly, not by
contraposition. So suppogec A for all A with 5§ —— sa. We will have to
prove thaCy T.

First a general remark. Because eagltorresponds to &nite set of for-
mulasA, we can represent eaghas the finite conjunction of its formulas,
denoted a®p. Note that here we make crucial use of the fact that we re-
stricted ourselves to the finite closupe

Now we defineV as{A € CONy | Y € A for all A with s, —— sp}. So
in particular,” € W. Intuitively, we wantw to become the set of worlds in
whichCy holds.

Now letdw = V pew §a- This formula is the disjunction of the descriptions
of all states corresponding¥. From the finiteness &%, we may conclude
thatdw is a formula ofL. Similarly, we definey = \/ g o, Where
W={©cCONy | ©&W}.

Our aim is to prove the followin@laim:
KEC (m) - ¢w — Edw.

First, let's show how this claim helps us to prove the desgedclusion
Cy eT. Fromthe claim, we may conclude by (R3) and (A10) KRBT ) -
dw — Chw. Then, because € A for all A € W andy occurs in all con-
junctions ¢, for all A € W, we haveKEC ) - ¢w — . Thus, using
(R3) we deriveKEC () - C(¢w — W), from Wh|ch it follows by (A9) that
KEC (m) - Cow — CqJ Combmed with the fact tha&&EC () - éw — Cow
and some propositional logic, this givEEC 1, - dw — CL|J Now because
¢r is one of the disjuncts oy, we haveKEC y = ér — Cy. Finally,
using the Consequence Lemma and some propositional regsove con-
cludeCuy € I, exactly what we set out to prove.

Thus, it “only” remains for us to prove the claiKEC ) - ¢w — Edpw. We
do this in five steps.

a. We first show that for all < mand for allA e W and® e W, KEC m F
oA — Ki—bo.
Proof By definition of W andW, we havep € A for all A with sy —
— sp, but there is @' such thatsg —— sy andy € A'. Therefore,
(sn,S0) € R for anyi < m. Choose an < m. By definition ofR;,
there is a formulg; such thakix; € A while x; ¢ ©. As © is maxi-
mally KEC ,-consistent ird, we haveKEC ) - o — —Xi, thus by
contrapositiorKEC () - Xi — —¢e. Using (R2) and (A2) we derive
KEC (m) - KiXi — K.ﬂq)e, and aKx; € A\, we haveKEC ) op —
KI_‘¢@

b. Now we show thaKEC ;) F da — Ki(Agew ~do)- In fact, this fol-

lows froma by proposmonal logic and exercise 1.4.1.2 (i) on p. 14 of
the textbook.
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c. Here we show thtEC 1 - Vaccon, Pa-

Proof Suppose on the contrary that the formal§ sccon, ¢a, Which

is equivalent by De Morgan’s laws f9accon, ~9a, iISKEC () -consistent.
Then we can find for everfy € CONg a conjunctpa of ¢pa such that
A:={-s | A e CONo} is KEC p-consistent. (Check this conclu-
sion for yourself as EXERCISE 2.9.)

Thus, by the Lindenbaiimchen Lemma, there is a set of fos@iaA
which is maximallyKEC , consistent ind. Now we come to the
desired contradiction by diagonalizatio®: contains bothpg (which
was defined as a conjunctg) and, becaus® D A, also—g .

d. KEC ) - dw < (Aecw ~00)-
Proof: show how this follows from as EXERCISE 2.10.

e. Here we show the final claim th&EC , - ¢w — Edw. Proof: By
b andd we have for alli < m KEC i, F ¢r — Kidw, so by (A6)
KEC (m) - ¢r — Edw, and finally, becausg € W, our claim holds.

Prove the missing step in pastof the «<-direction of the C-case in the Fi-
nite Valuation Lemma. Thus, check that= {-)s | A € CONo} is KEC (-
consistent.

Prove the missing step in paftof the <=-direction of the C-case in the Finite
Valuation Lemma. Thus, show hoMEC ) F dw < (Agew —do) follows from
partc.

As mentioned before, the completeness prookKBL ., can be adapted for
the systems'EC ), S4EC, and S5EC,, as well. Make the adaptation for
S5ECy). Hint: see also Proposition 1.6.5 and Corollary 1.6.6 fraetextbook.
In order to be able to get a finite countermodel, you need tagdshe definition
of the closured of ¢ so that® contains the formul&;K;y for relevant formulas
Kiy, and so that it containkj—K;y for relevant formulas-K;. Be careful to
preserve the finiteness & when doing this!

2.3 COMMON KNOWLEDGE IN DISTRIBUTED SYSTEMS

Read section 2.2 of the textbook.

Intuitively, you may view a run as the sequence of globakstatrough time.
Notice that time here is viewed as isomorphic to the natunatlmers, or a finite
part of them. This is a usual assumption in computer scidmaeguse computers
proceed in discrete time steps. When you do not want to deradined time
bound on a process from the beginning, you allow time to ruer tive infinite set
of natural numbers.

Of course there are many other assumptions about the seuafuime that
are suitable to model different situations. Time could beticmous like the real
numbers or even branching towards the future like a tree ravbach possible
action leads you into another branch. You can find an enjeydibtussion of many
possibilities in Johan van Bentherhe Logic of Timgsecond edition, Reidel,
Dordrecht, 1991.

For an example of a run, look at the picture that goes with ERESE 1.20
in Unit 1 of this course. A run in this Kripke model could 6@,0) — (0,1) —
(1,0) — (1,1) — (0,0). Note that there need not be an accessibility arrow between
two global states for them to appear in succession in a run.

increase of commoage 59, line 7 from Why is it interesting to look at distributed systems in wha@mmon knowl-

knowledge

bottom

edge increases during some run? In practical cases, youtavargdel situations
in which common knowledge isstablishedoy communication so that different
processors can coordinate their actions. In such caseas itohbe possible that
common knowledge increases. The rest of section 2.2 imaes when such
increase happens. It turns out that this is very rare, and empossible if the
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communication channels are imperfect (see for example twdihated Attack
Problem explained on page 64 of the textbook).

This exercise refers to a distributed system with two preees A and B.
Each can be in one of three local states, 0, 1 or 2. Its asedci&ipke model
M = (ST, Ra, Rg) is specified by the figure below, with = {p}. The arrows at
the edges are intended to wrap around the figure in the irdiaditections, with
solid lines for processor A and dotted lines for processor B.

boom e om

——> Y e t—————> 0 t—————> Y 0 4 -
‘ﬂiwaa Ui Ui

[ [
\ AR \N_~

Ra Ra Ra
P Re P Rs p
——»/Vt/o «—————> Y o a—————> G o a4 -
‘\~ ’(071) [\ ’(171) l\_/’ (271)
Ra Ra Ra
p Rs p R -p
—> o a—————> Y e «—————> Y o 4 -
= (0,0) =" (1,0) "\ ~1(2,0)

a In the above Kripke model, can common knowledge change breetadurse of
arun? If so, give an example, and explain. If not, explain wai;

b Now, remove states (2,1) and (1,2) frdgn Can common knowledge (still)
change over the course of a run? If so, give an example, andiexf not,
explain why not.

¢ Finally, in addition to removing (2,1) and (1,2), removeta$a(2,0) and (0,2)
from S. Can common knowledge (still) change over the course of @ ifin
S0, give an example, and explain. If not, explain why not.

Make exercise 2.2.9 from the textbook, but give a differeaneple than the
one given on p. 261 of the textbook.

Make exercise 2.2.13 from the textbook, but give a diffeexample than the
one given on p. 261 of the textbook.

Make exercise 2.2.14 from the textbook.

Coordinated Attack page 64, example  See R. Fagin, J.Y. Halpern, Y. Moses and M.Y. VaRkasoning about Knowl-

edge MIT Press, Cambridge (MA), 1995, Chapter 6 for an extendigeussion of
the problems and possible partial solutions to the probletased to establishing
common knowledge when messages can get lost.

2.4 IMPLICIT KNOWLEDGE

Read section 2.3 of the textbook.

definition of implicit page 65, definition  In order to understand the semantic definition of implicibkhedge, it may

knowledge

help to write it in contraposition:

(M,s) i 19 < thereis & with (sit) € RiN...NR, and(M,t) &= —¢.
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Logics for Artificial Intelligence 11

This exercise refers to the example about Kripke in the duotion of this
unit. Because we use a propositional instead of a predicatlahtanguage, we
need to simplify a bit. Lep stand for “Kripke is at least 19 years old” andor
“Kripke is a student of modal logic”. Suppose, for the sakeafcreteness, that
agent 2 is Kripke’s mother, and you are agent 1. Consider tdeipictured on
page??, and show the following:

a (M,wi) =Ki(q—p).

b (M,w1) |= =Kz(q— p).

¢ (M,wy) = Ka-p

d (M,wp) = -Ky-p

e (M,wy) = -Ki—qA —Ky—q.
f M= (-pA(q— p)) — —a.
g (M,w1) =1-q.

The Kripke modelin which propositiorssto g should be shown to hold follows
on the next page.

@ Ri,Rx
-p,—q- e
W1

Ro Ry

—-p,q p,q
CH )
Ri, Ry Ri,R;

Make exercise 2.3.1.1 from the textbook.
Make exercise 2.3.1.2 from the textbook.
page 67, theorem 2.3 Phere is a small typing error in the third line of the proofstiead of Exercise
2.3.1.1, you need Exercise 2.3.1.2.
Show the following semantically, using completeness.

a Kl F(10A1(0— ) — 1Y
b TimkI1d—o

C St 10 — 110

d SBly - —l¢ — 1-1¢

page 67, 1. 12 from A nice application of rule (R4) is related to exercise 2.16hi$ unit. Take
bottom Y1 =q— pandy = —-p. We haveKl ) - ((q— p) A—p) — —q (see Exercise
2.16 (f)), so by rule (RAKI () = (Ka(q — p) AKz—p) — 1-q.
Make exercise 2.3.3 from the textbook.
Take the Kripke models associated to distributed systerdsfased in section
1.8 of the textbook. Show that in such modglghe following holds:

MEd«Ild.
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2.5 BELIEF

Read section 2.4 of the textbook.
This exercise concerns a combination of logics for knowéedgd belief. We
define the new logi€&pist ,; for magents. This logic consists of the following:

— The axioms and rules &5, for the knowledge operatot§;

— The axioms and rules D45 ,; (also called ‘wealS5,’") for the belief
operators;;

— anew mixed axionKj¢p — Bj¢p fori=1,...,m.

The Kripke models have relations for both types of operatbet us denote the
models aM = (STLRY,... RS, RE, ... RB), whereSis the set of statesy the
valuation, and for the accessibility relations, the supdpss K andB stand for
knowledge and belief, respectively.

a. Show for all Kripke model#! = (STLRY,..., RS, RE, ... RB): If the model
M satisfies the property that for allw € S, (vRBw = vRw), then Kip —
B; p holds throughout the model.

b. Bonus Suppose we have a structuy®R{,... RS RE,... RB), in which
for somei < m and for some,w € Sone hasyRPw but not vR‘w. Show
that you can then find a valuatiari on this structure such that fdu’ =
(ST,RX,...,RS,RB, ... .RB) you can showM’,v) I~ Kip — Bip.

Note: in the terminology of the Advanced Logic course, tHgsetwo items
imply that the axionK;p — B;jp characterizeshe class of Kripke models
that satisfy the property for alw € S, (VREw = vRBw).

c. Give an interesting ‘mixed’ theorem &lpist,, and prove it axiomatically.



