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Unit 1

1 BASICS: THE MODAL APPROACH TO KNOWLEDGE

INTRODUCTION

The textbook by Meyer and van der Hoek treats epistemic logics, that is logics
aboutknowledge. The first person who wrote about epistemic logic was the
Finnish philosopher G.H. von Wright in his book “An Essay in Modal Logic”
(North-Holland, 1953). His treatment is completely axiomatic, with no mention
of possible semantics. Most philosophical work on epistemic logic has
concentrated on defending certain axioms and denouncing others.

In fact, the subject of epistemic logic only started to flourish after Kripke’s
invention of a semantics for modal logic in the early sixties. Kripke introduced a
possible worlds semanticsfor modal logics. The name “possible world” is
somewhat misleading, because, in the words of Hintikka [Hin86], “applications to
entire universes are scarcely found outside philosophers’speculations. The
primary intended applications are to scenarios covering relatively small pieces of
space-time”. In the context of epistemic logic, one can viewworlds that are
possible for a certain agenti in world w asepistemic alternatives, worlds that are
compatible with what agenti knows atw. The precise definitions will be given in
Chapter 1. The first book about epistemic logic, J. Hintikka’s “Knowledge and
Belief” (Cornell University Press, 1962), applies these semantical ideas to
epistemic logic, although the definitions are not quite the same as the standard
ones used today. As Hintikka writes in a paper of 1986, the semantics of
epistemic logic presents much more interesting problems and solutions than the
axiomatic side of the subject. You will find that in the textbook, semantical
questions are indeed predominant.

Researchers have found applications of epistemic logic within fields as diverse as
economy (where it is important in game theory and in negotiation to reason about
what the other person knows and doesn’t know), Artificial Intelligence and
computer science. Since the eighties, there has been more communication than
before between the researchers from different fields using and studying epistemic
logic. The most important conference on epistemic logic andrelated subjects is
TARK (since 1996 standing for “Theoretical Aspects of Rationality and
Knowledge”), held every other year since 1986.

Chapter 1 reintroduces the systemsK andS5that the reader first met in an
introduction to modal logic, but this time the systems are treated in the context of
knowledge. Also, more than one agent is considered, and every agent may know
different things and see different epistemic alternativesthan her colleagues do.
This luckily does not make the systemsK (m) andS5(m) (the systemsK andS5 for
m agents) much more complicated than their single agent counterparts, because
interactions between agents are not axiomatized. Also a beginning is made to
apply epistemic logic to distributed systems, a hot topic inComputer Science.
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STUDY GOALS

After studying this unit you are supposed to be able to

– syntax:make axiomatic derivations inK (m) and inS5(m)

– semantics:interpret epistemic formulae in Kripke models

– theory: understand soundness and completeness ofK (m) andS5(m) with
respect to the intended Kripke models

– semantics:understand why forS5(1) reduced, simple models suffice of the
systems

– syntax: rewrite anS5(1) formula as an equivalent formula in normal form

– modelling: understand how distributed systems can be represented as
Kripke models

– modelling: understand how epistemic logic may be applied to prove the
correctness of communication protocols in distributed systems.

GENERAL RECOMMENDATIONS FOR STUDYING

Both this unit and unit 2 (about knowledge within a group) go with the textbook
by W. Van Der Hoek en J.-J. Ch. Meyer,Epistemic Logic for AI and Computer
Science(Cambridge Tracts in Theoretical Computer Science, No 41),Cambridge
University Press, 1995, ISBN: 0-52146014-X. You may find a list of errata for the
textbook at
http://www.ai.rug.nl/mas/index.php?topic=literatuur&subtopic=errata.

Standard exercises have no special labels. You are supposedto be able to make
the standard exercises without external help. Exercises marked EXERCISE0 are
optional, but they are recommended if you experience difficulties with the
standard exercises. Some exercises have hints; in that casethey are marked
EXERCISEhint. With EXERCISE 1.111.4 we mean that exercise 1.4 is good
additional training if you experience difficulties in making exercise 1.1, to be
done before continuing exercise 1.1. If you like challenges, you may try exercises
marked EXERCISE∗

RECOMMENDATIONS FOR STUDYING THIS UNIT

This unit requires about 36 hours of study. The following contains some further
explanations of parts of the text, some historical and philosophical background
about epistemic logic and some extra training material. Theunit goes with
Chapter 1 of the textbook by Meyer and Van der Hoek, but part ofsection 1.7 (pp.
30,31,32 up to just above Corollary 1.7.4.6) is skipped because it is replaced by a
shorter proof contained in this study guide.

MAIN TEXT

2.1 EPISTEMIC FORMULAS AND THEIR SEMANTICS

Read sections 1.1, 1.2, and 1.3 of the textbook.
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notation Ki page 7 line 12 An operatorKi works the same as the modal necessity operator2 from the
Introduction to Modal Logic(for RUG students:Voortgezette Logica). TheK
stands for knowledge, and thei for agenti. You may view agents as humans, or as
computer processors in a distributed system, or as other objects, according to the
context. If the context does not specify with what kind of agent we are doing, we
will often refer to an agent as “she”, which is shorthand for “he, she or it”.

EXERCISE0 1.1 Let P = {p,q, r}. Which of the following are formulas inL3
K(P)? Here you may

use the same conventions about parentheses and abbreviations (such asp→ q for
¬p∨q) as in the textbook. Explain your answers.

a K5(p∨q)

b K1K2p→ K1p

c M3¬(p∨M1)

d K1K1(Q(r)∨Q(q))

worlds and states page 8 line 4 Those who have been introduced to modal logic by other books than this one,
might wonder about the distinction between worlds and states. Isn’t a state a
world anyway? In those other books, the states of our textbook are called
“worlds”. The distinction of our textbook may be motivated in the following way.
A world corresponds to a full description of what relevant propositions are true
and false in that world. The set of all propositions includesatomic propositions,
so that a world depends on a local truth assignment. But the set of all propositions
also includes modal propositions such asKi p, so that a world depends on the
accessibility relationsRi as well. The description of a Kripke model includes both
local truth assignments and the accessibility relations. Thus, as the textbook
states, a world(M,s) consists of a Kripke modelM and a distinguished states.

epistemic
alternatives

page 8 line 7 The intuitive idea behind epistemic alternatives is that, in addition to the real state
of affairs, there could be more states of affairs. For a givenagent, some of these
other states of affairs (or worlds) are indistinguishable from the real world, and
she thinks that these are still possible. The more an agent knows, the better she
can distinguish other worlds from the real one, so the fewer worlds are epistemic
alternatives for her! This corresponds to the intuitive idea that information means
elimination of uncertainty. We say that an agentknowsϕ if ϕ is true in all worlds
that the agent thinks possible.

How to interpret knowledge in practice? Sometimes one can identify ‘knowledge’
with sensory perception, as in the case of a child seeing a dotof mud on another
child’s forehead. We now identify ‘knowing’ with ‘seeing’,and say that the first
child knows that the second child is muddy. Similarly for hearing, feeling, etc.

Knowledge can also be quite conceptually oriented, where direct perception is not
the only means of knowing. A real life example - for most readers - is the case of
knowing whether the Argentine Open University is situated in Buenos Aires.
Your knowledge of the world is likely to be consistent with itboth being there and
it not being there. In terms of epistemic logic:¬K¬p and¬K p. Both a world
where the Argentine Open University is in Buenos Aires and a world where it
isn’t in Buenos Aires are epistemic alternatives for you. Picture (a) below gives
the relevant states and accessibility relations. You may wonder why a picture like
(b) is not correct. In fact, it is a common mistake to identifyworlds with actors, as
happened here with worldw.
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b b

(a) correct picture

w1 w2p ¬p

b b

b

(b) incorrect picture

w3 w4

w

p ¬p

Picture (a) illustrates an important feature of epistemic logic. Whereasp∧¬p is
absurd,¬K p∧¬K¬p is true in both worlds above. Similarly,p∨¬p is trivially
true, whileK p∨K¬p (“the agent knows whetherp”) is false in both worlds.

Kripke semantics of
epistemic formulas

page 8 line 11 Mostly, only those few propositional constants relevant for the application are put
in P. See the example above, whereP contains only the propositional constantp.
Thus, a “possible world” is not a complete world, as science fiction stories and
some philosophers imagine them, at all; it is only complete relative to the set of
propositional constantsP.

Quoting the textbook, “We define the relationw |= ϕ”. Here,w is shorthand for
the world(M,s) (see page 8, line 4 of the textbook). The new relationw |= ϕ is
inspired by the same notationw |= ϕ on line 10 of page 6 of the textbook, where
w is a classical truth valuation, andϕ a formula in the language of propositional
logic. In the sequel we deal almost exclusively with the new possible worlds
relationw |= ϕ, which makes confusion unlikely.

Let’s give an example of how Kripke models can be used to modela puzzle
situation. We take a simplified version of the “Wise Persons”puzzle, which goes
as follows. There are two wise persons, Abelard (A) and Heloise (H). It is known
to everyone that there are three hats: two red ones and one white one. The king
puts a hat on the head of each of the two wise persons, who cannot see their own
hat but can see the other person’s hat (and they both know this). The king asks
them sequentially if they know the color of the hat on their own head. The first
person, Abelard, says that he does not know; the second person, Heloise, says that
she knows.

EXERCISE 1.2 Before reading the analysis below, find out for yourself whatmust be the color of
Heloise’s hat.

Let us begin to analyze the situation just after the king has put the hats on the two
wise persons’ heads but before he has asked any questions. Inour case, we have
three worlds that are characterized by the color of the hat ofbothpersons. For
example, in the world represented as(r,w) Abelard wears a red hat and Heloise a
white one. Similarly for the other two possible worlds(w, r) and(r, r). (Note that
according to the conditions given above,(w,w) is definitely not a possible
situation, so we don’t include it). The epistemic alternative relationsRA andRH

are given in the picture below. The relevant propositional constants arerA, rH , wA

andwH with obvious meanings. In pictures of Kripke models, the convention is to
write down only the propositional constants that aretrue in a world. We follow
this convention below. Note that we do not introduce propositional constants for
propositions such as “Abelard can see Heloise” and “there are three hats, two red
ones and one white one”: Abelard’s and Heloise’s knowledge about these facts,
that belong to thebackground theory, is implicitly built into th e choice of worlds
and the accessibility relations.
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b b

b

(w, r)

wA, rH

(r,w)

rA,wH

(r, r)

rA, rH

RA RH

RA,RH

RA,RH RA,RH

EXERCISE 1.3 We are still in the situation just after the king has put the hats on the two wise
persons’ heads but before he has asked any questions. Explain why, given the
puzzle story, the relationsRA andRH in the picture above are appropriate for this
situation .

EXERCISE 1.4 Determine the value of the following propositions at the given worlds, and
explain your answers using the truth definition on page 8 of the textbook.

a (M,(r,w)) |= KH rA

b (M,(r,w)) |= ¬KArA

c (M,(r, r)) |= ¬KArA∧¬KAwA

d (M,(r, r)) |= KH(¬KArA∧¬KAwA)

After the king has asked Abelard whether he knows the color ofhis hat and
Abelard has answered “no”, the relevant worlds with the new accessibility
relations are given by the following picture:

b b

(w, r)

wA, rH

(r, r)

rA, rH

RA
RA,RH RA,RH

EXERCISE 1.5 Explain why the relationsRA andRH in the picture above are appropriate for the
situation. Also, explain why Heloise now knows the color of her hat, namely. . ..

EXERCISE∗ 1.6 We have assumed in the story that Abelard and Heloise can see each other. Now
assume that Heloise is blind but that Abelard can see her (andthey both know
this). Can Heloise still figure out the color of her hat after Abelard’s first answer
“no”? (Draw new Kripke models if necessary.)

EXERCISE 1.7 Exercise 1.3.1.1 from the textbook.

EXERCISE 1.8 Exercise 1.3.2 from the textbook.

EXERCISE 1.9 John can see Mary and Will, Will can see Mary and hear everybody. John and
Grace are deaf, and cannot read Mary’s lips. Mary can hear John and sees Grace
and Will. Grace can see everybody except herself. John and Grace have white
spots on their foreheads. Mary shouts “Grace has a white spoton her forehead”.
Formalize the given information and draw two Kripke models with the
corresponding accessibility relations, one for the situation before and one for the
situation after Mary’s utterance.

Valid formulas page 11 Prop. 1.3.5 (i)The textbook mentions an “instance of a propositional tautology”. Examples of
such instances are tautologies such as(p→ q) → (¬q→¬p), but also
tautologies where some propositional constants are replaced by formulas of the
form Kiϕ. An example of an instance of the propositional tautology above is
(K1p→ K2(q∨ r)) → (¬K2(q∨ r) →¬K1p).
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Closure under
logical consequence

page 12 Remark
1.3.5.2

This remark discusses properties (ii) and (iv) of Proposition 1.3.5. The possible
worlds approach seems to commit us to these two properties. However, the
properties force us to treat agents as if they where ideal: they know all valid
formulas (iv), and know all logical consequences of their knowledge (ii, iv). This
is not a realistic demand on human agents. Even if the agents are computational
artefacts such as processors or knowledge bases, they do nothave unlimited time
or memory space for computing and storing all the knowledge that they should
have according to (ii) and (iv). Together the two propertiescause the so-called
logical omniscience problem, which is treated at length in sections 2.5, 2.6 and
2.7 of the textbook in the context of a logic for belief.

EXERCISE 1.10 Find two real-life (not formal) examples that illustrate the omniscience problem:
one example where property (iv) of Proposition 1.3.5 does not hold, and one
example where property the property that if|= ϕ → ψ then|= Kiϕ → Kiψ (which
follows from (ii) and (iv) together) does not hold.

2.2 THE AXIOM SYSTEM K

Read section 1.4 of the textbook.

Definition of
derivation

page 13, def. 1.4.1 Because the definition of derivation is a bit abstract, we will give some
background and a few examples. First, note that there is a difference between
K (m)-derivations and the natural deduction derivations that you met inInleiding
Logica. In natural deduction derivations, you are allowed to have premises on the
left side of the⊢-sign, as inp,¬q⊢ p∨q. In the axiomatic approach that is taken
in the textbook, this is not the case. Here you can only have a formula on the
right-hand side of the⊢-sign.

Second, inK (m)-derivations, you get propositional logic for free, so to speak.
Thus, you don’t have to derive propositional tautologies, but have all of them to
your disposal at once by axiom (A1). Here follows an example derivation, in
which the purpose is to proveK (1) ⊢ K1(p→ q) → (K1p→ K1q).

EXAMPLE 1 1. K(1) ⊢ (K1p∧K1(p→ q)) → K1q by (A2).

2. K(1) ⊢ ((K1p∧K1(p→ q)) → K1q) → (K1(p→ q) → (K1p→ K1q)) by (A1),
using the propositional tautology((ϕ∧ψ) → χ) → (ψ → (ϕ → χ)).

3. K(1) ⊢ K1(p→ q) → (K1p→ K1q) by (R1) on 1,2.

Note that the above derivation can be applied to any sentencesϕ,ψ instead of
p,q. Thus, we have derived rule A2′ (xii on page 242 of the book by Meyer and
Van der Hoek).

Derived rules page 14, exercise
1.4.1.1

When you make a lot of derivations inK (m), you will soon notice that some
patterns appear in many different proofs. One of these patterns is the following:

EXAMPLE 2 1,. . .,i. (a number of derivation steps, may be empty in some cases).

i+1. K(m) ⊢ ϕ → ψ by a rule from the previous steps or by an axiom.

i+2. K(m) ⊢ Ki(ϕ → ψ) by (R2) on i.

i+3. K(m) ⊢ Ki(ϕ → ψ) → (Kiϕ → Kiψ) by Example 1 above, derived rule (A2′).

i+4. K(m) ⊢ Kiϕ → Kiψ by (R1) on i+2, i+3.

From this pattern you may generalize to a so-calledderived rule: if
K (m) ⊢ ϕ → ψ, thenK (m) ⊢ Kiϕ → Kiψ. Here you do not assume the formula
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ϕ → ψ, but you assume thatϕ → ψ has beenderivedin K (m). This particular
derived rule is called K-distribution (abbreviation KD), and may be used in
proofs. Here follows such a derivation, where the purpose isto prove
K (1) ⊢ (K1p∨K1q) → K1(p∨q).

EXAMPLE 3 1. K(1) ⊢ p→ (p∨q) by (A1).

2. K(1) ⊢ q→ (p∨q) by (A1).

3. K(1) ⊢ K1p→ K1(p∨q) by (KD) on 1.

4. K(1) ⊢ K1q→ K1(p∨q) by (KD) on 2.

5. K(1) ⊢ (K1p→K1(p∨q))→ ((K1q→K1(p∨q))→ ((K1p∨K1q)→K1(p∨q))
by (A1), using the propositional tautology
(ϕ → χ) → ((ψ → χ) → ((ϕ∨ψ) → χ)).

6. K(1) ⊢ (K1q→ K1(p∨q))→ ((K1p∨K1q) → K1(p∨q)) by (R1) on 3,5.

7. K(1) ⊢ (K1p∨K1q) → K1(p∨q) by (R1) on 4,6.

Now it is time to try an exercise. You may use all derived rulesfrom the appendix
of the textbook, pp. 241–245 with reference to their abbreviated names.

EXERCISE 1.11 Prove the following:

a. K(1) ⊢ (K1p∧K1q) → K1(p∧q)

b. K (1) ⊢ K1(p∧q)→ (K1p∧K1q)

c. K(1) ⊢ (K1p∧K1¬p) ↔ K1⊥

EXERCISE 1.12hint The proof of Theorem 1.4.6 on p. 18 of the textbook is a bit short. Formulate the
proof in a more precise way, by induction on the length (or thestructure) of the
derivation.

Hint: You may find inspiration on inductive proofs in Chapter 5 of J.F.A.K. van
Benthem et al.,Logica voor Informatici, second edition, Addison Wesley, 1994.
Half of the work in making an inductive proof consists in formulating an
appropriate inductive hypothesis!

Completeness of
K (n)

page 14, def. 1.4.2 up
to page 22, line 3

In Definition 1.4.2, a start is made to define concepts such asmaximally
consistent set of formulasthat eventually play a role in Theorem 1.4.7, the
completeness proof ofK (n). It is handy to have a clear outline of the whole proof
in mind before working on all the definitions and lemmas that are needed.

In order to show completeness ofK (n) with respect toKn, you have to prove the
following (this follows from the contraposition of Definition 1.4.5 (ii) of the
textbook):
If K (n) 6⊢ ϕ, there is a modelM ∈ K(n) and aw∈ M such that(M,w) 6|= ϕ.

There will be three main steps in the completeness proof:

1 A “Lindenbaum” lemma will be proved: a consistent set of sentences can
always be extended to a set that is maximally consistent. This is lemma
1.4.3 (i) of the textbook; part (ii) of the same lemma gives useful properties
of maximally consistent sets.

2 These maximally consistent sets will correspond to the states in the Kripke
countermodel againstϕ, and appropriate accessibility relations and a
valuation will be defined on these states. The model is calledcanonical
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because it is a single model that contains counterworlds notjust against the
formulaϕ in question, but against all formulas that are not provable from
K (n), at once! The construction of the canonical model is part of the proof
of Theorem 1.4.7, and can be found on the upper half of page 19 of the
textbook.

3 It will be shown that the model constructed in step 2 indeed contains a world in
whichϕ is false. For this, the so-called Truth Lemma is proved using
induction on all formulas. This is the most complex step in the proof. See p.
19, last 10 lines, up to p. 22, line 3 of the textbook.

Truth Lemma page 19, Lemma 1.4.8The definition of the canonical modelMc is constructed on purpose so that for all
propositional atomsp and all maximally consistent setsΘ we have(Mc,sΘ) |= p
iff p∈ Θ. The Truth Lemma extends this equivalence to all formulas, not just
propositional atoms. The proof by induction on the structure of the formula uses
appropriate features of maximally consistent sets (see p. 20), as well as some
tricky derivations inK (n) (see p. 21).

Mixed theorems page 22 after finishing
Lemma 1.4.8

Even though the systemsK (n) do not contain explicit mixed axioms in which
differentKi operators appear, it is definitely possible to prove mixed theorems.
Here follows an example.

EXERCISE 1.13 Prove semantically thatK (2) |= K2K1p∧K2K1(p→ q) → K2K1q.
Note: by completeness ofK (2), this also implies that
K (2) ⊢ K2K1p∧K2K1(p→ q) → K2K1q.

2.3 FURTHER PROPERTIES OF KNOWLEDGE: THE SYSTEM S5

Read sections 1.5 and 1.6 of the textbook.

The axiom (A3) of
S5

page 23, line 8 Axiom A3 says that an agent only knows things that are true. This axiom is the
one used by most philosophers to distinguish knowledge frombelief, for which it
does not hold: you cannot know a fact that is false, although you may believe it.
See section 2.4 of the textbook for more on a logic for belief.

The axiom (A4) and
(A5) ofS5

page 23, line 8 Axioms (A4) and (A5) intuitively say that an agent is introspective. It can look at
its knowledge base (or memory in the case of a human agent) andwill know what
it knows and what it does not know. Many philosophical papersdiscuss the
appropriateness of these two axioms for human agents. Most philosophers reject
the introspective axioms, and especially (A5), for variousreasons. However, in
the area of computer science both axioms are usually accepted. This is reasonable
in situations where the epistemic alternatives are viewed as “compatible with the
informationthat the agent has” and the agent can check this. For example,if a
database doesn’t know a basic factp and you ask it whetherp holds, it will check
whetherp is among the set of basic facts it contains, and answer ”no”. See
Section 1.5 on applications of epistemic logic to distributed systems and protocol
verification for an example in which one would certainly accept axioms (A4) and
(A5).

EXERCISE 1.14 This exercise concerns the plausibility of axioms (A4) and (A5) for human agents.

a Find two real-life (not formal) examples in which human agents appear: one
example where property (A4) does not hold, and one where (A5)does not
hold.

b What is your own opinion about the axioms ofS5, e.g. do you find axiom (A4)
more acceptable than (A5) for human agents? (If you follow this course in
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a group, discuss these issues among groups of 2 or 3 students and write
down your conclusions.)

Correspondence
theory

page 25 and 26 If you want to know more about the fascinating subject of correspondence theory,
you may read Johan van Benthem’s “Correspondence theory” inD.M. Gabbay
and F. Guenthner (eds.)Handbook of Philosophical Logic, Vol. II, pp. 167-247.

Completeness of
S5(m)

page 27, Theorem
1.6.7

Note thatS5(m) does not contain any “mixed” axioms containing knowledge
operatorsKi for different agents. Still, one can prove useful mixed theorems in
S5(m) for m≥ 2, such asS5(2) ⊢ K1K2ϕ → K1ϕ. Here follows a useful mixed
meta-theorem: for allϕ, S5(2) ⊢ ϕ iff S5(2) ⊢ K1ϕ iff S5(2) ⊢ K2ϕ.

EXERCISE 1.15 This exercise is about mixed theorems.

a Show syntactically (i.e. by giving a formal proof) thatS5(2) ⊢ K1K2ϕ → K1ϕ;

b Find and prove at least two other mixed theorems ofS5(2).

2.4 THE ONE AGENT CASE: REMARKS ON THES5(1)-MODEL

Read section 1.7 of the textbook,
but skip pp. 30, 31 and 32 up to just above
Corollary 1.7.4.6.

Equivalent worlds page 28, Definition
1.7.1

The motivation to define equivalent worlds is the following.It turns out that, in
S5(1)-models, you don’t need to have two different equivalent worlds, but you can
always throw away one of them without losing any information. This will be
proved below.

EXERCISE 1.16∗ Look at the two modelsM1 = (S1,π1,R1) andM2 = (S2,π2,R2) below. Prove by
formula-induction that for all formulasϕ we have(M1,s1) |= ϕ ⇔ (M2,s4) |= ϕ.

b

b

b

M1

s1

p,q

s2r s3 r

b b

M2

s5 s4

r p,q

Restricting to the
equivalence class

page 28, Proposition
1.7.2

The proof of this proposition is Exercise 1.7.2.1. A hint forthis exercise: you
have to prove by induction that for allϕ, (M,s) |= ϕ ⇔ (M′

,s) |= ϕ. But other
worlds inS′ play a role when determining whether formulas of the formKψ are
true in(M,s) and(M′,s). Therefore, it is better to prove something stronger,
namely for allt ∈ S′ and for allϕ, (M,t) |= ϕ ⇔ (M′

,t) |= ϕ. This trick of proving
something stronger so that you can use a strong induction hypothesis is called
“loading the induction hypothesis”.

EXERCISE 1.17 Make Exercise 1.7.2.1 from the textbook.

Reduced simple
models are sufficient

page 29, line 5 from
bottom

By proposition 1.7.2 and the remarks below it, you can turn everyS5(1)-model
into a reduced modelM =< S,π,R>, in which(s,t) ∈ R for all s,t ∈ S. Once you
have a reduced model you can find an equivalent model that issimple. This means
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that all states in such a model have different truth assignments. In order to prove
this, we have to “put worlds together” that have the same truth assignment. The
textbook needs a very long proof of 2,5 pages (that you have skipped when
reading section 1.7) to do this, but in fact the following shortcut is possible.

Let the reduced modelM =< S,π,R> be given; we will show that there is a
reducedsimplemodelM′ =< S′,π′,R′ > that satisfies the same formulas asM.
This means that for every formulaϕ, there is ans∈ Ssuch that(M,s) |= ϕ iff
there is ans′ ∈ S′ such that(M′

,s′) |= ϕ.

Proof For everys∈ S, denote by[s]π the set of states inM which have the same
truth assignment ass, thus[s]π = {s′ | π(s) = π(s′)}. Now pick exactly one
representant worldw[s]π from every set[s]π. Define the new set of statesS′ as
{w[s]π | s∈ S}. Let π′ beπ | S′ and letR′ be the total relation onS′, namely
R′ = {(s,t) | s,t ∈ S′}. It is clear thatM′ =< S′,π′,R′ > is a reduced model.
Moreover, for every two statesw,w′ ∈ S′ we haveπ(w) 6= π(w′) becausew andw′

are representants from different sets[s]π; thusM′ =< S′,π′,R′ > is a simple
model. Finally, one can prove by induction on the formulaϕ that for allϕ,
(M,s) |= ϕ ⇔ (M′,w[s]π) |= ϕ; this in turn immediately implies thatM′ satisfies
the same formulas asM. The atomic step follows becauseπ(s) = π′(w[s]π)). The
only other interesting case isϕ = Kψ. In this case we have(M,s) |= Kψ ⇔ for all
t ∈ S(M,t) |= ψ ⇔ (by induction hypothesis) for allt ∈ S(M′

,w[t]π) |= ψ ⇔
(because all worlds inS′ are of the formw[t]π ) for all
t ′ ∈ S′(M′,t ′) |= ψ ⇔ (M′,w[s]π) |= Kψ.

This finishes the proof.

Computational
Complexity

page 34 after Exercise
1.7.5.1

The subject of decidability and complexity of epistemic logics is an interesting
and important one. If you would like to see a more extensive explanation, also
giving the necessary background on complexity classes, we strongly recommend
sections 3.5 and 3.6 of R. Fagin, J.Y. Halpern, Y. Moses and M.Y. Vardi,
Reasoning about Knowledge, MIT Press, Cambridge (MA), 1995.

Normal forms page 35, Lemma
1.7.6.3

This lemma is extremely general because it is used to prove a general theorem.
Often in applications of the lemma,λ and/orπ is taken to be⊤ or⊥. Remember
that for allψ, we have

– ⊤∧ψ is equivalent toψ

– ⊤∨ψ is equivalent to⊤

– ⊥∧ψ is equivalent to⊥

– ⊥∨ψ is equivalent toψ.

For practical cases, it is good to know the following equivalences that are all
special cases of Lemma 1.7.6.3:

a. S5(1) ⊢ KKϕ ↔ Kϕ; this is a special case of Lemma 1.7.6.3 (a) by taking
π = ⊥, λ = ⊤ andβ = ϕ.

b. S5(1) ⊢ KMϕ ↔ Mϕ; this is a special case of Lemma 1.7.6.3 (b) by taking
π = ⊥, λ = ⊤ andβ = ϕ.

c. S5(1) ⊢ MKψ ↔ Kψ; this can be derived fromb by takingϕ = ¬ψ and
negating both sides of the equivalence.

d. S5(1) ⊢ MMψ ↔ Mψ; this can be derived froma by takingϕ = ¬ψ and
negating both sides of the equivalence.
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EXERCISE 1.18 Prove the first two equivalences above semantically withoutuse of Lemma
1.7.6.3; i.e. show that

a. S5(1) |= KKϕ ↔ Kϕ;

b. S5(1) |= KMϕ ↔ Mϕ;

and then invoke completeness ofS5(1).

EXERCISE 1.19 Write the formulaK(K p∧Mq) in normal form.

2.5 APPLICATIONS TO DISTRIBUTED SYSTEMS AND PROTOCOL

VERIFICATION

Read sections 1.8 and 1.9 of the textbook.

Distributed systemspage 38, line 4–10 Epistemic logic can be used to reason about “knowledge” in many kinds of
multi-agent systems: the Wise Persons from the puzzle, multi-agent systems that
consist of both human and computer agents who cooperate towards a collective
goal as studied in Artificial Intelligence, and distributedsystems from Computer
Science. The latter application concerns us here. A distributed system consists of
a number of processors that can communicate with each other through links in a
network. When modelling such systems, we make the assumption that at each
point in time, each of the processors is in some state, which we refer to as its
local state. All of these local states together form the system’sglobal stateat that
point in time. These global states will be the possible worlds in our Kripke model.
Thus, if you represent the global state as a vector of the local states, a system
consisting of two processors may be in global states= (s1,s2), wheres1 ands2

are the local states of processors 1 and 2.

Kripke models for
distributed systems

page 38, line 11–16 Let’s give a simple example with two processors 1 and 2. Both of these may be in
either of two local states, namelysi = 0 orsi = 1 for i = 1,2. Heresi refers to the
contents of processori’s register. The four possible global states are
(1,1),(1,0),(0,1), and(0,0), making the set of possible worlds
S= {(1,1),(1,0),(0,1),(0,0)}.

The accessibility relation is defined according to the following informal
description of “knowledge” of a processor. The processori “knows” ϕ (e.g. that
processorj ’s register contains 0) if in every other global state which has the same
local state as processori, the formulaϕ holds. In particular processori knows its
own local state. In the picture below, the accessibility relations are drawn for our
example case. The definition is natural because it is reasonable to suppose that a
processor “only knows itself”. (Note that this is opposite to Abelard’s and
Heloise’s predicament before the king asked his first question: they only knew the
color of theotherperson’s hat.)

b

b

b

b

(0,1) (1,1)

(0,0) (1,0)

R1

R2

R1

R2
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EXERCISE 1.20 This exercise concerns the example given above. Suppose proposition letterp
stands for “the register of processor 1 contains 0” andq stands for “the register of
processor 1 contains 1”. LetP = {p,q}.

1 Give the valuationπ by drawingp andq at appropriate worlds in the Kripke
model above.

2 Now determine the value of the following propositions at thegiven worlds.

a (M,(0,1)) |= K1p

b (M,(0,1)) |= K2p

c (M,(0,0)) |= K2K1p

d (M,(0,0)) |= M2K1p

Protocol verificationpage 39, line 1 from
bottom

Note that in this model knowledge is an external notion. We donot imagine that
processors are really reasoning about their own and other processors’ knowledge.
Instead, the programmer or person who wants to prove that a protocol is correct
reasons about the processors from the outside. For example,the programmer
could say that “processor 1 knows that processor 2 is faulty”because processor 2
is faulty in all states consistent with the current state of processor 1.

alternating-bit
protocol

page 40, line 2 and 6 The alternating-bit protocol is mentioned twice on page 40.At this point it is too
early to explain how it works, but see p. 44, last 6 lines, of the textbook.

deletion errors page 40, line 9 from
bottom

The textbook doesn’t say so until Theorem 1.9.1, but we have to demand that,
even if deletion errors may occur, the process does not end upin an infinite loop
of deletion errors. Thus, there will always besomelater point at whichsome
message arrives.

Under this assumption, we can use epistemic logic to specifya protocol that
handles messages in the correct way, even if deletion errorsoccur. In the
specification of the protocol we want to guarantee that it isknownwhether
messages have been received by the other processor at a certain point.

Protocol A page 40, last line, and
further

The idea behind this specification of protocolA is the following. First, processor
Srepeatedly sends its messagexi to R until Sknows thatxi is known toR. Then,
before sending the new messagexi+1, processorSsends a message toR thatS
knows thatxi is known toR, so thatRwill not be confused when receivingxi+1

into thinking that it is merely a repetition ofxi .

R, meanwhile, just has to send acknowledgments that it has received both types of
messages fromS, so thatSknows that it can proceed.

Let’s give an example of what may happen in a particular case,when the input
tape is< 0,0,1, . . . >.

1 Ssets its counteri to 0 and proceeds into the while loop.

2 Sreadsx0, in this case it is 0; it sends this toR. In our example, a deletion error
occurs, andR doesn’t receive the message.

3 Sresends the message 0 toR.

4 R receives the message 0, makes its counter equal to 0, and proceeds into its
while loop.

N.B. Because of our assumption that the process does not end in an infinite
loop of deletion errors, processorR is bound to receive messagex0 at some
point.
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5 S, not having heard fromR, resends the message 0 toR.

6 Rwrites the value ofx0, namely 0, at the first position of the output tape. (R
ignoresS’s second attempt to sendx0). Then it sends the message “KR(x0)”
to S in order to letSknow that the first value has arrived. In our example, a
deletion error occurs, andSdoes not receive the message “KR(x0)”.

7 S, not having heard fromR, resends the message 0 toR.

8 R receives another 0, again correctly interprets it as a repetition of x0 and
ignores it. Instead, it resends the message “KR(x0)” to S.

9 This timeSdoes receive the message “KR(x0)”, as is bound to occur at some
point because of our assumption that there are no infinite deletion error
loops. NowKSKR(x0) thusS jumps to the next line in its program and sends
the message “KSKR(x0)” back toR.

10 R receives the message “KSKR(x0)”, so KRKSKR(x0), R jumps to the next line
in its program and sends the message “KRKSKR(x0)”.

11 Sreceives the message “KRKSKR(x0)”, thusKSKRKSKR(x0) finally holds.S
puts its counter to 1. It readsx1, in this case it is 0, and sends this toR.

12 R receives the message 0 and correctly interprets this asx1 (not as a repetition
of x0), soKR(x1). It puts its counter to 1 and writes 0 on the second place of
the output tape.

13 etc. etc.

other errors than
just deletion

page 42, below
Theorem 1.9.1

If you are interested to find out how to handle mutation and insertion errors, look
at Halpern and Zuck’s 1987 the paper mentioned in the textbook.

Protocol B page 44, line 1 Here appears a subtlety in the implemented version of protocol B: xi+1 is a local
variable of the receiverR, in whichR stores the sender’s colored message
var(xi+1, i +1).

EXERCISE 1.21 Work out an example of what may happen using protocol B in a particular case,
for input tape< 0,1,0, . . . >, in about as much detail as the example given above
for protocol A.


