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Summary. Automatic pattern recognition is usually considered as an engineering area study-
ing the development and evaluation of systems that imitate or assist the human ability of
recognizing patterns. It may, however, also be considered as a science that studies the natural
phenomenon that human beings (and possibly other biological systems) are able to discover,
distinguish and characterize patterns in their environment, and identify new observations ac-
cordingly. The engineering approach to pattern recognition is in this view an attempt to build
systems that simulate this phenomenon. By that, scientific understanding is achieved of what
is needed in order to recognize patterns.

Like in any science understanding can be gained from different, sometimes opposite view-
points. We will introduce the main approaches to the science of pattern recognition as two di-
chotomies of complementary scenarios, giving rise to four different schools. These schools are
roughly defined under the terms of expert systems, neural networks, structural and statistical
pattern recognition. We will briefly describe what has been achieved by these schools, what is
common and what is specific, which limitations are encountered and which perspectives arise
for the future. Finally, we will focus on the challenges facing pattern recognition in the decen-
nia to come. They deal mainly with weaker assumptions to make procedures for learning and
recognition wider applicable, others need to develop new formalisms.

1 Introduction

We are very familiar with the human ability of pattern recognition. Since our early
years we have been able to recognize voices, faces, animals, fruits, or inanimate ob-
jects. Before the speaking ability is developed, an object like a ball is recognized,
even when it just resembles the balls seen before. So, except for the memory, the
skills of abstraction and generalization are essential to find our way in the world. In
later years we are able to deal with much more complex patterns that may not be
directly based on sensorial observations. Examples are the pattern of an underlying
theme in a discussion or the subtle pattern in human relations. The latter may be-
come apparent e.g. only by listening to somebody’s complaints about his personal
problems at work that are also present in a new job. Without a direct participation in



the events, we are able to see analogy and similarity in examples as complex as the
social interaction between people. Here we learn to distinguish the pattern from just
two examples.

The pattern recognition ability may also be found in other biological systems:
the cat knows the way home, the dog recognizes his boss from the footsteps or the
bee finds the delicious flower. In these examples a direct connection can be made
to sensory experiences. Memory alone is insufficient; an important role is that of
generalization from observations which are similar but not identical to the previous
ones. A scientific challenge is to find out how this (may) work.

Scientific questions may be approached by building models and, more explic-
itly, by creating simulators, i.e. artificial systems that roughly exhibit the same phe-
nomenon as the object under study. Understanding will be gained while pursuing in
a construction of such a system and its evaluation with respect to the real object.
Such systems may be used to replace the original ones and may even improve some
of their properties, but also perform worse in other aspects. For instance, planes fly
faster than birds but are far from being autonomous. We should realize, however,
that what is studied may not be the bird itself, but more importantly, the ability to fly.
Much can be learned about flying in an attempt to imitate the bird, but also when dif-
ferentiating from its exact appearance. By constructing fixed wings instead of freely
movable ones, the insight in how to fly grows. Finally, there are engineering aspects
that may gradually deviate from the original scientific question. These are concerned
with how to fly a long time, or with heavy loads, or with less noise, and slowly shift
the point of attention to other domains of knowledge.

The above shows that a distinction can be made between the scientific study of
pattern recognition as the ability to abstract and generalize from observations and the
applied technical area of the design of artificial pattern recognition devices, without
neglecting the fact that they may highly profit from each other. Note that patterns can
be distinguished on many levels, starting from simple characteristics of structural el-
ements like strokes, through features of an individual towards a set of qualities in a
group, to a composite of traits of concepts and their possible generalizations. Pattern
may also denote a single individual as a representative for its population, model or
concept. Pattern recognition deals, therefore, with patterns, regularities, characteris-
tics or qualities that can be discussed on a low level of sensory measurements (such
as pixels in an image) as well as on a high level of the derived, meaningful con-
cepts (such as faces in images). In this paper we will focus on the scientific aspects,
i.e. what we know about the way pattern recognition works and especially, what can
be learned from our attempts to build artificial recognition devices.

A number of authors have already discussed the science of pattern recognition
starting from perspectives achieved through their attempts of simulation and model-
ing. One of the first, in the beginning of the sixties, was Sayre [64], who presented
a philosophical study on perception, pattern recognition and classification. He made
clear that classification is a task that can be fulfilled with some success, but recog-
nition either happens or not. We can stimulate the recognition by focussing on some
aspects of the question. Although we cannot set out to fully recognize something, we
can at least start to classify objects on command. The way Sayre distinguishes recog-
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Fig. 1. Components of a pattern recognition system.

nition and classification is related to the two subfields discussed in general texts on
pattern recognition, namely unsupervised and supervised learning. They fulfill two
complementary tasks acting as automatic tools in the hand of a scientist who sets out
to find the regularities in nature.

Unsupervised learning (also related to exploratory analysis or cluster analysis)
gives the scientist an automatic system to suggest the presence of yet unspecified
patterns (regularities) in the observations. They have to be confirmed (verified) by
him. Here, in the terms of Sayre, a pattern is recognized. Supervised learning is
an automatic system that verifies (confirms) the patterns described by the scientist
based on a representation defined by him. This is done by an automatic classification
followed by an evaluation.

In spite of Sayre’s discussion, the concepts of pattern recognition and classifica-
tion are still frequently mixed. In our discussion classification is a significant com-
ponent of the pattern recognition system, but unsupervised learning may also play a
role there. Typically, such a system is first presented with a set of known objects, the
training set, in some convenient representation. Learning relies on finding the data
descriptions such that the system can correctly characterize, identify or classify novel
examples. After appropriate preprocessing and adaptations, various mechanisms are
employed to train the entire system well. Various models and techniques are used and
their performances are evaluated and compared by suitable criteria. If the final goal
is prediction, the findings are validated by applying the best model to unseen data.
If the final goal is characterization, the findings may be validated by complexity of
organization (relations between objects) as well as by interpretability of the results.

Fig. 1 shows the three main stages of pattern recognition systems: Representa-
tion, Generalization and Evaluation, and an intermediate stage of Adaptation [20].
The system is trained and evaluated by a set of examples, the Design Set:

• Design Set. It is used both for training and validating the system. Given the
background knowledge this set has to be chosen such that it is representative
for the set of objects to be recognized by the trained system. There are various
approaches how to split it into suitable subsets for training, validation and testing;
see e.g. [22, 62, 68, 77].

• Representation. Real world objects have to be represented in a formal way in
order to be analyzed and compared by mechanical means, such as a computer.
Moreover, the observations derived from the sensors or other formal represen-



tations have to be integrated with the existing, explicitly formulated knowledge
either on the objects themselves or on the class they may belong to. The issue of
representation is an essential aspect of pattern recognition and is different from
classification. It largely influences the success of the stages to come.

• Adaptation. In this intermediate stage between Representation and Generaliza-
tion representations, learning methodology or problem statement are adapted or
extended in order to enhance the final recognition. This step may be neglected
as being transparent, but its role is essential. It may reduce or simplify the repre-
sentation, or it may enrich it by emphasizing particular aspects, e.g. by a nonlin-
ear transformation that simplifies the next stage. Background knowledge may be
appropriately (re)formulated and incorporated into a representation. If needed,
additional representations may be considered to reflect other aspects of the prob-
lem. Exploratory data analysis (unsupervised learning) may be used to guide the
choice of suitable learning strategies.

• Generalization or Inference. In this stage we learn from a training set, the set
of known and appropriately represented examples, in such a way that predictions
can be made on some unknown properties of new examples. We either generalize
towards a concept or infer a set of general rules that describe the qualities of the
training data. The most common property is the class or pattern it belongs to,
which is the above mentioned classification task.

• Evaluation. In this stage we estimate how our system performs on known train-
ing and validation data while training the entire system. If the results are unsat-
isfactory, then the previous steps have to be reconsidered.

Different disciplines emphasize, or just exclusively study, different parts of this
system. For instance, perception and computer vision deal mainly with the represen-
tation aspects [21], while books on artificial neural networks [62], machine learn-
ing [4, 53] and pattern classification [15] are usually restricted to generalization. It
should be noted that these and other studies with the words ”pattern” and ”recogni-
tion” in the title very often almost entirely neglect the issue of representation. We
think, however, that the main goal of the field of pattern recognition is to study gen-
eralization in relation to representation [20].

In the context of representations, especially images, generalization has been thor-
oughly studied by Grenander [36]. What is very specific and worthwhile is that he
deals with infinite representations (say, unsampled images), thereby avoiding the
frequently returning discussions on dimensionality and directly focussing on a high,
abstract level of pattern learning. We like to mention two other scientists that present
very general discussions on the pattern recognition system: Watanabe [75] and Gold-
farb [31, 32]. They both emphasize the structural approach to pattern recognition that
we will discuss later on. Here objects are represented in a form that focusses on their
structure. A generalization over such structural representations is very difficult if one
aims to learn the concept, i.e. the underlying, often implicit definition of a pattern
class that is able to generate possible realizations. Goldfarb argues that tradition-
ally used numeric representations are inadequate and that an entirely new, structural
representation is necessary. We judge his research program as very ambitious, as he



wants to learn the (generalized) structure of the concept from the structures of the ex-
amples. He thereby aims to make explicit what usually stays implicit. We admit that
a way like his has to be followed if one ever wishes to reach more in concept learning
than the ability to name the right class with a high probability, without having built
a proper understanding.

In the next section we will discuss and relate well-known general scientific ap-
proaches to the specific field of pattern recognition. In particular, we like to point out
how these approaches differ due to fundamental differences in the scientific points of
view from which they arise. As a consequence, they are often studied in distinct tra-
ditions based on different paradigms. We will try to clarify the underlying cause for
the pattern recognition field. In the following sections we sketch some perspectives
for pattern recognition and define a number of specific challenges.

2 Four approaches to pattern recognition

In science new knowledge is phrased in terms of existing knowledge. The starting
point of this process is set by generally accepted evident views, or observations and
facts that cannot be explained further. These foundations, however, are not the same
for all researchers. Different types of approaches may be distinguished originating
from different starting positions. It is almost a type of taste from where a particu-
lar researcher begins. As a consequence, different ’schools’ may arise. The point of
view, however, determines what we see. In other words, staying within a particular
framework of thought we cannot achieve more than what is derived as a consequence
of the corresponding assumptions and constraints. To create more complete and ob-
jective methods, we may try to integrate scientific results originating from differ-
ent approaches into a single pattern recognition model. It is possible that confusion
arises on how these results may be combined and where they essentially differ. But
the combination of results of different approaches may also appear to be fruitful, not
only for some applications, but also for the scientific understanding by the researcher
that broadens the horizon of allowable starting points. This step towards a unified or
integrated view is very important in science, as only then a more complete under-
standing is gained or a whole theory is built.

Below we will describe four approaches to pattern recognition, which arise from
two different dichotomies of the starting points. Next, we will present some examples
illustrating the difficulties of their possible interactions. This discussion is based on
our earlier publications [16, 17].

2.1 Platonic and Aristotelian viewpoints

Two principally different approaches to almost any scientific field rely on the so-
called Platonic and Aristotelean viewpoints. In a first attempt they may be understood
as top-down and bottom-up ways of building knowledge. They are also related to
deductive (or holistic) and inductive (or reductionistic) principles. These aspects will
be discussed in Section 4.
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Fig. 2. Four approaches to Pattern Recognition.

The Platonic approach starts from generally accepted concepts and global ideas
of the world. They constitute a coherent picture in which many details are undefined.
The primary task of the Platonic researcher is to recognize in his3 observations the
underlying concepts and ideas that are already accepted by him. Many theories of the
creation of the universe or the world rely on this scenario. An example is the drifts
of the continents or the extinction of the mammoths. These theories do not result
from a reasoning based on observations, but merely from a more or less convincing
global theory (depending on the listener!) that seems to extrapolate far beyond the
hard facts. For the Platonic researcher, however, it is not an extrapolation, but an
adaptation of previous formulations of the theory to new facts. That is the way this
approach works: existing ideas that have been used for a long time have been gradu-
ally adapted to new incoming observations. The change does not rely on an essential
paradigm shift in the concept, but on finding better, more appropriate relations with
the observed world in definitions and explanations. The essence of the theory is con-
stant for a long time. So, in practise the Platonic researcher starts from a theory which
can be stratified into to a number of hypotheses that can be tested. Observations are
collected to test theses hypotheses and, finally, if the results are positive, the theory
is confirmed.

The observations are of primary interest in the Aristotelian approach. Scientific
reasoning stays as closely as possible to them. It is avoided to speculate on large,
global theories that go beyond the facts. The observations are always the foundation
on which the researcher builds his knowledge. Based on them, patterns and regulari-
ties are detected or discovered, which are used to formulate some tentative hypothe-

3For simplicity, we refer to researchers in a male form; we mean both women and men.



ses. These are further explored in order to arrive at general conclusions or theories.
As such, the theories are not global, nor do they constitute high level descriptions. A
famous guideline here is the so-called Occams razor principle that urges one to avoid
theories that are more complex than strictly needed for explaining the observations.
Arguments may arise, however, since the definition of complexity depends, e.g. on
the mathematical formalism that is used.

The choice for a particular approach may be a matter of preference or determined
by non-scientific grounds, such as upbringing. Nobody can judge what the basic
truth is for somebody else. Against the Aristotelians may be held that they do not
see the overall picture. The Platonic researchers, on the other hand, may be blamed
for building castles in the air. Discussions between followers of these two approaches
can be painful as well as fruitful. They may not see that their ground truth is different,
resulting in a pointless debate. What is more important is the fact that they may
become inspired by each other’s views. One may finally see real world examples of
his concepts, while the other may embrace a concept that summarizes, or constitutes
an abstraction of his observations.

2.2 Internal and the external observations

In the contemporary view, science is ’the observation, identification, description,
experimental investigation, and theoretical explanation of phenomena’4 or ’any sys-
tem of knowledge that is concerned with the physical world and its phenomena and
that entails unbiased observations and systematic experimentation.5 So, the aspect
of observation that leads to a possible formation of a concept or theory is very im-
portant. Consequently, the research topic of the science of pattern recognition, which
aims at the generalization from observations for knowledge building, is indeed scien-
tific. Science is in the end a brief explanation summarizing the observations achieved
through abstraction and their generalization.

Such an explanation may primarily be observed by the researcher in his own
thinking. Pattern recognition research can thereby be performed by introspection.
The researcher inspects himself how he generalizes from observations. The basis of
this generalization is constituted by the primary observations. This may be an entire
object (I just see that it is an apple) or its attributes (it is an apple because of its color
and shape). We can also observe pattern recognition in action by observing other
human beings (or animals) while they perform a pattern recognition task, e.g. when
they recognize an apple. Now the researcher tries to find out by experiments and
measurements how the subject decides for an apple on the basis of the stimuli pre-
sented to the senses. He thereby builds a model of the subject, starting from senses
to decision making.

Both approaches result into a model. In the external approach, however, the
senses may be included in the model. In the internal approach this is not possible,
or just very partially. We are usually not aware of what happens in our senses. In-
trospection thereby start by what they offer to our thinking (and reasoning). As a

4http://dictionary.reference.com/
5http://www.britannica.com/



consequence, models based on the internal approach have to be externally equipped
with (artificial) senses, i.e. with sensors.

2.3 The Four Approaches

By combining the two dichotomies as presented above, the following four ap-
proaches can be distinguished:

(1) Introspection by a Platonic viewpoint: object modeling.
(2) Introspection by an Aristotelian viewpoint: generalization.
(3) Extrospection by an Aristotelian viewpoint: system modeling.
(4) Extrospection by a Platonic viewpoint: concept modeling.

These four approaches will now be discussed separately. We will identify some
known procedures and techniques that may be related to these. See also Fig. 2.

Object modeling. This is based on introspection from a Platonic viewpoint. The
researcher thereby starts from global ideas on how pattern recognition systems may
work and tries to verify them in his own thinking and reasoning. He thereby may
find, for instance, that particular color and shape descriptions of an object are suffi-
cient for him to classify it as an apple. More generally, he may discover that he uses
particular reasoning rules operating on a fixed set of possible observations. The so-
called syntactic and structural approaches to pattern recognition [26] thereby belong
to this area, as well as case based reasoning [3]. There are two important problems in
this domain: how to constitute the general concept of a class from individual object
descriptions and how to connect particular human qualitative observations such as
”sharp edge” or ”egg shaped” with physical sensor measurements.

Generalization. Let us leave the Platonic viewpoint and consider a researcher who
starts from observations, but still relies on introspection. He wonders what he should
do with just a set of observations without any framework. An important point is the
nature of observations. Qualitative observations as ”round”, ”egg shaped” or ”gold
colored” can be judged as recognitions in themselves based on low-level outcomes
of senses. It is difficult to neglect them and to access the outcomes of senses di-
rectly. One possibility for him is to use artificial senses, i.e. of sensors, which will
produce quantitative descriptions. The next problem, however, is how to generalize
from such numerical outcomes. The physiological process is internally unaccessible.
A researcher who wonders how he himself generalizes from low level observations
given by numbers may turn for help to statistics. This approach thereby includes the
area of statistical pattern recognition.

If we consider low-level inputs that are not numerical, but expressed in attributed
observations as red, egg-shaped, then the generalization may be based on logical or
grammatical inference. As soon, however, as the structure of objects or attributes is
not generated from the observations, but derived (postulated) from a formal global
description of the application knowledge, e.g. by using graph matching, the approach
is effectively top-down and thereby starts from object or concept modeling.



System modeling. We now leave the internal platform and concentrate on research
that is based on the external study of the pattern recognition abilities of humans and
animals or their brains and senses. If this is done in a bottom-up way, the Aristotelian
approach, then we are in the area of low-level modeling of senses, nerves and possi-
bly brains. These models are based on the physical and physiological knowledge of
cells and the proteins and minerals that constitute them. Senses themselves usually
do not directly generalize from observations. They may be constructed, however, in
such a way that on a higher level this process is strongly favored. For instance, the
way the eye, and in particular the retina is constructed, is advantageous for the detec-
tion of edges and movements and for finding interesting details in a global, overall
picture. The area of vision thereby profits from this approach. On a level closer to the
brain it is studied how nerves process the signals they receive from the senses. Some-
how this is combined to a generalization of what is observed by the senses. Models
of systems of multiple nerves are called neural networks. They appeared to have a
good generalization ability and are thereby also used in technical pattern recognition
applications in which the physiological origin is not relevant [4, 62].

Concept modeling. In the external platform, the observations in the starting point
are replaced by ideas and concepts. Here one still tries to model externally given
pattern recognition systems, but now in a top-down manner. An example is the field
of expert systems: by interviewing experts in a particular pattern recognition task,
it is attempted to investigate what rules they use and in what way they are using
observations. Also belief networks and probabilistic networks belong to this area as
far as they are defined by experts and not learned from observations. This approach
can be distinguished from the above discussed system modeling by the fact that it is
in no way attempted to model a physical or physiological system in a realistic way.
The building blocks are the ideas, concepts and rules, as they live in the mind of the
researcher. They are adapted to the application by external inspection of an expert,
e.g. by interviewing him. If this is done by the researcher internally by introspection,
we have closed the circle and are back to what we have called object modeling, as the
individual observations are our internal starting point. We admit that the difference
between the two Platonic approaches is minor here (in contrast to the physiological
level) as we can also try to interview ourselves to create an objective (!) model of our
own concept definitions.

2.4 Examples of interaction

The four presented approaches are four ways to study the science of pattern recog-
nition. Resulting knowledge is valid for those who share the same starting point. If
the results are used for building artificial pattern recognition devices, then there is, of
course, no reason to restrict oneself to a particular approach. Any model that works
well may be considered. There are, however, certain difficulties in combining differ-
ent approaches. These may be caused by differences in culture, in assumptions or in
targets. We will present two examples, one for each of the two dichotomies.

Artificial neural networks constitute an alternative technique to be used for gen-
eralization within the area of statistical pattern recognition. It took, however, almost



ten years since their introduction around 1985 before neural networks were fully
acknowledged in this field. In that period, the neural network community suffered
from lack of knowledge on the competing classification procedures. One of the ba-
sic misunderstandings in the pattern recognition field was caused by its dominating
paradigm, stating that learning systems should never be larger than strictly neces-
sary, following the Occams razor principle. It could have not been understood how
largely oversized systems as neural networks would have ever been able to generalize
without adapting to peculiarities in the data (the so-called overtraining). At the same
time, it was evident in the neural network community that the larger neural network
the larger its flexibility, as a brain with more neurons would perform better in learn-
ing than a brain with less neurons. When this contradiction was finally solved (an
example of Kuhn’s paradigm shifts [48]), the area of statistical pattern recognition
was enriched with a new set of tools. Moreover, some principles were formulated
towards understanding of pattern recognition that otherwise would only have been
found with great difficulties.

In general, it may be expected that the internal approach profits from the results
in the external world. It is possible that thinking, the way we generalize from obser-
vations, changes after it is established how this works in nature. For instance, once
we have learned how a specific expert solves his problems, this may be used more
generally and thereby becomes a rule in structural pattern recognition. The external
platform may thereby be used to enrich the internal one.

A direct formal fertilization between the Platonic and Aristotelian approaches is
more difficult to achieve. Individual researchers may build some understanding from
studying each other’s insights, and thereby become mutually inspired. The Platonist
may become aware of realizations of his ideas and concepts. The Aristotelian may
see some possible generalizations of the observations he collected. It is, however,
still one of the major challenges in science to formalize this process.

How should existing knowledge be formulated such that it can be enriched by
new observations? Everybody who tries to do this directly encounters the problem
that observations may be used to reduce uncertainty (e.g. by the parameter estimation
in a model), but that it is very difficult to formalize uncertainty in existing knowledge.
Here we encounter a fundamental ’paradox’ for a researcher summarizing his find-
ings after years of observations and studies: he has found some answers, but almost
always he has also generated more new questions. Growing knowledge comes with
more questions. In any formal system, however, in which we manage to incorporate
uncertainty (which is already very difficult), this uncertainty will be reduced after it
has absorbed some observations. In order to generate new questions, we need auto-
matic hypothesis generation. How should the most likely ones be determined? For
a breakthrough or toward building a more complete theory, we need to look from dif-
ferent perspectives in order to stimulate the creative process and bring sufficient in-
spiration and novelty to hypothesis generation. This is the cause of the computational
complexity mentioned in the literature [60] when the Platonic structural approach to
pattern recognition has to be integrated with the Aristotelian statistical approach.

The same problem may also be phrased differently: how can we express the un-
certainty in higher level knowledge in such a way that it may be changed (upgraded?)



by low level observations? Knowledge is very often structural and has thereby a qual-
itative nature, while on the lowest level observations are often treated as quantities,
certainly in automatic systems equipped with physical sensors. And here the Platonic
– Aristotelian polarity meets the internal – external polarity: by crossing the border
between concepts and observations we also encounter the border between qualitative
symbolic descriptions and quantitative measurements.

3 Achievements

In this section we will sketch in broad terms the state of the art in building systems
for generalization and recognition. In practical applications it is not the primary goal
to study the way of bridging the gap between observations and concepts in a scien-
tific perspective. Still, we can learn a lot from the heuristic solutions that are created
to assist the human analyst performing a recognition task. There are many systems
that directly try to imitate the decision making process of a human expert, such as
an operator guarding a chemical process, an inspector supervising the quality of in-
dustrial production or a medical doctor deriving a diagnosis from a series of medical
tests. On the basis of systematic interviews the decision making can be made explicit
and imitated by a computer program: an expert system [54]. The possibility to im-
prove such a system by learning from examples is usually very limited and restricted
to logical inference to make the rules as general as possible, and the estimation of the
thresholds on observations. The latter is needed as the human expert is not always
able to define exactly what he means, e.g. by ’an unusually high temperature’.

In order to relate knowledge to observations, which are measurements in au-
tomatic systems, it is often needed to relate knowledge uncertainty to imprecise,
noisy, or not generally valid measurements. Several frameworks have been developed
to this end, e.g. fuzzy systems [74], Bayesian belief networks [42] and reasoning un-
der uncertainty [82]. Characteristic for these approaches is that the given knowledge
is already structured and needs explicitly defined parameters of uncertainty. New ob-
servations may adapt these parameters by relating them to observational frequencies.
The knowledge structure is not learned; it has to be given and is hard to modify. An
essential problem is that the variability of the external observations may be proba-
bilistic, but the uncertainty in knowledge is based on ’belief’ or ’fuzzy’ definitions.
Combining them in a single mathematical framework is disputable [39].

In the above approaches the general knowledge, or the concept underlying a class
of observations, is directly modeled. In structural pattern recognition [26, 65] the
starting point is the description of the structure of a single object. This can be done
in several ways, e.g. by strings, contour descriptions, time sequences, or other order-
dependent data. Grammars can be inferred for a collection of strings, resulting in a
syntactical approach to pattern recognition [26]. The incorporation of probabilities,
e.g. needed for modeling the measurement noise, is not straightforward. Another
possibility is the use of graphs. This is in fact already a reduction since objects are
decomposed into highlights or landmarks, possibly given by attributes and their rela-
tions, which may also be attributed. Inferring a language for graphs is already much



more difficult than for strings. Consequently, the generalization from a set of objects
to a class is usually done by finding typical examples, prototypes, followed by graph
matching [5, 78] for classifying new objects.

Generalization in structural pattern recognition is not straightforward. It is often
based on the comparison of object descriptions using the entire available training set
(the nearest neighbor rule) or a selected subset (the nearest prototype rule). Applica-
tion knowledge is needed for defining the representation (strings, graphs) as well as
for the dissimilarity measure to perform graph matching [7, 51]. The generalization
may rely on an analysis of the matrix of dissimilarities, used to determine prototypes.
More advanced techniques using the dissimilarity matrix will be described later.
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The 1-Nearest-Neighbor Rule (1-NN)
is the simplest and most natural classifica-
tion rule. It should always be used as a refer-
ence. It has a good asymptotic performance
for metric measures [10, 14], not worse than
twice the Bayes error, i.e. the lowest error
possible. It works well in practice for finite
training sets. Fig. 3 shows how it performs
on the Iris data set in comparison to the lin-
ear and quadratic classifiers based on the as-
sumption of normal distributions [27]. The
k-NN rule, based on a class majority vote
over the k nearest neighbors in the training
set is, like the Parzen classifier, even Bayes
consistent. For increasing training sets they approximate the Bayes error [14, 27].

These results are heavily rely on the assumption that the training examples are
identically and independently drawn (iid) from the same distribution as the (future)
objects to be tested. This assumption of a fixed and stationary distribution is very
strong, but it yields the best possible classifier. There are, however, other reasons,
why it cannot be claimed that pattern recognition is solved by these statistical tools.
The 1-NN and k-NN rules have to store the entire training set. The solution is thereby
based on a comparison with all possible examples, including ones that are very sim-
ilar, and asymptotically identical to the new objects to be recognized. By this, a
class or a concept is not learned, as the decision relies on memorizing all possible
instances. Hence, there is no generalization.

Other classification procedures, such as the two learning curves shown in Fig. 3,
are based on some model assumptions. The classifiers may well perform when the
assumptions hold, or may entirely fail, otherwise. An important observation is that
such models for statistical learning procedures have almost necessarily a statistical
formulation. Human knowledge, however, certainly in daily life, has almost nothing
to do with statistics. Perhaps it is hidden in the human learning process, but it is not
explicitly available in the context of human recognition. As a result, there is a need
to look for effective model assumptions that are not phrased in statistical terms.
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Fig. 4. Curse of dimensionality.

We can see from Fig. 3 that a more
complex quadratic classifier performs
initially worse than the other two, but
it behaves like a simpler linear classifier
for large training sets. In general, com-
plex problems may be better solved by
complex procedures. This is illustrated
in Fig. 4, in which the resulting error
curves are shown as functions of com-
plexity and training size. Like in Fig. 3, small training sets require simple classifiers.
Larger training sets may be used to train more complex classifiers, but the error will
increase, if pushed too far. This is a well-known and frequently studied phenomenon
in relation with the dimensionality (complexity) of the problem. Objects described
by many features often rely on complex classifiers, which may thereby lead to worse
results if the number of training examples is insufficient. This is the curse of dimen-
sionality, also known as the Rao’s paradox or the peaking phenomenon [44, 45]. It
is caused by the fact that the classifiers badly generalize, due to a poor estimation
of their parameter or their focus/adaptation to the noisy information or or irrelevant
details in the data. The same phenomenon can be observed while training complex
neural networks without proper precautions. As a result, they will adapt to accidental
data configurations, hence they will overtrain. This phenomenon is also well known
outside the pattern recognition field. For instance, it is one of the reasons one has to
be careful with extensive mass screening in health care: the more diseases and their
relations are considered (the more complex the task), the more people will we be
unnecessarily sent to hospitals.

An important conclusion from this research is that the cardinality of the set of
examples from which we want to infer a pattern concept bounds the complexity of
the procedure used for generalization. This method should be simple if we have just
a few examples. If we still want to learn a somewhat complicated concept this can
only be done if sufficient prior knowledge is available, incorporated in such a way
that the simple procedure is able to contribute.

An extreme consequence of the lack of prior knowledge is given by Watanabe
as the Ugly Duckling Theorem [75]. Assume that objects are described by a set of
atomic properties and we consider predicates consisting of all possible logic com-
binations of these properties in order to train a pattern recognition system. Then,
all pairs of objects are equally similar in terms of the number of predicates they
share. This is caused by the fact that all atomic properties, their presence as well as
their absence, have initially equal weights. As a result, the training set is of no use.
Summarized briefly, if we do not know anything about the problem we cannot learn
(generalize and/or infer) from observations.

An entirely different reasoning pointing to the same phenomenon is the No-Free-
Lunch Theorem formulated by Wolpert [81]. It states that all classifiers perform
equally well if averaged over all possible classification problems. This also includes a
random assignment of objects to classes. In order to understand this theorem it should
be realized that the considered set of all possible classification problems includes all



possible ways a given data set can be distributed over a set of classes. This again
emphasizes that learning cannot be successful without any preference or knowledge.

In essence, it has been established that without prior or background knowledge,
no learning, no generalization from examples is possible. In specific applications
using strong models for the classes, it has been shown that additional observations
may fill well the specified gaps or solve uncertainties in these models. In addition, if
these uncertainties can be formulated in statistical terms, it is well possible to dimin-
ish their influence by a statistical analysis of the training set. It is, however, unclear
which the minimum prior knowledge is that is necessary to make the learning from
examples possible. This is of interest if we want to uncover the roots of concept
formation, such as learning a class from examples. There exists one principle, for-
mulated at the very beginning of the study of automatic pattern recognition, which
may point to a promising direction. This is the principle of compactness [1], also
phrased as a hypothesis. It states that we can only learn from examples or phenom-
ena if their representation is such that small variations in these examples cause small
deviations in the representation. This demands that the representation is based on
a continuous transformation of the real world objects or phenomena. Consequently,
it is assumed that a sufficiently small variation in the original object will not cause
the change of its class membership. It will still be a realization of the same concept.
Consequently, we may learn the class of objects that belong to the same concept by
studying the domain of their corresponding representations.

The Ugly Duckling Theorem deals with discrete logical representations. These
cannot be solved by the compactness hypothesis unless some metric is assumed that
replaces the similarity measured by counting differences in predicates. The No-Free-
Lunch Theorem clearly violates the compactness assumption as it makes object rep-
resentations with contradictory labelings equally probable. In practice, however, we
encounter only specific types of problems.

Building proper representations has become an important issue in pattern recog-
nition [20]. For a long time this idea has been restricted to the reduction of overly
large feature sets to the sizes for which generalization procedures can produce sig-
nificant results, given the cardinality of the training set. Several procedures have
been studied based on selection and linear as well as nonlinear extraction [45]. A
pessimistic result was found that about any hierarchical ordering of (sub)space sep-
arability that fulfills the necessary monotonicity constraints can be constructed by
an example based on normal distributions only [11]. Very advanced procedures are
needed to find such ’hidden’ subspaces in which classes are well separable [61]. It
has to be doubted, however, whether such problems arise in practice, and whether
such feature selection procedures are really necessary in problems with finite sample
sizes. This doubt is further supported by an insight that feature reduction procedures
should rely on global and not very detailed criteria if their purpose is to reduce the
high dimensionality to a size which is in agreement with the given training set.

Feed-forward neural networks are a very general tool that, among others, offer
the possibility to train a single system between sensor and classification [4, 41, 62].
They thereby cover the representation step in the input layer(s) and the generalization
step in the output layer(s). These layers are optimized simultaneously. The number of



neurons in the network should be sufficiently enough to make the interesting optima
tractable. This, however, brings the danger of overtraining. There exist several ways
to prevent that by incorporating some regularization steps into the optimization. This
replaces the adaptation step in Fig. 1. A difficult point here, however, is that it is not
sufficiently clear how to choose regularization of an appropriate strength. The other
important application of neural networks is that the use of various regularization
techniques enables one to control the nonlinearity of the resulting classifier, leading
also This leads moderately nonlinear functions. Neural networks are thereby one of
the most general tools for building pattern recognition systems.

In statistical learning, Vapnik has rigorously studied the problem of adapting the
complexity of the generalization procedure to a finite training set [72, 73]. The re-
sulting Vapnik-Chervonenkis (VC) dimension, a complexity measure for a family
of classification functions, gives a good insight into the mechanisms that determine
the final performance (which depends on on the training error and the VC dimen-
sion). The resulting error bounds, however, are too general for a direct use. One
of the reasons is that, like in the No-Free-Lunch Theorem, the set of classification
problems (positions and labeling of the data) is not restricted to the ones that obey
the compactness assumption.

One of the insights gained by studying the complexity measures of polynomial
functions is that they have to be as simple as possible in terms of their number of
free parameters to be optimized. This was already realized by Cover in 1965 [9].
Vapnik extended this finding around 1994 to arbitrary non-linear classifiers [73]. In
that case, however, the number of free parameters is not necessarily indicative for
the complexity of a given family of functions, but the VC dimension is. In Vapnik’s
terms, the VC dimension reflects the flexibility of a family of functions (such as
polynomials or radial basis functions) to separate arbitrarily labeled and positioned
n-element data in a vector space of a fixed dimension. This VC dimension should be
finite and small to guarantee the good performance of the generalization function.

This idea was elegantly incorporated to the Support Vector Machine (SVM)
[73], in which the number of parameters is as small as a suitably determined subset
of the training objects (the support vectors) and independent of the dimensionality of
the vector space. One way to phrase this principle is that the structure of the classifier
itself is simplified as far as possible (following the Occam’s razor) So, after a detour
along huge neural networks with sometimes many more parameters than training
examples, pattern recognition was back to the small-is-beautiful principle, but now
better understood and elegantly formulated.

The use of kernels largely enriched the applicability of the SVM to nonlinear de-
cision functions [66, 67, 73]. The kernel approach virtually generates nonlinear com-
binations of the existing features. By using the representer theorem, a linear classifier
in the non-linear feature space can be constructed, since the kernel encodes gener-
alized inner products of the original vectors only. Consequently, well-performing
nonlinear classifiers between training sets of almost any size in almost any feature
space can be computed, using the SVM in combination with the ’kernel trick’ [66].

This method has still a few limitations. It was originally designed for separable
classes, hence it suffers from high class overlaps, as the use of slack variables leads



to a large number of support vectors, and consequently to a large VC dimension.
In such cases, other learning procedures have to be preferred. Another difficulty is
that the class of admissible kernels is very narrow. Kernels K have to be (condi-
tionally) positive semidefinite (cpd) functions of two variables as only then they are
interpreted as generalised inner products in Hilbert spaces induced by K. Although
kernels are now designed for more general representations, they are still mainly con-
sidered as functions in Euclidean vector spaces. For a number of applications it is
difficult to find good features, as in text processing and shape recognition. Special
purpose kernels are designed in these cases. They use background knowledge from
the application in which similarities between objects are defined in such a way that
a proper kernel is constructed. The difficulty is, again, the strong requirement of
kernels as being cpd.

The next step is the so-called dissimilarity representation [56] in which general
proximity measures between objects can be used for their representation. The mea-
sure itself may be arbitrary, provided that it is meaningful for the considered prob-
lem. Proximity plays a key role in the quest for an integrated structural and statistical
learning model, since it is a natural bridge between these two approaches [6, 56].
The reason is that proximity is the basic quality to capture what makes a set objects
to be considered as a group. It can be defined in various ways and contexts, based
on sensory measurements, numerical descriptions, sequences, graphs, relations and
other non-vectorial representations, as well as their combinations. A representation
based on proximities is, therefore, universal.

Although some foundations are laid down [56], the ways for effective learning
from general proximity representations are still to be developed. Since measures may
not belong to the class of permissable kernels, the SVM, as such, can not be used.
There exist alternative interpretations of such indefinite kernels and their relation to
pseudo-Euclidean and Krein spaces [38, 50, 55, 56, 58], in which learning is possible
for non-Euclidean representations. In general, such representations are embedded
into suitable vector spaces equipped with a generalized inner product or norm, in
which numerical techniques can be either developed or adapted from the existing
ones. It has been experimentally shown that many classification techniques may per-
form well for general dissimilarity representations.

4 Perspectives

Pattern recognition deals with discovering, distinguishing, detecting or characteriz-
ing patterns present in the surrounding world. It relies on extraction and represen-
tation of information from the observed data, such that after integration with back-
ground knowledge, it ultimately leads to a formulation of new knowledge and con-
cepts. The result of learning is that the knowledge already captured in some formal
terms is used to describe the present interdependencies such that the relations be-
tween patterns are better understood (interpreted) or used for generalization. The
latter means that a concept, e.g. of a class of objects, is formalized such that it can be
applied to unseen examples of the same domain, inducing new information, e.g. the



class label of a new object. In this process, new examples should obey the same de-
duction process and follow the same reasoning as applied to the original examples.

In the following subsections we will first recapitulate the elements of logical
reasoning that contribute to learning. Next, this will be related to the Platonic and
Aristotelian scientific approaches discussed in Section 2. Finally, two novel pattern
recognition paradigms are placed in this view.

4.1 Learning by logical reasoning

Learning from examples is as an active process of concept formation that relies on
abstraction (focus on important characteristics or reduction of detail) and analogy
(comparison between different entities or relations focussing on some aspect of their
similarity). Learning often requires dynamical, multi-level (seeing the details which,
when united, lead to concepts, which further build higher level concepts) and pos-
sibly multi-strategy actions (e.g. in order to support good predictive power as well
as interpretability). A learning task is basically defined by input data (design set),
background knowledge or problem context and a learning goal [52]. Many inferen-
tial strategies need to be synergetically integrated to be successful in reaching this
goal. The most important are inductive, deductive and abductive principles, which
are briefly presented next. More formal definitions can be sought in the literature on
formal logic, philosophy or e.g. in [23, 40, 52, 83].

Inductive reasoning is the synthetic inference process of arriving at a conclu-
sion or a general rule from a limited set of observations. This relies on a formation of
a concept or a model, given the data. Although such a derived inductive conclusion
cannot be proved, its reliability is supported by empirical observations. As along as
the related deductions are not in contradiction with experiments, the inductive con-
clusion remains valid. If, however, future observations lead to contradiction, either
an adaption or a new inference is necessary to find a better rule. To make it more
formal, induction learns a general rule R (concerning A and B) from numerous ex-
amples of A and B. In practice, induction is often quantitative. Its strength often
relies on probability theory and the law of large numbers, in which given a large
number of cases, one can describe their properties in the limit and the corresponding
rate of convergence.

Deductive reasoning is the analytic inference process in which existing know-
ledge of known facts or agreed-upon rules is used to derive a conclusion. Such a con-
clusion does not yield ’new’ knowledge , since it is a logical consequence of what has
already been known, but implicitly (it is not of a greater generality than the premises).
Deduction, therefore, uses a logical argument to make explicit what has been hidden.
It is also a valid form of proof provided that one starts from true premises. It has a
predictive power, which makes it complementary to induction. In a pattern recogni-
tion system, both evaluation and prediction rely on deductive reasoning. To make it
more formal, let us assume that A is a set of observations, B is a conclusion and R is
a general rule. Let B be a logical consequence of A and R, i.e. (A∧R) |= B, where
|= denotes entailment. In a deductive reasoning, given A and using the rule R, the
consequence B is derived.



Abductive reasoning is the constructive process of deriving the most likely or
best explanations of known facts. This is a creative process, in which possible and
feasible hypotheses are generated for a further evaluation. Since both abduction and
induction deal with incomplete information, induction may be be viewed in some
aspects as abduction and vice versa, which leads to some confusion between these
two [23, 52]. Here, we assume they are different. Concerning the entailment (A ∧
R) |= B, having observed the consequence B in the context od the rule R, A is
derived to explain B.

In all learning paradigms there is an interplay between inductive, abductive and
deductive principles. Both deduction and abduction make possible to conceptually
understand a phenomenon, while induction verifies it. More precisely, abduction
generates or reformulates new (feasible) ideas or hypotheses, induction justifies the
validity of these hypothesis with observed data and deduction evaluates and tests
them. Concerning pattern recognition systems, abduction explores data, transforms
the representation and suggests feasible classifiers for the given problem. It also gen-
erates new classifiers or reformulates the old ones. Abduction is present in an initial
exploratory step or in the Adaptation stage; see Fig. 1. Induction trains the classi-
fier in the Generalization stage, while deduction predicts the final outcome (such as
label) for the test data by applying the trained classifier in the Evaluation stage.

Since abduction is hardly emphasized in learning, we will give some more in-
sights. In abduction, a peculiarity or an artifact is observed and a hypothesis is then
created to explain it. Such a hypothesis is suggested based on existing knowledge
or may extend it, e.g. by using analogy. So, the abductive process is creative and
works towards new discovery. In data analysis, visualization facilitates the abductive
process. In response to visual observations of irregularities or bizarre patterns, a re-
searcher is inspired to look for clues that can be used to explain such an unexpected
behavior. Mistakes and errors can therefore greatly serve the purpose of discovery
when odd results are inquired with a critical mind. Note, however, that this process
is very hard to implement into automatic recognition systems as it would require to
encode not only the detailed domain knowledge, but also techniques that are able
to detect ’surprises’ as well as strategies for their possible use. In fact, this requires
a conscious interaction. Ultimately, only a human analyst can interactively respond
in such cases, so abduction can be incorporated into semi-automatic systems well. In
traditional pattern recognition systems, abduction is usually defined in the terms of
data and works over pre-specified set of transformations, models or classifiers.

4.2 Logical reasoning related to scientific approaches

If pattern recognition (learning from examples) is merely understood as a process
of concept formation from a set of observations, the inductive principle is the most
appealing for this task. Indeed, it is the most widely emphasized in the literature
such that the ’learning’ is implicitly understood as ’inductive learning’. Such a rea-
soning leads to inferring new knowledge (rule or model) which is hopefully valid
not only for the known examples, but also for novel, unseen objects. Various val-
idation measures or adaptation steps are taken to support the applicability of the



determined model. Additionally, care has to be taken that the unseen objects obey
the same assumptions as the original objects used in training. If this does not hold,
such an empirical generalization becomes invalid. One should therefore exercise in
critical thinking while designing a complete learning system. It means that one has
to be conscious which assumptions are made and be able to quantify their sensibility,
usability and validity with the learning goal.

On the other hand, deductive reasoning plays a significant role in the Platonic ap-
proach. This top-down scenario starts from a set of rules derived from expert knowl-
edge on problem domain or from a degree of belief in a hypothesis. The existing prior
knowledge is first formulated in appropriate terms. These are further used to gener-
ate inductive inferences regarding the validity of the hypotheses in the presence of
observed examples. So, deductive formalism (description of the object’s structure) or
deductive predictions (based on the Bayes rule) precede inductive principles. A sim-
ple example in the Bayesian inference is the well-known Expectation-Maximization
(EM) algorithm used in problems with incomplete data [13]. The EM algorithm it-
erates between the E-step and M-step until convergence. In the E-step, given a cur-
rent (or initial) estimate of the unknown variable, a conditional expectation is found,
which is maximized in the M-step and derives a new estimate. The E-step is based on
deduction, while the M-step relies on induction. In the case of Bayesian nets, which
model a set of concepts (provided by an expert) through a network of conditional de-
pendencies, predictions (deductions) are made from the (initial) hypotheses (beliefs
over conditional dependencies) using the Bayes theorem. Then, inductive inferences
regarding the hypotheses are drawn from the data. Note also that if the existing prior
knowledge is captured in some rules, learning may become a simplification of these
rules such that their logical combinations describe the problem.

In the Aristotelian approach to pattern recognition, observation of particulars and
their explanation are essential for deriving a concept. As we already know, abduction
plays a role here, especially for data exploration and characterization to explain or
suggest a modification of the representation or an adaptation of the given classifier.
Aristotelian learning often relies on the Occam’s razor principle which advocates to
choose the simplest model or hypothesis among otherwise equivalent ones and can
be implemented in a number of ways [8].

In summary, the Platonic scenario is dominantly inductive-deductive, while the
Aristotelian scenario is dominantly inductive-abductive. Both frameworks have dif-
ferent merits and shortcomings. The strength of the Platonic approach lies in the
proper formulation and use of subjective beliefs, expert knowledge and possibility
to encode internal structural organization of objects. It is model-driven. In this way,
however, the inductive generalization becomes limited, as there may be little freedom
in the description to explore and discovery of new knowledge. The strength of the
Aristotelian approach lies in a numerical induction and a well-developed mathemati-
cal theory of vector spaces in which the actual learning takes place. It is data-driven.
The weakness, however, lies in the difficulty to incorporate the expert or background
knowledge about the problem. Moreover, in many practical applications, it is known
that the implicit assumptions of representative training sets, identical and identically
distributed (iid) samples as well as stationary distributions do not hold.
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4.3 Two new pattern recognition paradigms

Two far-reaching novel paradigms have been proposed that deal with the drawbacks
of the Platonic and Aristotelian approaches. In the Aristotelian scenario, Vapnik has
introduced transductive learning [73], while in the Platonic scenario Goldfarb has
advocated a new structural learning paradigm [31, 32]. We think these are two major
perspectives of the science of pattern recognition.

Vapnik [73] formulated the main learning principle as: ‘If you posses a restricted
amount of information for solving some problem, try to solve the problem directly and
never solve a more general problem as an intermediate step.’ In the traditional Aris-
totelian scenario, the learning task is often transformed to the problem of function
estimation, in which a decision function is determined globally for the entire domain
(e.g. for all possible examples in a feature vector space). This is, however, a solu-
tion to a more general problem than necessary to arrive at a conclusion (output) for
specific input data. Consequently, the application of this common-sense principle re-
quires a reformulation of the learning problem such that novel (unlabeled) examples
are considered in the context of the given training set. This leads to the transductive
principle which aims at estimating the output for a given input only when required
and may differ from an instance to instance. The training sample, considered either
globally, or in the local neighborhoods of test examples, is actively used to deter-
mine the output. As a result, this leads to confidence measures of single predictions
instead of globally estimated classifiers. It provides ways to overcome the difficulty
of iid samples and stationary distributions. More formally, in a transductive reason-
ing, given an entailment A |= (B∪C), if the consequence B is observed as the result
of A, then the consequence C becomes more likely.

The truly transductive principle requires an active synergy of inductive, deductive
and abductive principles in a conscious decision process. We believe it is practised
by people who are analyzing complex situations, learn, validate and deduce in order
to make decisions in novel ways. Examples are medical doctors, financial advis-
ers, strategy planners or leaders of large organizations. In the context of automatic
learning, transduction has applications to learning from partially labeled sets and
otherwise missing information, information retrieval, active learning and all types of



diagnostics. Some proposals can be found e.g. in [34, 46, 47, 73]. Although many
researchers recognize the importance of this principle, many remain also reluctant.
This may be caused by unfamiliarity with this idea, little existing procedures, or
by the accompanying computational costs as a complete decision process has to be
constantly inferred anew.

In the Platonic scenario, Goldfarb and his colleagues have developed structural
inductive learning, realized by the so-called evolving transformation systems (ETS)
[31, 32]. Goldfarb first noticed the intrinsic and impossible to overcome inadequacy
of vector spaces to truly learn from examples [30]. The reason is that such quanti-
tative representations loose all information on object structure; there is no way an
object can be generated given its numeric encoding. The second crucial observation
was that all objects in the universe have a formative history. This led Goldfarb to the
conclusion that an object representation should capture the object’s formative evolu-
tion, i.e. the way the object is created through a sequence of suitable transformations
in time. The creation process is only possible through structural operations. So, ’the
resulting representation embodies temporal structural information in the form of a
formative, or generative, history’ [31]. Consequently, objects are treated as evolving
structural processes and a class is defined by structural processes, which are ’simi-
lar’. This is an inductive structural/symbolic class representation, the central concept
in ETS. This representation is learnable from a (small) set of examples and has the
capability to generate objects from the class.

The generative history of a class starts from a single progenitor and is encoded
as a multi-level hierarchical system. On a given level, the basic structural elements
are defined together with their structural transformations, such that both are used to
constitute a new structural element on a higher level. This new element becomes
meaningful on that level. Similarity plays an important role, as it is used as a basic
quality for a class representation as a set of similar structural processes. Similarity
measure is learned in training to induce the optimal finite set of weighted structural
transformations that are necessary on the given level, such that the similarity of an
object to the class representation is large. ’This mathematical structure allows one
to capture dynamically, during the learning process, the compositional structure of
objects/events within a given inductive, or evolutionary, environment’ [31].

Goldfarb’s ideas bear some similarity to the ones of Wolfram, presented in his
book on ’a new kind of science’ [80]. Wolfram considers computation as the primary
concept in nature; all processes are the results of cellular-automata6 type of compu-
tational processes, and thereby inherently numerical. He observes that repetitive use
of simple computational transformations can cause very complex phenomena and
even more if computational mechanisms are used at different levels. Goldfarb also
discusses dynamical systems, in which complexity is built from simpler structures,
through hierarchical folding up (or enrichment). The major difference is that he con-
siders structure of primary interest, which leads to evolving temporal structural pro-
cesses instead of computational ones.

6Cellular automata are discrete dynamical systems that operate on a regular lattice in space
and time, and are characterized by ’local’ interactions.



In summary, Goldfarb proposes a revolutionary paradigm: an ontological model
of a class representation in an epistemological context, as it is learnable from exam-
ples. This is a truly unique unification. We think it is the most complete and chal-
lenging approach to pattern recognition to this date, a breakthrough. By including the
formative history of objects into their representation, Goldfarb attributes them some
aspects of human consciousness. The far reaching consequence of his ideas is a gen-
eralized measurement process that will be one day present in sensors. Such sensors
will be able to measure ’in structural units’ instead of numerical units (say, meters)
as it is currently done. The inductive process over a set of structural units lies at the
foundation of new inductive informatics. The difficulty, however, is that the current
formalism in mathematics and related fields is not yet prepared for adopting these
far-reaching ideas. We, however, believe, they will pave the road and be found anew
or rediscovered in the next decennia.

5 Challenges

A lot of research effort is needed before the two novel and far-reaching paradigms
are ready for practical applications. So, this section focuses on several challenges
that naturally come in the current context, an will be summarized for the design of
automatic pattern recognition procedures. A number of fundamental problems, re-
lated to the various approaches, have already been identified in the previous sections
and some will return here on a more technical level. Many of the points raised in this
section have been more extensively discussed in [17]. We will emphasize these which
have only been touched or are not treated at all in the standard books [15, 71, 76]
or in the review by Jain et al. [45]. The issues to be described are just a selection
of the many which are not yet entirely understood. Some of them may be solved
in the future by the development of novel procedures or by gaining an additional
understanding. Others may remain an issue of concern to be dealt with in each ap-
plication separately. We will be systematically describe them, following the line of
advancement of a pattern recognition system; see also Fig. 1:
• Representation and background knowledge. This is the way in which indi-

vidual real world objects and phenomena are numerically described or encoded
such that they can be related to each other in some meaningful mathematical
framework. This framework has to allow the generalization to take place.

• Design set. This is the set of objects available or selected to develop the recogni-
tion system.

• Adaptation. This is usually a transformation of the representation such that it
becomes more suitable for the generalization step.

• Generalization. This is the step in which objects of the design set are related
such that classes of objects can be distinguished and new objects can be accu-
rately classified.

• Evaluation. This is an estimate of the performance of a developed recognition
system.



5.1 Representation and background knowledge

The problem of representation is a core issue for pattern recognition [18, 20]. Rep-
resentation encodes the real world objects by some numerical description, handled
by computers in such a way that the individual object representations can be inter-
related. Based on that, later a generalization is achieved, establishing descriptions
or discriminations between classes of objects. Originally, the issue of representation
was almost neglected, as it was reduced to the demand of having discriminative fea-
tures provided by some expert. Statistical learning is often believed to start in a given
feature vector space. Indeed, many books on pattern recognition disregard the topic
of representation, simply by assuming that objects are somehow already represented
[4, 62]. A systematic study on representation [20, 56] is not easy, as it is applica-
tion or domain-dependent (where the word domain refers to the nature or character
of problems and the resulting type of data). For instance, the representations of a
time signal, an image of an isolated 2D object, an image of a set of objects on some
background, a 3D object reconstruction or the collected set of outcomes of a med-
ical examination are entirely different observations that need individual approaches
to find good representations. Anyway, if the starting point of a pattern recognition
problem is not well defined, this cannot be improved later in the process of learning.
It is, therefore, of crucial importance to study the representation issues seriously.
Some of them are phrased in the subsequent sections.

The use of vector spaces. Traditionally, objects are represented by vectors in a fea-
ture vector space. This representation makes it feasible to perform some general-
ization (with respect to this linear space), e.g. by estimating density functions for
classes of objects. The object structure is, however, lost in such a description. If
objects contain an inherent, identifiable structure or organization, then relations be-
tween their elements, like relations between neighboring pixels in an image, are en-
tirely neglected. This also holds for spatial properties encoded by Fourier coefficients
or wavelets weights. These original structures may be partially rediscovered by de-
riving statistics over a set of vectors representing objects, but these are not included
in the representation itself. One may wonder whether the representation of objects as
vectors in a space is not oversimplified to be able to reflect the nature of objects in a
proper way. Perhaps objects might be better represented by convex bodies, curves or
by other structures in a metric vector space. The generalization over sets of vectors,
however, is heavily studied and mathematically well developed. How to generalize
over a set of other structures is still an open question.

The essential problem of the use of vector spaces for object representation is
originally pointed out by Goldfarb [30, 33]. He prefers a structural representation
in which the original object organization (connectedness of building structural ele-
ments) is preserved. However, as a generalization procedure for structural represen-
tations does not exist yet, Goldfarb starts from the evolving transformation systems
[29] to develop a novel system [31]. As already indicated in Sec. 4.3 we see this as a
possible direction for a future breakthrough.

Compactness. An important, but seldom explicitly identified property of represen-
tations is compactness [1]. In order to consider classes, which are bounded in their



domains, the representation should be constraint: objects that are similar in reality
should be close in their representations (where the closeness is captured by an appro-
priate relation, possibly a proximity measure). If this demand is not satisfied, objects
may be described capriciously and, as a result, no generalization is possible. This
compactness assumption puts some restriction on the possible probability density
functions used to describe classes in a representation vector space. This, thereby,
also narrows the set of possible classification problems. A formal description of the
probability distribution of this set may be of interest to estimate the expected perfor-
mance of classification procedures for an arbitrary problem.

In Sec. 3, we pointed out that the lack of a formal restriction of pattern recog-
nition problems to those with a compact representation was the basis of pessimistic
results like the No-Free-Lunch Theorem [81] and the classification error bounds re-
sulting from the VC complexity measure [72, 73]. One of the main challenges for
pattern recognition to find a formal description of compactness that can be used in
error estimators the average over the set of possible pattern recognition problems.

Representation types. There exists numerous ways in which representations can be
derived. The basic ’numerical’ types are now distinguished as:

• Features. Objects are described by characteristic attributes. If these attributes
are continuous, the representation is usually compact in the corresponding fea-
ture vector space. Nominal, categorical or ordinal attributes may cause problems.
Since a description by features is a reduction of objects to vectors, different ob-
jects may have identical representations, which may lead to class overlap.

• Pixels or other samples. A complete representation of an object may be approx-
imated by its sampling. For images, these are pixels, for time signals, these are
time samples and for spectra, these are wavelengths. A pixel representation is
a specific, boundary case of a feature representation, as it describes the object
properties in each point of observation.

• Probability models. Object characteristics may be reflected by some probabilistic
model. Such models may be based on expert knowledge or trained from exam-
ples. Mixtures of knowledge and probability estimates are difficult, especially for
large models.

• Dissimilarities, similarities or proximities. Instead of an absolute description by
features, objects are relatively described by their dissimilarities to a collection of
specified objects. These may be carefully selected prototypes or representatives
for the problem, but also random subsets of the training set may work well [56].
The dissimilarities may be derived from raw data, such as images, spectra or time
samples, from original feature representations or from structural representations
such as strings or relational graphs. If the dissimilarity measure is nonnegative
and zero only for two identical objects, always belonging to the same class, the
class overlap may be avoided by dissimilarity representations.

• Conceptual representations. Objects may be related to classes in various ways,
e.g. by a set of classifiers, each based on a different representation, training set or
model. The combined set of these initial classifications or clusterings constitute



a new representation [56]. This is used in the area of combining clusterings [24,
25] or combining classifiers [49].

In the structural approaches, objects are represented in qualitative ways. The most
important are strings or sequences, graphs and their collections and hierarchical rep-
resentations in the form of ontological trees or semantic nets.

Vectorial object descriptions and proximity representations provide a good way
for generalization in some appropriately determined spaces. It is, however, difficult
to integrate them with the detailed prior or background knowledge that one has on the
problem. On the other hand, probabilistic models and, especially, structural models
are well suited for such an integration. The later, however, constitute a weak basis for
training general classification schemes. Usually, they are limited to assigning objects
to the class model that fits best, e.g. by the nearest neighbor rule. Other statistical
learning techniques are applied to these if given an appropriate proximity measure
or a vectorial representation space found by graph embeddings [79].

It is a challenge to find representations that constitute a good basis for modeling
object structure and which can also be used for generalizing from examples. The next
step is to find representations not only based on background knowledge or given by
the expert, but to learn or optimize them from examples.

5.2 Design Set

A pattern recognition problem is not only specified by a representation, but also by
the set of examples given for training and evaluating a classifier in various stages.
The selection of this set and its usage strongly influence the overall performance of
the final system. We will discuss some related issues.

Multiple use of the training set. The entire design set or its parts are used in several
stages during the development of a recognition system. Usually, one starts from some
exploration, which may lead to the removal of wrongly represented or erroneously
labeled objects. After gaining some insights into the problem, the analyst may select
a classification procedure based on the observations. Next, the set of objects may
go through some preprocessing and normalization. Additionally, the representation
has to be optimized, e.g. by a feature/object selection or extraction. Then, a series of
classifiers has to be trained and the best ones need to be selected or combined. An
overall evaluation may result in a re-iteration of some steps and different choices.

In this complete process the same objects may be used a number of times for the
estimation, training, validation, selection and evaluation. Usually, an expected error
estimation is obtained by a cross-validation or hold-out method [68, 77]. It is well
known that the multiple use of objects should be avoided as it biases the results and
decisions. Re-using objects, however, is almost unavoidable in practice. A general
theory does not exist yet, that predicts how much a training set is ’worn-out’ by its
repetitive use and which suggests corrections that can diminish such effects.

Representativeness of the training set. Training sets should be representative for
the objects to be classified by the final system. It is common to take a randomly



selected subset of the latter for training. Intuitively, it seems to be useless to col-
lect many objects represented in the regions where classes do not overlap. On the
contrary, in the proximity of the decision boundary, a higher sampling rate seems to
be advantageous. This depends on the complexity of the decision function and the
expected class overlap, and is, of course, inherently related to the chosen procedure.

Another problem are the unstable, unknown or undetermined class distributions.
Examples are the impossibility to characterize the class of non-faces in the face de-
tection problem, or in machine diagnostics, the probability distribution of all casual
events if the machine is used for undetermined production purposes. A training set
that is representative for the class distributions cannot be found in such cases. An
alternative may be to sample the domain of the classes such that all possible object
occurrences are approximately covered. This means that for any object that could
be encountered in practice there exists a sufficiently similar object in the training
set, defined in relation to the specified class differences. Moreover, as class den-
sity estimates cannot be derived for such a training set, class posterior probabilities
cannot be estimated. For this reason such a type of domain based sampling is only
appropriate for non-overlapping classes. In particular, this problem is of interest for
non-overlapping (dis)similarity based representations [18].

Consequently, we wonder whether it is possible to use a more general type of
sampling than the classical iid sampling, namely the domain sampling. If so, the open
questions refer to the verification of dense samplings and types of new classifiers that
are explicitly built on such domains.

5.3 Adaptation

Once a recognition problem has been formulated by a set of example objects in a
convenient representation, the generalization over this set may be considered, finally
leading to a recognition system. The selection of a proper generalization procedure
may not be evident, or several disagreements may exist between the realized and
preferred procedures. This occurs e.g. when the chosen representation needs a non-
linear classifier and only linear decision functions are computationally feasible, or
when the space dimensionality is high with respect to the size of the training set, or
the representation cannot be perfectly embedded in a Euclidean space, while most
classifiers demand that. For reasons like these, various adaptations of the represen-
tation may be considered. When class differences are explicitly preserved or empha-
sized, such an adaptation may be considered as a part of the generalization procedure.
Some adaptation issues that are less connected to classification are discussed below.

Problem complexity. In order to determine which classification procedures might
be beneficial for a given problem, Ho and Basu [43] proposed to investigate its com-
plexity. This is an ill-defined concept. Some of its aspects include data organiza-
tion, sampling, irreducibility (or redundancy) and the interplay between the local
and global character of the representation and/or of the classifier. Perhaps several
other attributes are needed to define complexity such that it can be used to indicate a
suitable pattern recognition solution to a given problem; see also [2].



Selection or combining. Representations may be complex, e.g. if objects are rep-
resented by a large amount of features or if they are related to a large set of proto-
types. A collection of classifiers can be designed to make use of this fact and later
combined. Additionally, also a number of representations may be considered simul-
taneously. In all these situations, the question arises on which should be preferred:
a selection from the various sources of information or some type of combination.
A selection may be random or based on a systematic search for which many strate-
gies and criteria are possible [49]. Combinations may sometimes be fixed, e.g. by
taking an average, or a type of a parameterized combination like a weighted linear
combination as a principal component analysis; see also [12, 56, 59].

The choice favoring either a selection or combining procedure may also be dic-
tated by economical arguments, or by minimizing the amount of necessary measure-
ments, or computation. If this is unimportant, the decision has to be made according
to the accuracy arguments. Selection neglects some information, while combination
tries to use everything. The latter, however, may suffer from overtraining as weights
or other parameters have to be estimated and may be adapted to the noise or irrele-
vant details in the data. The sparse solutions offered by support vector machines [67]
and sparse linear programming approaches [28, 35] constitute a way of compromise.
How to optimize them efficiently is still a question.

Nonlinear transformations and kernels. If a representation demands or allows for
a complicated, nonlinear solution, a way to proceed is to transform the representation
appropriately such that linear aspects are emphasized. A simple (e.g. linear) classifier
may then perform well. The use of kernels, see Sec. 3, is a general possibility. In some
applications, indefinite kernels are proposed as being consistent with the background
knowledge. They may result in non-Euclidean dissimilarity representations, which
are challenging to handle; see [57] for a discussion.

5.4 Generalization

The generalization over sets of vectors leading to class descriptions or discriminants
was extensively studied in pattern recognition in the 60’s and 70’s of the previous
century. Many classifiers were designed, based on the assumption of normal distribu-
tions, kernels or potential functions, nearest neighbor rules, multi-layer perceptrons,
and so on [15, 45, 62, 76]. These types of studies were later extended by the fields
of multivariate statistics, artificial neural networks and machine learning. However,
in the pattern recognition community, there is still a high interest in the classification
problem, especially in relation to practical questions concerning issues of combining
classifiers, novelty detection or the handling of ill-sampled classes.

Handling multiple solutions. Classifier selection or classifier combination. Al-
most any more complicated pattern recognition problem can be solved in multiple
ways. Various choices can be made for the representation, the adaptation and the
classification. Such solutions usually do not only differ in the total classification per-
formance, they may also make different errors. Some type of combining classifiers
will thereby be advantageous [49]. It is to be expected that in the future most pattern



recognition systems for real world problems are constituted of a set of classifiers. In
spite of the fact that this area is heavily studied, a general approach on how to select,
train and combine solutions is still not available. As training sets have to be used
for optimizing several subsystems, the problem how to design complex systems is
strongly related to the above issue of multiple use of the training set.

Classifier typology. Any classification procedure has its own explicit or built-in as-
sumptions with respect to data inherent characteristics and the class distributions.
This implies that a procedure will lead to relatively good performance if a problem
fulfils its exact assumptions. Consequently, any classification approach has its prob-
lem for which it is the best. In some cases such a problem might be far from practical
application. The construction of such problems may reveal which typical characteris-
tics of a particular procedure are. Moreover, when new proposals are to be evaluated,
it may be demanded that some examples of its corresponding typical classification
problem are published, making clear what the area of application may be; see [19].

Generalization principles. The two basic generalization principles, see Section 4,
are probabilistic inference, using the Bayes-rule [63] and the minimum description
length principle that determines the most simple model in agreement with the obser-
vations (based on Occam’s razor) [37]. These two principles are essentially differ-
ent7. The first one is sensitive to multiple copies of an existing object in the training
set, while the second one is not. Consequently, the latter is not based on densities,
but just on object differences or distances. An important issue is to find in which
situations each of these principle should be recommended and whether the choice
should be made in the beginning, in the selection of the design set and the way of
building a representation, or it should be postpone until a later stage.

The use of unlabeled objects and active learning. The above mentioned principles
are examples of statistical inductive learning, where a classifier is induced based on
the design set and it is later applied to unknown objects. The disadvantage of such
approach is that a decision function is in fact designed for all possible representa-
tions, whether valid or not. Transductive learning, see Section 4.3, is an appealing
alternative as it determines the class membership only for the objects in question,
while relying on the collected design set or its suitable subset [73]. The use of un-
labeled objects, not just the one to be classified, is a general principle that may be
applied in many situations. It may improve a classifier based on just a labeled train-
ing set. If this is understood properly, the classification of an entire test set may yield
better results than the classification of individuals.

Classification or class detection. Two-class problems constitute the traditional ba-
sic line in pattern recognition, which reduces to finding a discriminant or a binary
decision function. Multi-class problems can be formulated as a series of two-class
problems. This can be done in various ways, none of them is entirely satisfactory.
An entirely different approach is the description of individual classes by so-called

7Note that Bayesian inference is also believed to implement the Occam’s razor [8] in
which preference for simpler models is encoded by encouraging particular prior distributions.
This is, however, not the primary point as in the minimum description length principle.



one-class classifiers [69, 70]. In this way the focuss is given to class description in-
stead of to class separation. This brings us to the issue of the structure of a class.

Traditionally classes are defined by a distribution in the representation space.
However, the better such a representation, the higher its dimensionality, the more
difficult it is to estimate a probability density function. Moreover, as we have seen
above, it is for some applications questionable whether such a distribution exist.
A class is then a part of a possible non-linear manifold in a high-dimensional space.
It has a structure instead of a density distribution. It is a challenge to use this approach
for building entire pattern recognition systems.

5.5 Evaluation

Two questions are always apparent in the development of recognition systems. The
first refers to the overall performance of a particular system once it is trained, and
has sometimes a definite answer. The second question is more open and asks which
good recognition procedures are in general.
Recognition system performance. Suitable criteria should be used to evaluate the
overall performance of the entire system. Different measures with different charac-
teristics can be applied, however, usually, only a single criterion is used. The basic
ones are the average accuracy computed over all validation objects or the accuracy
determined by the worst case scenario. In the first case, we again assume that the set
of objects to be recognized is well defined (in terms of distributions). Then, it can be
sampled and the accuracy of the entire system is estimated based on the evaluation
set. In this case, however, we neglect the issue that after having used this evaluation
set together with the training set, a better system could have been found. A more
interesting point is how to judge the performance of a system if the distribution of
objects is ill-defined or if a domain based classification system is used as discussed
above. Now, the largest mistake made becomes a crucial factor for this type of judge-
ments. One needs to be careful, however, as this may refer to an unimportant outlier
(resulting e.g. from invalid measurements).

Practice shows that a single criterion, like the final accuracy, is insufficient to
judge the overall performance of the whole system. As a result, multiple perfor-
mance measures should be taken into account, possibly at each stage. These mea-
sures should not only reflect the correctness of the system, but also its flexibility to
cope with unusual situations in which e.g. specific examples should be rejected or
misclassification costs incorporated.
Prior probability of problems. As argued above, any procedure has a problem for
which it performs well. So, we may wonder how large the class of such problems
is. We cannot state that any classifier is better than any other classifier, unless the
distribution of problems to which these classifiers will be applied is defined. Such
distributions are hardly studied. What is done at most is that classifiers are compared
over a collection of benchmark problems. Such sets are usually defined ad hoc and
just serve as an illustration. The collection of problems to which a classification
procedure will be applied is not defined. As argued in Section 3, it may be as large
as all problems with a compact representation, but preferably not larger.



6 Discussion and conclusions

Recognition of patterns and inference skills lie at the core of human learning. It is
a human activity that we try to imitate by mechanical means. There are no physical
laws that assign observations to classes. It is the human consciousness that groups
observations together. Although their connections and interrelations are often hidden,
by the attempt of imitating this process, some understanding might be gained. The
human process of learning patterns from examples may follow along the lines of trial
and error. By freeing our minds of fixed beliefs and petty details we may not only
understand single observations but also induce principles and formulate concepts
that lie behind the observed facts. New ideas can be born then. These processes of
abstraction and concept formation are necessary for development and survival. In
practice, (semi-)automatic learning systems are built by imitating such abilities in
order to gain understanding of the problem, explain the underlying phenomena and
develop good predictive models.

It has, however, to be strongly doubted whether statistics play an important role
in the human learning process. Estimation of probabilities, especially in multivariate
situations is not very intuitive for majority of people. Moreover, the amount of ex-
amples needed to build a reliable classifier by statistical means is much larger than it
is available for humans. In human recognition, proximity based on relations between
objects seems to come before features are searched and may be, thereby, more fun-
damental. For this reason and the above observation, we think that the study of prox-
imities, distances and domain based classifiers are of great interest. This is further
encouraged by the fact that such representations offer a bridge between the possibili-
ties of learning in vector spaces and the structural description of objects that preserve
relations between objects inherent structure. We think that the use of dissimilarities
for representation, generalization and evaluation constitute the most intriguing issues
in pattern recognition.

The existing gap between structural and statistical pattern recognition partially
coincides with the gap between knowledge and observations. Prior knowledge and
observations are both needed in a subtle interplay to gain new knowledge. The exist-
ing knowledge is needed to guide the deduction process and to generate the models
and possible hypotheses needed by induction, transduction and abduction. But, above
all, it is needed to select relevant examples and a proper representation. If and only if
the prior knowledge is made sufficiently explicit to set this environment, new obser-
vations can be processed to gain new knowledge. If this is not properly done, some
results may be obtained in purely statistical terms, but these cannot be integrated with
what was already known and have thereby to stay in the domain of observations. The
study of automatic pattern recognition systems makes perfectly clear that learning is
possible, only if the Platonic and Aristotelian scientific approaches cooperate closely.
This is what we aim for.
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