
 1

Web User Clustering and Its Application to Prefetching Using
ART Neural Networks

Santosh K. Rangarajan$, VirV. Phoha$, Kiran Balagani$, S. S. Iyengar*, Rastko Selmic£

$Department of Computer Science
£Department of Electrical Engineering

Louisiana Tech University
Email: phoha@latech.edu

*Department of Computer Science

Louisiana State University
Email: iyengar@bit.csc.lsu.edu

Abstract
In this paper, we present a novel approach to group users according to their Web access
patterns. Our technique for grouping users is based on the ART1 neural network. We
compare the quality of clustering of our ART1 based clustering technique with that of the
K-Means clustering algorithm in terms of inter-cluster and intra-cluster distances. Our
results show that the average inter-cluster distance of the clusters formed by K-Means
algorithm varies from 12.66 to 24.20, while the average inter-cluster distance of clusters
formed by our ART1 based clustering technique is almost constant (approximately
18.01), which indicates the high quality of clusters formed by our approach. We present a
prefetching scheme in which we apply our clustering technique to group users and then
prefetch their requests according to the prototype vector of each group. Our prefetching
scheme has prediction accuracy as high as 97.78%.

Keywords
Web usage mining, clustering, Adaptive Resonance Theory (ART), ART1 neural
network, K-Means algorithm, prefetching

1. Introduction
An important attribute contributing to the popularity of a Web site is the degree of
personalization it offers when presenting its services to users. However, improving the
level of user personalization by reorganizing the entire Web site structure according to
the interests of each user increases the number of computations at the Web server hosting
the Web site. One solution to avoid this problem is to group users based on their Web
interests, and then organize the structure of the Web site in a manner suitable to the Web
needs of different groups. It is difficult to group users according to their Web interests
mainly because of two reasons: (1) users’ interests are diverse and, (2) users’ interests
change with time. Web access logs serve as a substantial source of information about
users’ Web access patterns. Properly exploited, the Web access logs can be used to
analyze and discover useful information about users’ interests with the site.

In this paper, we present an ART1 based clustering algorithm to group users
according to their Web access patterns [1]. The ART1 [2] is a modified version of ART

 2

[3] for clustering binary vectors. The advantage of using the ART1 algorithm to group
users is that it adapts to the change in users’ Web access patterns over time without losing
information about their previous Web access patterns. In our ART1 based clustering
approach, each cluster of users is represented by a prototype vector that is a generalized
representation of URLs frequently accessed by all the members of that cluster. One can
control the degree of similarity between the members of each cluster by changing the
value of the vigilance parameter. In our work, we analyze the clusters formed by using
the ART1 technique by varying the vigilance parameter ρ between the values 0.1 and
0.5. We compare the performance of ART1 clustering technique with that of the
traditional K-Means clustering algorithm in terms of average inter-cluster and average
intra-cluster distances. Our results show that, while there is not much difference between
the inter-cluster distances obtained by using both the algorithms, there is a considerable
difference in the intra-cluster distances. For the clusters formed using the K-Means
algorithm, the intra-cluster distance varied from 12.66 to 24.20. For the clusters formed
by our approach, the intra-cluster distance remained constant (approximately 18.01),
which indicates that the variance within each cluster is uniform. We present a prefetching
scheme in which we use our ART1 based clustering algorithm to cluster users based on
their access patterns. Our prefetching scheme predicts future requests according to the
prototype vector of each cluster. The overall architecture of our clustering and
prefetching technique is illustrated in Figure 1.

Figure 1. Architecture of our clustering and prefetching scheme. (1) Each client’s
request is recorded in the proxy server’s Web log file, (2) the feature extractor
extracts the features as discussed in Section 3.2, (3) the feature vector of each client
is the input to our offline ART1 based clusterer, (4) the ART1 based clusterer
identifies the group to which the client belongs and returns the prototype vector of
that group, (5) the prefetcher requests all URL objects represented by the prototype
vector, and (6) the proxy server responds to the clients with prefetched URL objects.

 3

The rest of the paper is organized as follows. In Section 2, we briefly review the
research done in the areas of Web user clustering and prefetching. In Section 3, we
explain our implementation of the ART1 based clustering method and discuss its
application for prefetching users’ requests. In Section 4, we present the results of our
work. We conclude our work in Section 5.

2. Related Work
In this section, we discuss significant work in the areas of Web user clustering and
prefetching.

2.1. Related research in clustering Web users
Clustering users based on their Web access patterns is an active area of research in

Web usage mining. R. Cooley et al. [4] propose a taxonomy of Web Mining and present
various research issues, techniques and future directions in this field. Phoha et al. use
competitive neural networks and data mining techniques to develop schemes for fast
allocation of Web pages [5]. M. N. Garofalakis et al. [6] review popular data mining
techniques and algorithms for discovering Web, hypertext, and hyperlink structure. Y. Fu
et al. [7] present a generalization based clustering approach, which combines attribute
oriented induction, and BIRCH [8] to generate hierarchical clustering of Web users based
on their access patterns. I. Cadez et al. [9] use first-order Markov models to cluster users
according to the order in which they request Web pages. The Expectation Maximization
algorithm is then used to learn the mixture of first-order Markov models that represent
each cluster. G. Paliouras et al. [10] analyze the performance of three clustering
algorithms (1) Autoclass, (2) Self Organizing Maps and (3) Cluster Mining for
constructing community models for the users of large Websites. Xie and Phoha [11]
apply the concept of mass distribution in Dempster-Shafer’s theory and propose a belief
function similarity measure, which adds to the clustering algorithm the ability to handle
uncertainty among Web users’ navigation behavior.

Although the algorithms and techniques discussed in this section succeed in grouping
the users’ according to their diverse interests, they lack the ability to adapt to the change
in users’ Web interests over time.

2.2. Related research in prefetching
Prefetching means fetching the URL objects before the users request them. For a

prefetching scheme to be effective there should be an efficient method to predict users’
requests. An efficient prefetching scheme effectively reduces the user perceived Web
latency. However, an inefficient prefetching technique causes wastage of network
resources by increasing the Web traffic over the network, which in turn increases Web
latency.

Loon and Bhargavan [12] present an approach for prefetching URLs based on users’
profiles. Each user’s profile is represented by a weighted directed graph in which the
nodes represent URLs and the edges represent the access paths. The weight of a node
represents the frequency of access of URLs and the weight of an edge represents the
frequency of access of one URL after another. This weighted directed graph is used to
predict the user’s request. Ibrahim and Xu [13] present a context specific prefetching
technique, which uses an artificial neural network for predicting users’ requests. Li Fan et

 4

al. [14] investigate an approach to reduce Web latency, by prefetching between caching
proxies and browsers. Their technique uses the Prediction by Partial Matching (PPM)
algorithm for prefetching. The prediction accuracy of PPM ranges from 40% to 73%, and
generates an extra traffic ranging from 1-15%. Evangelos and Chronaki [15] present a
simple and effective Top-10 approach for prefetching. In their approach, the ten most
popular Web pages are prefetched. The authors show that the Top-10 approach accurately
predicts 60% of the future requests. Padmanabhan and Mogul [16] present a prefetching
scheme in which the server computes the likelihood that a particular Web page will be
accessed and conveys this information to the client. The client program then decides
whether to prefetch the Web page. The prediction is based on a dependency graph similar
to the one used in [12]. The authors conclude that their methodology results in substantial
reduction in Web latency, but increases the traffic on the network. Tian, Choi, and Phoha
[17] present an intelligent and adaptive neural network predictor, which uses the back
propagation learning rule to learn the changing access patterns of pages in a Web site.

Most of the research discussed in prefetching concentrates on prefetching individual
users’ requests according to their previous access patterns. Although these methods are
efficient for prefetching, they may considerably overload the network with unnecessary
traffic when prefetching for a large number of users. To reduce such an effect of
prefetching, we present a prefetching scheme that uses ART1 clustering technique to
prefetch requests for a large community of users instead of prefetching individual users’
requests.

3. Methodology
This section describes preprocessing of Web logs, extraction of feature vectors, and

clustering users using adaptive resonance theory, and our prefetching scheme.

3.1. Preprocessing the Web logs
For testing our approach, we use the Web log files provided by NASA, spanning the

timeframe from July 1, 1995 through July 15, 1995. The Web logs contain HTTP
requests to NASA Kennedy space center’s WWW server [18]. The raw data from the log
file is in the following form:

< host name, timestamp, requested URL, HTTP reply code, bytes sent in reply >

The “host name” field of each Web log contains the identity of the host making a

request to the NASA WWW server. Each host represents a large community of
organizationally related users. We preprocess the log files by filtering the log files to
contain access patterns for 70 hosts whose requests constitute the majority of the Web
logs. We then clean the Web logs to contain the requests for URLs that were frequently
requested by the 70 selected hosts (the remaining hosts were removed because the
number of requests generated by each of them was insufficient to be considered for
grouping). There are 200 such URLs with their frequency ranging from 32 to 3435. These
URLs contributed to 114,290 hits.

 5

3.2. Extraction of feature vectors
The base vector { }20021 ,, URLURLURL l=Β represents the access pattern of the

hosts. For each host H, we form a binary pattern vector PH, which is an instance of the
base vector. The pattern vector PH is formed by mapping the frequency of access of each
element “URLi” in B to binary values. The pattern vector PH is of the form

{ }20021, PPPH h=Ρ where PH is the pattern vector of host H, 701 ≤≤ H and Pi is an
element of PH having a value of either zero or one. The pattern vector PH is the input
vector to the ART1 clustering algorithm. A description of the procedure to form the
pattern vector follows.

For each pattern vector, PH such that 701 toH = //There are 70 input pattern vectors PH
 //where H stands for Host-Id

 For each element Pi in pattern vector PH, 2001 toi = // Size of the pattern vector PH is
200

 //where i stands for URL-Id





=
timesthanlesshostthebyrequestedisURLif
timesmoreorhostthebyrequestedisURLif

P
i

i
i 20

21

End

End

3.3. Clustering users using Adaptive Resonance Theory
For clustering the hosts (each host represents a large community of organizationally

related users, e.g., all requests with the host-name www.latech.edu represent the requests
made by the students and faculty members of Louisiana Tech University), we adapt
ART1 algorithm to our situation, which is more suitable for clustering binary vectors.
ART1 consists of an Attentional subsystem and an Orientation subsystem. The
Attentional subsystem consists of Comparison layer F1, Recognition layer F2, and Control
gains G1 and G2. F1 and F2 layers are fully connected with top-down weights and bottom-
up weights. The Orientation subsystem consists of the vigilance parameter ρ . The input
pattern vectors PH=1 to 70 are presented at the F1 layer. Each input pattern presented at the
F1 layer activates a node (winner) in the F2 layer. The F2 layer reads out the top-down
expectation to F1, where the winner is compared with the input vector. The vigilance
parameter determines the mismatch that is to be tolerated when assigning each host to a
cluster. If the match between the winner and the input vector is within the tolerance, the
top-down weights corresponding to the winner are modified. If a mismatch occurs, F1
layer sends a reset burst to F2, which shuts off the current node, and chooses another
uncommitted node. Once the network stabilizes, the top-down weights corresponding to
each node in the F2 layer represent the prototype vector for that node. Our architecture of
ART1 based network for clustering user communities (illustrated in Figure 2) consists of
200 nodes in the F1 layer, with each node presented with the binary value 0 or 1. The
pattern vector PH, which represents the access pattern of each host H is presented at the F1

 6

layer. The F2 layer consists of a variable number of nodes corresponding to the number of
clusters.

Figure 2. Architecture of our ART1 neural network based clusterer. The pattern
vector PH, which represents the access patterns of the host H is the input to the
Comparison layer F1. The vigilance parameter determines the degree of mismatch
that is to be tolerated. The nodes at the Recognition layer F2 represent the clusters
formed. Once the network stabilizes, the top-down weights corresponding to each
node in F2 represent the prototype vector for that node.

The procedure for clustering hosts using the ART1 algorithm follows.

Procedure: ART1_Clustering (An array of input vectors P [], vigilance parameter value)
Input:

i. Feature vectors PH=1 to 70, each representing the Web access patterns of
the hosts.

ii. The vigilance parameter value (ρ). We tested the ART1_Clustering
algorithm by varying the ρ between the values 0.3 and 0.5.

Output: Clusters of hosts grouped according to the similarity determined by ρ .

Assign values to control gains G1 and G2



 =≠

=
Otherwise

LayerFfromoutputandPinputif
G H

0
001 2

1



 =≠

=
Otherwise

LayerFfromoutputandPinputif
G H

0
001 2

2

 7

Step 1: Initialization step
i. Set nodes in F1 layer and F2 layer to zero

ii. Initialize top-down (jit) and bottom-up (ijb) weights

1

11
+

==
n

bandt ijji , where n is the size of the input vector; (n=200)

iii. Initialize the vigilance parameter (ρ), 5.03.0 ≤≤ ρ
Step 2: Repeat steps 3-10 until all input vectors PH=1 to 70 are presented to the F1 layer.
Step 3: Present randomly chosen input vector),,,(20021 == iH PPPP m where 10 orPi = at
F1.
Step 4: Compute input ‘yj’ for each node in F2 layer using:

 ∑
=

×=
200

1i
ijij bPy

Step 5: Determine k, the node in F2 that has the largest yk

∑
=

=
2

1

)max(
Finnodesofnumber

j
jk yy

Step 6: Compute activation),,,(*
200

*
2

*
1

*
== ik XXXX m for the node k in F1

 where 2001*
l=×= iwherePtX ikii

Step 7: Calculate the similarity between *
kX and input HP using:

∑

∑

=

== 200

1

200

1

*
*

i
i

i
i

H

k

P

X

P
X

Step 8: Compare the similarity calculated in Step 7 with the vigilance parameter:

if













> ρ

H

k

P

X *

 begin
Associate input PH with node k

i. Temporarily disable node k by setting its activation to 0

ii. Update top-down weights of node k
2001)(l=×= iwherePtnewt ikiki

 end
 else

 Step 9: Create a new node in F2 layer
 begin

i. Create a new node l

 8

ii. Initialize the top-down weights ‘tli’ to the current input
pattern

iii. Initialize bottom-up weights for the new node l

2001
5.0

)(200

1

*

*

l=
+

=
∑

=

iwhere
X

Xnewb

i
i

i
il

end

Step 10: Goto Step 2.
Step 11: End ART1-Clustering () algorithm.

3.4. Prefetching Scheme
Most of the techniques for prefetching discussed in Section 2.2 predict requests for a

single user. Such approaches may overload the network with unnecessary Web traffic
when prefetching requests for a large number of users. We use our ART1 neural network
based clustering technique to prefetch requests for a community of users thereby reducing
the overload on the network occurring due to prefetching individual users’ requests.

Our prefetching scheme clusters the hosts using the ART1_Clustering algorithm. Note
that each host represents a large community of organizationally related users. Therefore,
by clustering hosts we mean that we are clustering a large number of users. When the
ART1_Clustering algorithm stabilizes, a prototype vector is formed for each cluster. The
prototype vector of each cluster gives the generalized representation of the URLs most
frequently requested by all the members (hosts) of that cluster. The strategy employed in
our prefetching scheme is that, whenever a host connects to the server or a proxy, the
URLs in the prototype vector corresponding to the cluster to which the host belongs are
prefetched. Our technique of prefetching URLs has two advantages: (1) it ensures
reasonable utilization of network resources because it prefetches for a community of
users instead prefetching requests for a single user and, (2) it prefetches requests with an
accuracy as high as 97.778%. We measure the accuracy of our prefetching approach by
predicting the URLs for each member of the clusters formed and then we verify our
prediction with the access logs recorded for the next 13 days. The procedure describing
our prefetching scheme follows.

Procedure: ART1_based_Prefetching (Host-Id ‘Hid’ of the host requesting a URL)
Preprocessing: Cluster the hosts using the ART1_Clustering algorithm. Each cluster
is denoted by Cn, where n is the number of clusters formed. The clusters

nk CCCC ,,,, 21 �� are represented by prototype vectors. The prototype vector for
the kth cluster is of the form ()20021 ,, kkkk tttT l= where 2001l=jkt are the top-down
weights corresponding to the node k in layer F2 of the ART1.

Input: Host-Id of the host that requests a URL.
Output: The array prefetched_URLs[], which contains a list of URLs that are to be
prefetched for the host ‘Hid’.
Initialize 0=count

 9

Step 1: for n clusters formed using ART1_Clustering algorithm
 begin
Step 2: if (Hid is a member of cluster Ck)

begin
 Step 3: dotojfor 2001= //size of the prototype vector Tk-
 //- representing cluster Ck

 begin
 Step4: if ()1=kjt //where tkj is the jth element of Tk

 begin
 prefetched_URLs [count]=URLi
 1+= countcount

 end-if- Step 4
 end-for- Step 3
 end-if- Step 2
 end-for-Step 1
Step 5: return prefetched_URLs []
Step 6: End ART1_based_Prefetching ()

4. Results
In this section, we present the results of our work. We discuss the performance of the
ART1 algorithm for clustering. We compare performance of the ART1 algorithm with
that of the K-Means clustering algorithm. We present the results of our prefetching
scheme in Section 4.4.

4.1. Performance of ART1 clustering technique
We vary the value of the vigilance parameter and measure the quality of clusters

obtained by using our ART1 based clustering technique. To measure the quality of
clusters obtained, we compute the average inter-cluster distance between the clusters and
the average intra-cluster distance within each cluster.

Table 1 shows the number of clusters formed by the ART1 based clustering
technique. We observed that the number of the clusters formed increases with the
increase in the value of the vigilance parameter. The value of the vigilance parameter is
between 0.3 and 0.5.

 10

Table 1. Number of clusters formed by varying the value of the vigilance parameter.
The value of the vigilance parameter is varied between 0.30 and 0.50.

0

10

20

30

40

50

60

0.3 0.35 0.375 0.4 0.45 0.475 0.5

Vigilance Parameter

Nu
m

be
r o

f c
lu

st
er

s

Figure 3. Increase in the number of clusters formed by increasing the vigilance
parameter of the ART1 clustering technique.

The plot in Figure 3 illustrates the increase in the number of clusters formed by
increasing the value of the vigilance parameter. For the clusters formed by varying the
vigilance parameter, we compute the average intra-cluster and average inter-cluster
distances. Table 2 gives the values of average inter-cluster distances and average intra-
cluster distances by varying the value of the vigilance parameter between 0.3 and 0.5.
The plot in Figure 4 illustrates the variation in average inter-cluster distance and intra-
cluster distance observed by varying the vigilance parameter between the value 0.3 and
0.5.

 11

Table 2. The average inter-cluster distances and average intra-cluster distances
obtained by varying the vigilance parameter between the values 0.3 and 0.5.

0

20

40

60

80

100

0.
3

0.
35

0.
38 0.

4

0.
45

0.
48 0.

5

Vigilence Parameter

A
ve

ra
ge

 In
te

r a
nd

 In
tra

-
cl

us
te

r D
is

ta
nc

es

Average Intra-cluster Distance
Average Inter-cluster Distance

Figure 4. Variation in the values of average intra-cluster distance and average inter-
cluster distance of clusters obtained by varying the value of the vigilance parameter
between 0.3 and 0.5.

4.2. Performance of K-Means algorithm
The K-Means clustering algorithm is a statistical algorithm for clustering N data

points into k disjoint subsets Sj containing Nj data points so as to minimize the sum-of-
squares criterion

2

1
∑∑

= ∈

−=
k

j Sn
jn

j

xJ µ

where xn is a vector representing the nth data point and jµ is the geometric centroid of the
data points in Sj. In this section, we present the average inter-cluster and average intra-
cluster distances obtained by using the K-Means clustering algorithm.

 12

Table 3. The average inter-cluster distances and average intra-cluster distances
obtained by varying the number of clusters.

0
20
40

60
80

100

20 24 28 34 38 45 52

Number of clusters

A
ve

ra
ge

 In
tra

 a
nd

 In
te

r-
cl

us
te

r D
is

ta
nc

es

Average Intra-cluster Distance
Average Inter-cluster Distance

Figure 5. Variation in the average inter-cluster distance and average intra-cluster
distance of clusters obtained by varying the number of clusters.

For the same number of clusters obtained by varying the vigilance parameter of the
ART1 clustering technique (refer Table 1), we present the performance of the K-Means
clustering algorithm in terms of average inter-cluster distance and average intra-cluster
distance. Table 3 gives the average inter-cluster distance and average intra-cluster
distance obtained by varying the value of K (K represents the number of clusters into
which the given data is partitioned by the K-Means algorithm). The plot in Figure 5
illustrates the change in the values of the average inter-cluster distance and intra-cluster
distance observed by varying the number of clusters.

 13

4.3. Comparing performance of ART1 and K-Means
In this section, we compare the performance of ART1 clustering technique and K-

Means clustering algorithm in terms of inter-cluster distances and intra-cluster distances.

0

10

20

30

40

50

60

70

80

20 24 28 34 38 45 52

Number of clusters

Av
er

ag
e

in
te

r-c
lu

st
er

 d
is

ta
nc

e

ART1 clustering technique
K-Means clustering technique

Figure 6. Variation in average inter-cluster distance of clusters formed by the ART1
clustering technique and the K-Means clustering algorithm observed by varying the
number of clusters.

0

5

10

15

20

25

30

20 24 28 34 38 45 52

Number of clusters

Av
er

ag
e

in
tra

-c
lu

st
er

 d
is

ta
nc

e

ART1 clustering technique
K-Means clustering technique

Figure 7. Variation in average intra-cluster distance of clusters formed by the ART1
clustering technique and the K-Means clustering algorithm observed by varying the
number of clusters.

 14

The plot in Figure 6 illustrates the variation in average inter-cluster distance between

clusters formed by the ART1 technique and the K-Means clustering algorithm, observed
by increasing the number of clusters. Notice that the average inter-cluster distances
obtained by using the two algorithms vary at a steady rate indicating that there is not
much difference in performance of the two algorithms in terms of inter-cluster distance.
However, the plot in Figure 7 shows that the average intra-cluster distances of clusters
obtained by using the K-Means clustering algorithm vary from 12.67 to 24.2 while the
average intra-cluster distances of clusters obtained by using the ART1 clustering
technique vary from 18.04 to 20.45. This observation indicates that variance within the
clusters formed by ART1 is quite uniform compared to the variance within clusters
formed by K-Means algorithm, which increases with the increase in the number of
clusters.

4.4. Prefetching Results
We assess the performance of our prefetching scheme using two parameters: (1) Hits

and (2) Accuracy. Hits indicate the number of URLs that are requested from the
prefetched URLs, and accuracy is the ratio of hits to the number of URLs prefetched.

 15

Table 4. Results of our ART1 based prefetching scheme. Each row in this table
represents a cluster of hosts. The “Members” column shows the hosts that are
clustered together. “Number of URLs Prefetched” gives the number of URLs
prefetched by our prefetching scheme. “Requested URLs” gives the number of
URLs requested by the hosts during the period for which we made prediction.

In Table 4, we show the result of our prefetching scheme. We prefetch the URLs for
each host and verify the accuracy of our prefetching scheme by comparing predicted
URLs with the access logs for the period of next 13 days. The results presented in Table 4
are obtained by assigning a value of 0.38 to the vigilance parameter of ART1 clustering
algorithm. The prediction accuracy of our prefetching technique ranges from 82.05 to
97.78% (shown in Table 4). There has been a deviation in three cases where the hosts
have not requested any URLs that were prefetched. However, the average prediction
accuracy of our prefetching scheme is 92.3% (excluding the three exceptional cases in
which the hosts did not request the prefetched URLs), which is considerably high.

 16

5. Conclusion
In recent years, there has been considerable research in exploring novel methods and
techniques to group users based on the information hidden in their browsing patterns. In
this paper, we present our approach to group hosts (each host represents an
organizationally related group of users) according to their Web request patterns. We use
the ART1 clustering algorithm to cluster these communities of users. We compare the
performance of the ART1 clustering with that of the K-Means clustering algorithm and
show that the ART1 clustering performs better than the K-Means clustering algorithm in
terms of the intra-cluster distances. We present a prefetching scheme that uses ART1
clustering. Using our prefetching scheme, were able to obtain prediction accuracy as high
as 97.78 % (on NASA access logs spanning the timeframe from July 16, 1995 to July 29,
1995).

6. References

[1] Rangarajan S. K., “Unsupervised Learning Techniques for Web Domain Clustering

and Its Application for Prefetching.” MS Thesis, Louisiana Tech University, June
2002.

[2] Barbara M., “ART1 and Pattern Clustering.” In Proceedings of the 1988
Connectionist Models Summer 1998, Published by M.Kaufmann, San Mateo, CA,
pages 174-185, 1998.

[3] Heins, Lucien G., Tauritz, and, Daniel R., “Adaptive Resonance Theory (ART): An
Introduction.” Internal Report 95-35, Department of Computer Science, Leiden
University, pages 174-185, The Netherlands, 1995.

[4] Cooley R., Mobasher B., and Srivatsava J., “Web Mining: Information and Pattern
Discovery on the World Wide Web.” ICTAI’97, 1997.

[5] Phoha V. V., Iyengar S.S., and Kannan R., “Faster Web Page Allocation with Neural
Networks,” IEEE Internet Computing, Vol. 6, No. 6, pp. 18-26, December 2002.

[6] Garofalakis M. N., Rastogi R., Sheshadri S., and Shim K., “Data mining and the
Web: past, present and future.” In Proceedings of the second international workshop
on Web information and data management, ACM, 1999.

[7] Fu Y., Sandhu K., and Shih M., “Clustering of Web Users Based on Access
Patterns.” International Workshop on Web Usage Analysis and User Profiling
(WEBKDD’99), San Diego, CA, 1999.

[8] Zhang T., Ramakrishnan R., and Livny M., “Birch: An Efficient Data Clustering
Method for Very Large Databases.” In Proceedings of the ACM SIGMOD
Conference on Management of Data, pages 103-114, Montreal, Canada, June 1996.

[9] Cadez I., Heckerman D., Meek C., Smyth P., and Whire S., “Visualization of
Navigation Patterns on a Website Using Model Based Clustering.” Technical Report
MSR-TR-00-18, Microsoft Research, March 2002.

[10] Paliouras G., Papatheodorou C., Karkaletsis V., and Spyropoulos C.D., “Clustering
the Users of Large Web Sites into Communities.” In Proceedings of the
International Conference on Machine Learning (ICML), pages 719-726, Stanford,
California, 2000.

[11] Xie Y., and Phoha V. V., “Web User Clustering from Access Log Using Belief
Function.” K-CAP’ 01, British Columbia, Canada, October 2001.

 17

[12] Loon T. S., and Bharghavan V., “Alleviating the Latency and Bandwidth problems
in WWW Browsing.” In Proceedings of the USENIX Symposium on Internet
Technologies and Systems (USITS '97), December 1997.

[13] Ibrahim T. I., and Xu C. Z., “Neural Nets based predictive Pre-fetching to tolerate
WWW Latency”. In Proceedings of the 20th International Conference on Distributed
Computing Systems, IEEE, Taipei, Taiwan, Republic of China, April 2000.

[14] Fan L., Cao P., and Jacobson Q., “Web Prefetching between Low-Bandwidth Clients
and Proxies: Potential and Performance.” In Proceedings of the Joint International
Conference on Measurement and Modeling of Computer Systems
(SIGMETRICS’99), Atlanta, GA, May 1999.

[15] Markatos E. P., and Chronaki C. E., “A Top-10 Approach to Prefetching on the
Web.” In Proceedings of the Eighth Annual Conference of the Internet Society
(INET'98), Geneva, Switzerland, July 1998.

[16] Padmanabhan V. N., and Mogul J. C., “Using Predictive Prefetching to Improve
World Wide Web Latency.” ACM Computer Communication Review, Vol. 26, No.3,
page 2336, July 1996.

[17] Tian W., Choi B., and Phoha V. V, “An Adaptive Web Cache Access Predictor
Using Neural Network.” In Proceedings of the15th International Conference on
Industrial and Engineering. Applications of Artificial Intelligence and Expert
Systems, pages 450-459, IEA/AIE, Cairns, Australia, June 2002.

[18] NASA server logs file available at http://ita.ee.lbl.Gov/html/contrib/NASA-
HTTP.html (Last accessed June 2002).

