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Unit 1

1 BASICS. THE MODAL APPROACH TO KNOWLEDGE

INTRODUCTION

The textbook by Meyer and van der Hoek treats epistemic sogiat is logics
aboutknowledgeThe first person who wrote about epistemic logic was the
Finnish philosopher G.H. von Wright in his book “An Essay imd&l Logic”
(North-Holland, 1953). His treatment is completely axidgimiavith no mention
of possible semantics. Most philosophical work on epistdogic has
concentrated on defending certain axioms and denoundiregst

In fact, the subject of epistemic logic only started to flshrafter Kripke’s
invention of a semantics for modal logic in the early sixtiégpke introduced a
possible worlds semantiésr modal logics. The name “possible world” is
somewhat misleading, because, in the words of Hintikka@@]n“applications to
entire universes are scarcely found outside philosoplspetulations. The
primary intended applications are to scenarios coveritadively small pieces of
space-time”. In the context of epistemic logic, one can vieavids that are
possible for a certain agenin world w asepistemic alternativesvorlds that are
compatible with what agemtknows atw. The precise definitions will be given in
Chapter 1. The first book about epistemic logic, J. HintikkK&nowledge and
Belief” (Cornell University Press, 1962), applies thesmaatical ideas to
epistemic logic, although the definitions are not quite #mae as the standard
ones used today. As Hintikka writes in a paper of 1986, theaseics of
epistemic logic presents much more interesting problerdssatutions than the
axiomatic side of the subject. You will find that in the textlosemantical
questions are indeed predominant.

Researchers have found applications of epistemic logigimftelds as diverse as
economy (where it is important in game theory and in negotigb reason about
what the other person knows and doesn’t know), Artificiatliigence and
computer science. Since the eighties, there has been mmmweoication than
before between the researchers from different fields usidgstudying epistemic
logic. The most important conference on epistemic logic rtated subjects is
TARK (since 1996 standing for “Theoretical Aspects of Ratifity and
Knowledge”), held every other year since 1986.

Chapter 1 reintroduces the systekhaindS5that the reader first met in an
introduction to modal logic, but this time the systems aeated in the context of
knowledge. Also, more than one agent is considered, ang agent may know
different things and see different epistemic alternattha® her colleagues do.
This luckily does not make the systeiigy, andS5y, (the system& andS5for
m agents) much more complicated than their single agent equants, because
interactions between agents are not axiomatized. Also mbieg) is made to
apply epistemic logic to distributed systems, a hot topiCamputer Science.
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STUDY GOALS

After studying this unit you are supposed to be able to

syntax: make axiomatic derivations ik, and inS5y,
— semantics:interpret epistemic formulae in Kripke models

— theory: understand soundness and completeneks,gfandS5y, with
respect to the intended Kripke models

- semantics:understand why fo5) reduced, simple models suffice of the
systems

— syntax:rewrite anS§ ) formula as an equivalent formula in normal form

— modelling: understand how distributed systems can be represented as
Kripke models

— modelling: understand how epistemic logic may be applied to prove the
correctness of communication protocols in distributedeys.

GENERAL RECOMMENDATIONS FOR STUDYING

Both this unit and unit 2 (about knowledge within a group) gthwhe textbook
by W. Van Der Hoek en J.-J. Ch. Meyé&pistemic Logic for Al and Computer
SciencgCambridge Tracts in Theoretical Computer Science, No@ajmbridge
University Press, 1995, ISBN: 0-52146014-X. You may findsadif errata for the
textbook at
http://www.ai.rug.nl/mas/index.php?topic=literat&subtopic=errata.

Standard exercises have no special labels. You are supfibedible to make
the standard exercises without external help. Exercisekadd&XERCISE are
optional, but they are recommended if you experience diffesiwith the
standard exercises. Some exercises have hints; in thatreasare marked
EXERCISE'™, With EXERCISE 11114 we mean that exercise 1.4 is good
additional training if you experience difficulties in makgiexercise 1.1, to be
done before continuing exercise 1.1. If you like challenges may try exercises
marked EXERCISE

RECOMMENDATIONS FOR STUDYING THIS UNIT

This unit requires about 36 hours of study. The followingteams some further
explanations of parts of the text, some historical and hibtnical background
about epistemic logic and some extra training material. iiegoes with
Chapter 1 of the textbook by Meyer and Van der Hoek, but pastafion 1.7 (pp.
30,31,32 up to just above Corollary 1.7.4.6) is skipped beeat is replaced by a
shorter proof contained in this study guide.

MAIN TEXT

2.1 EPISTEMIC FORMULAS AND THEIR SEMANTICS

Read sections 1.1, 1.2, and 1.3 of the textbook.
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EXERCISE 1.1

page 7 line 12

worlds and states page 8 line 4

epistemic
alternatives

page 8 line 7
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An operatorK; works the same as the modal necessity opefatiwom the
Introduction to Modal Logi¢for RUG studentsVoortgezette LogigaTheK

stands for knowledge, and théor agenti. You may view agents as humans, or as
computer processors in a distributed system, or as othectshjaccording to the
context. If the context does not specify with what kind of aig&e are doing, we
will often refer to an agent as “she”, which is shorthand foe, she or it”.

LetP = {p,q,r}. Which of the following are formulas ib3 (P)? Here you may
use the same conventions about parentheses and abbmevigtich ap — q for
—pV Q) as in the textbook. Explain your answers.

a Ks(pva)

b KiKop— Kip

¢ M3z—(pVvM;)

d KiKy(Q(r) vQ(a))

Those who have been introduced to modal logic by other bdwks this one,
might wonder about the distinction between worlds and stdsa’t a state a
world anyway? In those other books, the states of our textlaoe called
“worlds”. The distinction of our textbook may be motivatedthe following way.
A world corresponds to a full description of what relevartpositions are true
and false in that world. The set of all propositions includ&smic propositions,
so that a world depends on a local truth assignment. But thaf sdl propositions
also includes modal propositions suchkap, so that a world depends on the
accessibility relation&; as well. The description of a Kripke model includes both
local truth assignments and the accessibility relatiohsisT as the textbook
states, a worldM, s) consists of a Kripke mod&ll and a distinguished stase

The intuitive idea behind epistemic alternatives is thagddition to the real state
of affairs, there could be more states of affairs. For a gagent, some of these
other states of affairs (or worlds) are indistinguishabterf the real world, and
she thinks that these are still possible. The more an agentkrthe better she
can distinguish other worlds from the real one, so the fewantdg are epistemic
alternatives for her! This corresponds to the intuitiveadieat information means
elimination of uncertainty. We say that an agknowsg if ¢ is true in all worlds
that the agent thinks possible.

How to interpret knowledge in practice? Sometimes one cantity ‘knowledge’
with sensory perception, as in the case of a child seeing afdoud on another
child’s forehead. We now identify ‘knowing’ with ‘seeinggnd say that the first
child knows that the second child is muddy. Similarly for tieg, feeling, etc.

Knowledge can also be quite conceptually oriented, whesztperception is not
the only means of knowing. A real life example - for most readds the case of
knowing whether the Argentine Open University is situate@uenos Aires.

Your knowledge of the world is likely to be consistent wittbdth being there and
it not being there. In terms of epistemic logiegk —p and—K p. Both a world
where the Argentine Open University is in Buenos Aires ancddwvhere it

isn’t in Buenos Aires are epistemic alternatives for yowtie (a) below gives
the relevant states and accessibility relations. You maydgowhy a picture like
(b) is not correct. In fact, it is a common mistake to identifgrlds with actors, as
happened here with world.
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p -p

o W3 o Wg
O 8 N/
P wg wy P w
(a) correct picture (b) incorrect picture

Picture (a) illustrates an important feature of episterogid. Whereap A —pis
absurd-KpA —K-pis true in both worlds above. SimilarlpVv —p is trivially
true, whileK pv K—p (“the agent knows whethgy”) is false in both worlds.

Mostly, only those few propositional constants relevantii@ application are put
in P. See the example above, whé&eontains only the propositional constgmt
Thus, a “possible world” is not a complete world, as scienctiofn stories and
some philosophers imagine them, at all; it is only completative to the set of
propositional constants.

Quoting the textbook, “We define the relatiar}= ¢”. Here,w is shorthand for
the world(M, s) (see page 8, line 4 of the textbook). The new relatids ¢ is
inspired by the same notation|= ¢ on line 10 of page 6 of the textbook, where
w is a classical truth valuation, ada formula in the language of propositional
logic. In the sequel we deal almost exclusively with the nesgible worlds
relationw = ¢, which makes confusion unlikely.

Let’s give an example of how Kripke models can be used to mageizzle
situation. We take a simplified version of the “Wise Persqm#’zle, which goes
as follows. There are two wise persons, Abelard (A) and HeldH). It is known
to everyone that there are three hats: two red ones and one evie. The king
puts a hat on the head of each of the two wise persons, who taeatheir own
hat but can see the other person’s hat (and they both knoyv Ttiie king asks
them sequentially if they know the color of the hat on theindvead. The first
person, Abelard, says that he does not know; the secondméistoise, says that
she knows.

Before reading the analysis below, find out for yourself winast be the color of
Heloise’s hat.

Let us begin to analyze the situation just after the king hashe hats on the two
wise persons’ heads but before he has asked any questiang. ¢ase, we have
three worlds that are characterized by the color of the habttfipersons. For
example, in the world represented(@asv) Abelard wears a red hat and Heloise a
white one. Similarly for the other two possible worl@g r) and(r,r). (Note that
according to the conditions given aboye, w) is definitely not a possible
situation, so we don'tinclude it). The epistemic altermatielationsRa andRy

are given in the picture below. The relevant propositiomaistants area, rq, wa
andwy with obvious meanings. In pictures of Kripke models, thevantion is to
write down only the propositional constants that & in a world. We follow
this convention below. Note that we do not introduce projmsal constants for
propositions such as “Abelard can see Heloise” and “thexdtaee hats, two red
ones and one white one”: Abelard’s and Heloise’s knowledigeiathese facts,
that belong to théackground theoryis implicitly built into th e choice of worlds
and the accessibility relations.
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EXERCISE 1.3

EXERCISE 1.4

EXERCISE 1.5

EXERCISE 1.6

EXERCISE 1.7
EXERCISE 1.8
EXERCISE 1.9

Valid formulas
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Ra, Ru
Fa,TH
(r,r)
Ra Ru
WAa, 'y ra, WH

rr (G wn D)

We are still in the situation just after the king has put thestoe the two wise
persons’ heads but before he has asked any questions. iEwyblgj given the
puzzle story, the relatiorRy andRy in the picture above are appropriate for this
situation .

Determine the value of the following propositions at theegiworlds, and
explain your answers using the truth definition on page 8 etéxtbook.

) E—Kara
': —Kara A =Kawa

a (M, (r,w)) = Kura
b (M, (r,w)

¢ (M, (r,r)

d (M,(r,r)) &= Ku(=KaraA —=Kawa)

After the king has asked Abelard whether he knows the colbiohat and
Abelard has answered “no”, the relevant worlds with the neeeasibility
relations are given by the following picture:

(War) RA (rar)
RA, RH @' .§> RA7RH
Wa, M4 ra,TH

Explain why the relation®a andRy in the picture above are appropriate for the
situation. Also, explain why Heloise now knows the color ef hat, namely. ..

We have assumed in the story that Abelard and Heloise carasbeoher. Now
assume that Heloise is blind but that Abelard can see hertfeydboth know
this). Can Heloise still figure out the color of her hat aftdyefard’s first answer
“no”? (Draw new Kripke models if necessary.)

Exercise 1.3.1.1 from the textbook.
Exercise 1.3.2 from the textbook.

John can see Mary and Will, Will can see Mary and hear everyhhahn and
Grace are deaf, and cannot read Mary’s lips. Mary can hear dotl sees Grace
and Will. Grace can see everybody except herself. John aadeGrave white
spots on their foreheads. Mary shouts “Grace has a whitecspbér forehead”.
Formalize the given information and draw two Kripke modelgwthe
corresponding accessibility relations, one for the siturabefore and one for the
situation after Mary’s utterance.

page 11 Prop. 1.3.5 (if he textbook mentions an “instance of a propositional tagly’. Examples of

such instances are tautologies suclias- q) — (—q — —p), but also
tautologies where some propositional constants are reglag formulas of the
form Kj¢. An example of an instance of the propositional tautologyvatis
(Kip— Ka(qVr)) — (=K2(qVvr) — =Kip).
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Closure under page 12 Remark This remark discusses properties (ii) and (iv) of Propositl.3.5. The possible

logical consequencé.3.5.2 worlds approach seems to commit us to these two propertmsetker, the
properties force us to treat agents as if they where ideay: kinow all valid
formulas (iv), and know all logical consequences of theimktedge (ii, iv). This
is not a realistic demand on human agents. Even if the agemtoeaputational
artefacts such as processors or knowledge bases, they Havetnlimited time
or memory space for computing and storing all the knowletigé they should
have according to (ii) and (iv). Together the two propertiasse the so-called
logical omniscience problem, which is treated at lengtteictions 2.5, 2.6 and
2.7 of the textbook in the context of a logic for belief.

EXERCISE 1.10 Find two real-life (not formal) examples that illustrateetbmniscience problem:
one example where property (iv) of Proposition 1.3.5 doaswodd, and one
example where property the property thafgp — @ then= Kid — Kjw (which
follows from (ii) and (iv) together) does not hold.

2.2 THE AXIOM SYSTEM K

Read section 1.4 of the textbook.

Definition of page 13, def. 1.4.1  Because the definition of derivation is a bit abstract, wé gwle some

derivation background and a few examples. First, note that there iderdifce between
K (m)-derivations and the natural deduction derivations thatiyet ininleiding
Logica In natural deduction derivations, you are allowed to haesrpses on the
left side of the--sign, as inp, =g+ pV g. In the axiomatic approach that is taken
in the textbook, this is not the case. Here you can only haeerafla on the
right-hand side of the--sign.

Second, irK () -derivations, you get propositional logic for free, so teak.
Thus, you don't have to derive propositional tautologies,Have all of them to
your disposal at once by axiom (Al). Here follows an examplévtion, in
which the purpose is to prove ;) - Ki(p — q) — (Kip — KaiQ).

EXAMPLE 1 1. Ky (KipAKi(p— ) — Kig by (A2).

2. Ky - ((KipAKa(p — @) — Kiq) — (Ka(p— q) — (Kip — K10)) by (A1),
using the propositional tautologyd AY) — X) — (W — (¢ — X)).

3. Ky F Ki(p— g) — (Kip— Kiq) by (R1) on 1,2.
Note that the above derivation can be applied to any serg@ndeinstead of

p,g. Thus, we have derived rule Agii on page 242 of the book by Meyer and
Van der Hoek).

Derived rules page 14, exercise ~ When you make a lot of derivations Ky,,), you will soon notice that some
1.4.1.1 patterns appear in many different proofs. One of these npatie the following:
EXAMPLE 2 1,...,i. (@anumber of derivation steps, may be empty in some cases).

i+1. K(m) ¢ — Wby arule from the previous steps or by an axiom.

i+2. Km) FKi(¢ — ) by (R2) onii.

i+3. Km) FKi(¢ — W) — (Ki¢ — Kip) by Example 1 above, derived rule (A2
i+4. Km) F Ko — Ky by (R1) on i+2, i+3.

From this pattern you may generalize to a so-catledved rule if
Km) F ¢ — g, thenK ) - Ki¢ — K. Here you do not assume the formula
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¢ — U, but you assume thgt— Y has beemlerivedin K . This particular
derived rule is called K-distribution (abbreviation KDpcamay be used in
proofs. Here follows such a derivation, where the purpose jgove

K F (KipVKiq) — Ki(pVa).

. Ky Fp—(pVva) by (AL).
. Ky Fa—(pVva) by (A1).

EXAMPLE 3 1
2
3. Ky FKip— Ki(pVva) by (KD)on 1.
4
5

. K1) FKig— Ki(pVvg) by (KD) on 2.

. Ky F (Kip— Ky (pva)) — ((Kig— Ki(pva)) — ((KipvKig) — Ki(pVva))
by (A1), using the propositional tautology

(¢ —X) = (W—=x)—= (6 V) — X))
6. K1) (Kig— Ki(pVv@)) — ((K1pVKig) — Ki(pVv@)) by (R1) on 3,5.
7. Koy F (KipVKig) — Ki(pV Q) by (R1) on 4,6.

Now it is time to try an exercise. You may use all derived rdtesn the appendix
of the textbook, pp. 241-245 with reference to their ablaied names.

EXERCISE 1.11 Prove the following:

a. Ky (KipAKig) — Ki(pAQ)
b. K1) FKi(pAdg) — (KipAKaQ)
C. K(l) F (KipAKi—p) < Ki L

EXERCISE 1.12" The proof of Theorem 1.4.6 on p. 18 of the textbook is a bit slarmulate the
proof in a more precise way, by induction on the length (orgtnecture) of the
derivation.

Hint: You may find inspiration on inductive proofs in Chapter 5 ¢1.4.K. van
Benthem et al.logica voor Informatici second edition, Addison Wesley, 1994.
Half of the work in making an inductive proof consists in farkating an
appropriate inductive hypothesis!

Completeness of page 14, def. 1.4.2 uplin Definition 1.4.2, a start is made to define concepts suchasmally

K to page 22, line 3 consistent set of formuldbat eventually play a role in Theorem 1.4.7, the
completeness proof ¢ p,). It is handy to have a clear outline of the whole proof
in mind before working on all the definitions and lemmas thatreeeded.

In order to show completenesskf,, with respect tn, you have to prove the
following (this follows from the contraposition of Definith 1.4.5 (ii) of the
textbook):

If Ky 7 ¢, there is a modeM € K,y and aw € M such tha(M, w) = ¢.

There will be three main steps in the completeness proof:

1 A “Lindenbaum”lemma will be proved: a consistent set of s@iges can
always be extended to a set that is maximally consistens. iEhémma
1.4.3 (i) of the textbook; part (ii) of the same lemma givesfubproperties
of maximally consistent sets.

2 These maximally consistent sets will correspond to thestist the Kripke
countermodel againgt, and appropriate accessibility relations and a
valuation will be defined on these states. The model is catienical
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because it is a single model that contains counterworldgusbagainst the
formula¢ in question, but against all formulas that are not provatdmf

K n), atonce! The construction of the canonical model is parhefgdroof
of Theorem 1.4.7, and can be found on the upper half of pagé th&o
textbook.

3 It will be shown that the model constructed in step 2 indeadaios a world in
which ¢ is false. For this, the so-called Truth Lemma is proved using
induction on all formulas. This is the most complex step mpinoof. See p.
19, last 10 lines, up to p. 22, line 3 of the textbook.

Truth Lemma page 19, Lemma 1.4.8 he definition of the canonical mod®I° is constructed on purpose so that for all
propositional atomg and all maximally consistent seBswe have(M® sg) = p
iff pe ©. The Truth Lemma extends this equivalence to all formulatjust
propositional atoms. The proof by induction on the struetnfrthe formula uses
appropriate features of maximally consistent sets (se@)y a3 well as some
tricky derivations inK ) (see p. 21).

Mixed theorems  page 22 after finishing=ven though the systeni§,) do not contain explicit mixed axioms in which
Lemma 1.4.8 differentK; operators appeatr, it is definitely possible to prove mixextbms.
Here follows an example.

EXERCISE 1.13 Prove semantically tha((z) E KoKipAKoKi(p — q) — KoKsg.
Note: by completeness & ,), this also implies that
K(Z) FKoKipA KzKl(p — q) — KoK10.

2.3 FJURTHER PROPERTIES OF KNOWLEDGETHE SYSTEM S5

Read sections 1.5 and 1.6 of the textbook.

The axiom (A3) of page 23, line 8 Axiom A3 says that an agent only knows things that are trués @&kiom is the

S5 one used by most philosophers to distinguish knowledge fyehef, for which it
does not hold: you cannot know a fact that is false, althouwmhngay believe it.
See section 2.4 of the textbook for more on a logic for belief.

The axiom (A4) ancbage 23, line 8 Axioms (A4) and (A5) intuitively say that an agent is intrespive. It can look at

(A5) of S5 its knowledge base (or memory in the case of a human agentyilidchow what
it knows and what it does not know. Many philosophical pajpiésuss the
appropriateness of these two axioms for human agents. Nhilsspphers reject
the introspective axioms, and especially (A5), for varioessons. However, in
the area of computer science both axioms are usually actephés is reasonable
in situations where the epistemic alternatives are vievggt@mpatible with the
informationthat the agent has” and the agent can check this. For exaiinple,
database doesn't know a basic faand you ask it whethgp holds, it will check
whetherp is among the set of basic facts it contains, and answer "reg. S
Section 1.5 on applications of epistemic logic to distrdalisystems and protocol
verification for an example in which one would certainly gucaxioms (A4) and
(A5).

EXERCISE 1.14 This exercise concerns the plausibility of axioms (A4) aff)(for human agents.
a Find two real-life (not formal) examples in which human atgeappear: one

example where property (A4) does not hold, and one where 48} not
hold.

b What is your own opinion about the axioms®%, e.g. do you find axiom (A4)
more acceptable than (A5) for human agents? (If you follag ¢burse in
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Correspondence page 25 and 26
theory

Completeness of page 27, Theorem
S5m) 1.6.7

EXERCISE 1.15

Equivalent worlds page 28, Definition
1.7.1

EXERCISE 1.16

Restricting to the page 28, Proposition
equivalence class 1.7.2

EXERCISE 1.17

Reduced simple  page 29, line 5 from
models are sufficierottom
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a group, discuss these issues among groups of 2 or 3 stuchehigide
down your conclusions.)

If you want to know more about the fascinating subject of espondence theory,
you may read Johan van Benthem’s “Correspondence theofy"Nh Gabbay
and F. Guenthner (eddlandbook of Philosophical Logic, Vol., |bp. 167-247.

Note thatS5,) does not contain any “mixed” axioms containing knowledge
operator¥; for different agents. Still, one can prove useful mixed tie@as in
SSm) form> 2, such assyy) K1Ko¢p — K1¢. Here follows a useful mixed
meta-theorem: for alp, S5 - ¢ iff S5, - Ka iff S5, - Kzo.

This exercise is about mixed theorems.

a Show syntactically (i.e. by giving a formal proof) tha§,) - KiKa¢ — Ki¢;

b Find and prove at least two other mixed theoremSg$,.

2.4 THE ONE AGENT CASE REMARKS ON THE S&)-MODEL

Read section 1.7 of the textbook,
but skip pp. 30, 31 and 32 up to just above
Corollary 1.7.4.6.

The motivation to define equivalent worlds is the followittggurns out that, in
S§4)-models, you don’t need to have two different equivalentldgrbut you can
always throw away one of them without losing any informatidhis will be
proved below.

Look at the two modelM; = (S, ™, R;) andM; = (S, T, Ry) below. Prove by
formula-induction that for all formulag we have(M1,s1) = ¢ < (M2, %) = ¢.

Cos—=70

Cr P»qD
S5 S

o DP.qQ

0

M1 M2

The proof of this proposition is Exercise 1.7.2.1. A hint fbis exercise: you
have to prove by induction that for ajl, (M,s) = ¢ < (M’,s) = ¢. But other
worlds inS play a role when determining whether formulas of the fa¢j are
true in(M,s) and(M’,s). Therefore, it is better to prove something stronger,
namely for allt € S and for allp, (M,t) = ¢ < (M’,t) = ¢. This trick of proving
something stronger so that you can use a strong inductioothgpis is called
“loading the induction hypothesis”.

Make Exercise 1.7.2.1 from the textbook.

By proposition 1.7.2 and the remarks below it, you can tuerg®5,)-model
into a reduced modé&l =< ST, R>, in which(s;t) € Rfor all s;t € S. Once you
have a reduced model you can find an equivalent model tlsahjgle This means
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that all states in such a model have different truth assignisnén order to prove
this, we have to “put worlds together” that have the samétagsignment. The
textbook needs a very long proof of 2,5 pages (that you happskl when
reading section 1.7) to do this, but in fact the following gbot is possible.

Let the reduced mod®l =< S, 1t R > be given; we will show that there is a
reducedsimplemodelM’ =< S, 17, R > that satisfies the same formulasMs
This means that for every formuda there is ars € Ssuch that{M, s) = ¢ iff
there is ars’ € S such tha{M’,s) = ¢.

Proof For everys € S, denote byjs|,; the set of states iM which have the same
truth assignment as thus[s|; = {s | 1i(s) = 1(s') }. Now pick exactly one
representant worldyg, from every se{sn. Define the new set of stat&sas
{wig, | s€ S}. Letm bett| S and letR be the total relation o, namely

R ={(sit) |s,t € S}.Itis clear thatM’ =< S, ,R > is a reduced model.
Moreover, for every two stateg W € S we haver(w) # 1(w/) becausev andw
are representants from different sidg; thusM’ =< S, 1',R > is a simple
model. Finally, one can prove by induction on the formjulthat for all ¢,

(M,s) = ¢ < (M, wig,) = ¢; this in turn immediately implies thadl’ satisfies
the same formulas dd. The atomic step follows becausgs) = 1 (wg,)). The
only other interesting case ¢gg= K. In this case we havgM, s) = Ky < for all
t € S(M,t) = @ < (by induction hypothesis) for allc S(M’,wy, ) = Y <
(because all worlds i are of the formwy, ) for all

t'e S(M,t) Fy = (M wg,) F Ky.

This finishes the proof.

page 34 after Exercisd he subject of decidability and complexity of epistemicitmgys an interesting

1751 and important one. If you would like to see a more extensiydanation, also
giving the necessary background on complexity classestnegly recommend
sections 3.5 and 3.6 of R. Fagin, J.Y. Halpern, Y. Moses and Wardi,
Reasoning about KnowledgdIT Press, Cambridge (MA), 1995.

page 35 Lemma  This lemma is extremely general because it is used to proemargl theorem.
1.7.6.3 Often in applications of the lemma,and/orttis taken to ber or 1. Remember
that for ally, we have

T AW is equivalent tap

TV is equivalent toT

L Ay is equivalent tal

1L vy is equivalent tap.

For practical cases, it is good to know the following equéveles that are all
special cases of Lemma 1.7.6.3:

a. Sy - KK¢ « K¢; this is a special case of Lemma 1.7.6.3 (a) by taking
n=1,A=TandB=¢.

b. S§1) - KM¢ < M¢; this is a special case of Lemma 1.7.6.3 (b) by taking
n=1,A=TandB=¢.

C. S51) F MKy « Ky; this can be derived frorh by taking = -y and
negating both sides of the equivalence.

d. S§1) - MMy < My; this can be derived frora by taking¢ = -y and
negating both sides of the equivalence.
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EXERCISE 1.18

EXERCISE 1.19

Distributed systemspage 38, line 4-10

Kripke models for page 38, line 11-16
distributed systems
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Prove the first two equivalences above semantically withisatof Lemma
1.7.6.3;i.e. show that

a. S5y = KK « K¢;
b. S54) = KM@ < M¢;

and then invoke completeness3f ).

Write the formulak (K p A M) in normal form.

2.5 APPLICATIONS TO DISTRIBUTED SYSTEMS AND PROTOCOL
VERIFICATION

Read sections 1.8 and 1.9 of the textbook.

Epistemic logic can be used to reason about “knowledge” inynkénds of
multi-agent systems: the Wise Persons from the puzzle j+agént systems that
consist of both human and computer agents who cooperatedswaollective
goal as studied in Atrtificial Intelligence, and distributgdtems from Computer
Science. The latter application concerns us here. A diggihsystem consists of
a number of processors that can communicate with each dttwergh links in a
network. When modelling such systems, we make the assumipbtéd at each
pointin time, each of the processors is in some state, whehefer to as its
local state All of these local states together form the systegibal stateat that
point in time. These global states will be the possible woitdour Kripke model.
Thus, if you represent the global state as a vector of thd Biates, a system
consisting of two processors may be in global state(s;,s,), wheres; ands,
are the local states of processors 1 and 2.

Let's give a simple example with two processors 1 and 2. Béthese may be in
either of two local states, namedy= 0 ors = 1 fori = 1, 2. Heres refers to the
contents of process@s register. The four possible global states are
(1,1),(1,0),(0,1), and(0,0), making the set of possible worlds

S= {(17 1)7 (1, 0)7 (07 1)7 (07 0)}

The accessibility relation is defined according to the fwltay informal
description of “knowledge” of a processor. The processknows” ¢ (e.g. that
processolj’s register contains 0) if in every other global state whiels the same
local state as processipthe formulad holds. In particular processoknows its
own local state. In the picture below, the accessibilitatiehs are drawn for our
example case. The definition is natural because it is rea¢®tm@msuppose that a
processor “only knows itself”. (Note that this is oppositeAbelard’s and
Heloise’s predicament before the king asked his first qopsthey only knew the
color of theotherperson’s hat.)

Rl Rl

0,1) R (1,1)




EXERCISE 1.20

Protocol verificationpage 39, line 1 from
bottom

alternating-bit
protocol

deletion errors page 40, line 9 from

bottom

Protocol A
further

Unit 1 Basics: the modal approach to knowledge 12

This exercise concerns the example given above. Suppopesition letterp
stands for “the register of processor 1 contains 0" gisthnds for “the register of
processor 1 contains 1”. L&= {p,q}.

1 Give the valuatiortby drawingp andq at appropriate worlds in the Kripke
model above.

2 Now determine the value of the following propositions at gineen worlds.

Note that in this model knowledge is an external notion. Wedioimagine that
processors are really reasoning about their own and otleeegsors’ knowledge.
Instead, the programmer or person who wants to prove thaitaqwl is correct
reasons about the processors from the outside. For exathelprogrammer
could say that “processor 1 knows that processor 2 is fabkgause processor 2
is faulty in all states consistent with the current staterotpssor 1.

page 40, line 2 and 6 The alternating-bit protocol is mentioned twice on pageAtQhis point it is too

early to explain how it works, but see p. 44, last 6 lines, eftdxtbook.

The textbook doesn’t say so until Theorem 1.9.1, but we hageiand that,
even if deletion errors may occur, the process does not eril arp infinite loop
of deletion errors. Thus, there will always bemeater point at whictsome
message arrives.

Under this assumption, we can use epistemic logic to spagiiytocol that
handles messages in the correct way, even if deletion esoog. In the
specification of the protocol we want to guarantee thatknigwnwhether
messages have been received by the other processor atia peitd.

page 40, last line, andT he idea behind this specification of protoéais the following. First, processor

Srepeatedly sends its messagé R until Sknows thatx; is known toR. Then,
before sending the new messagg, processof sends a messageRthatS
knows thatx; is known toR, so thatR will not be confused when receiving, 1
into thinking that it is merely a repetition of.

R, meanwhile, just has to send acknowledgments that it hassetboth types of
messages fror8, so thatSknows that it can proceed.

Let’s give an example of what may happen in a particular caken the input
tapeis< 0,0,1,... >.

1 Ssets its counterto 0 and proceeds into the while loop.

2 Sreadsxp, in this case it is 0; it sends this B In our example, a deletion error
occurs, andR doesn'’t receive the message.

3 Sresends the message ORo
4 Rreceives the message 0, makes its counter equal to 0, anekpi®mto its

while loop.

N.B. Because of our assumption that the process does noheamdinfinite
loop of deletion errors, processBris bound to receive messaggat some
point.
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5 S not having heard frorR, resends the message (Ro

6 Rwrites the value okg, namely 0, at the first position of the output tapR. (
ignoresSs second attempt to senxd). Then it sends the messadéz(xo)”
to Sin order to letSknow that the first value has arrived. In our example, a
deletion error occurs, ar8ldoes not receive the messag&{xo)”.

7 S, not having heard frorR, resends the message (Ro

8 Rreceives another 0, again correctly interprets it as a itapebf X and
ignores it. Instead, it resends the messagg(%X)” to S.

9 This timeSdoes receive the messagé:(Xo)”, as is bound to occur at some
point because of our assumption that there are no infinittidel error
loops. NowKsKr(Xp) thusSjumps to the next line in its program and sends
the messageKsKr(xp)” back toR.

10 Rreceives the messagEdKr(Xo)", S0 KrKsKr(Xo), Rjumps to the next line
in its program and sends the messajaKsKr(xo)".

11 Sreceives the messagEgKsKr(Xp)”, thus KsKrKsKgr(xo) finally holds.S
puts its counter to 1. It reads, in this case it is 0, and sends thisRo

12 Rreceives the message 0 and correctly interprets thig @%ot as a repetition
of Xp), SOKRr(x1). It puts its counter to 1 and writes 0 on the second place of

the output tape.
13 etc. etc.
other errors than  page 42, below If you are interested to find out how to handle mutation andriti@n errors, look
just deletion Theorem 1.9.1 at Halpern and Zuck’s 1987 the paper mentioned in the textboo
Protocol B page 44, line 1 Here appears a subtlety in the implemented version of pob®cx; ;1 is a local

variable of the receiveR, in whichR stores the sender’s colored message
vary1,i+1).
EXERCISE 1.21 Work out an example of what may happen using protocol B in tiqudar case,

for input tape< 0,1,0, ... >, in about as much detail as the example given above
for protocol A.



