
1

 Abstract

We introduce query-free information re-
trieval, a paradigm in which queries are
constructed autonomously and informa-
tion relevant to a user is offered without
explicit request. Query-free methods offer
an apparently new approach for integrat-
ing knowledge-based applications with
legacy databases. We describe a fielded
system, FIXIT, which integrates an expert
diagnostic system with a pre-existing full-
text database of maintenance manuals.
The reported results suggest that query-
free information retrieval can liberate the
user from burdensome information re-
trieval activities while incurring only
modest system development costs and
minimal run-time costs.

Introduction
A fundamental real-world challenge for de-

signers of cooperative information systems is
to provide a useful integration of computational
and data resources while at the same time satis-
fying several apparently conflicting objectives.
While some objectives, like minimizing life-
cycle costs or run-time costs, are typical of
most system development activities, coopera-
tive information systems introduce additional
challenges: The integration of several large
system components usually increases the capa-
bilities available to end users compared with
those provided by any single component. But
how will end users access these capabilities?

Will it impose additional burdens on users to
invoke or control them? Will users be distract-
ed from their “primary” or “base” application
task by the features and functions of “second-
ary” or “supporting” system components?

Expert systems designers in particular face
these problems because modern expert systems
are seldom fielded as isolated, independent
software applications. Instead, they are most
frequently embedded in some larger environ-
ment that presents both opportunities and chal-
lenges for sub-system integration.

This paper reports work aimed at addressing
some of these questions in a specific system
context. We describe a fielded system, FIXIT,
that integrates a probabilistic expert system
with a full-text database of maintenance docu-
mentation. This legacy database is the online
source of the actual printed manuals used by
technical support personnel. In FIXIT, it entirely
replaces the “help-text” found in conventional
expert systems with far more comprehensive
and up-to-date reference material.

FIXIT users are either service technicians or
customer support representatives. With appro-
priate knowledge bases, they might be either
troubleshooting a complex copier or helping a
customer solve a less-complicated problem
over the phone. In either case, because the ex-
pert system directly supports the user’s diag-
nostic goal, we regard it as the base application.

The dialog between user and base applica-
tion establishes a context and from time to time
generates a need for additional diagnostic and
repair information. In principal, such informa-
tion could be made available directly from the
on-line database, and a motivated user might

 Query-free Information Retrieval

Peter E. Hart and Jamey Graham
RICOH California Research Center

2882 Sand Hill Road
Menlo Park, CA 94025

Email: fixit@crc.ricoh.com

2

wish to access the database directly and search
for relevant topics. Of course, this requires fa-
miliarity with access paths and query proce-
dures and also might be a distraction from the
primary task. Our challenge is to provide the
user with the benefits of a combined expert and
full-text database system without requiring
knowledge of query procedures, without dis-
tracting attention from the diagnostic task, and
without imposing noticeable runtime costs.

We have approached this challenge by intro-
ducing an intelligent agent that analyzes inter-
actions between user and expert system and
automatically constructs database queries
based on this analysis. The user is unobtrusive-
ly notified when information relevant to the
current diagnostic context has been returned,
and may immediately access it if desired. From
the user’s perspective all database machinery is
entirely transparent; indeed no formal query
language is even made available. Hence we
term this approach query-free information
retrieval.

As we hope will be apparent from what fol-
lows, the introduction of the intelligent agent
additionally offers one solution to a fundamen-
tal problem facing designers of cooperative in-
formation systems: How can legacy systems of
substantial complexity be integrated within a
larger system context? By requiring that all in-
teractions with the legacy database be mediated
by the agent, we have been able to isolate the
database system cleanly while still supporting
query-free information retrieval.

FIXIT is comprised of the three subsystems
already mentioned: the probabilistic expert sys-
tem, the legacy full-text database system (to
which we added a new, semantically-based, in-
dexing structure that supports limited natural
language queries), and the intelligent agent that
effectively integrates them. The following sec-
tions describe these system components, pro-
vide implementation details, illustrate the
runtime behavior of FIXIT, report on operation-
al experience, and close with some observa-
tions about query-free information retrieval

and the potential for generalizing the underly-
ing paradigm.

FIXIT's System Components
We first describe the probabilistic expert

sub-system and the information retrieval sub-
system. Before briefly describing these, we
stress that our purpose was not necessarily to
advance the capabilities of the individual com-
ponents or indeed even to exploit fully the best
current technology; instead, we focus on their
integration.

Expert System Component. For our purely
diagnostic applications, we elected to use the
belief net (or Bayesian net) representation that
has received considerable attention in recent
years1.

Belief networks use conditional probabilities
of the form p(sj|fi) to represent associations be-
tween a fault fi and an observable symptom sj
that it may produce. A knowledge base for a be-
lief net expert system consists principally of a
collection of conditional probabilities of this
form*.

The relations among faults and symptoms
are conveniently represented as a directed acy-
clic graph as shown in Figure 1. Nodes repre-

* We omit from this brief summary the usual
discussion about conditional independence
assumptions or the introduction of the higher
order conditional probabilities often encoun-
tered in practice.

ID Sensor

Developer

Corona
Currents

Bias

Blinking
Wrench

Toner
Discharge

Over
Toning

Blurry
Copies

Light
Copies

Faults

Symptoms

Figure 1. A simplified belief net for copier diagnosis

3

sent either faults, observable symptoms or
unobservable internal variables. Arcs are infor-
mally “causal”, pointing from underlying faults
to the symptoms they may cause. Formally,
arcs correspond exactly to those conditional
probabilities required by the expert to represent
the important probabilistic dependencies
among faults, observables, and unobservable
internal variables of the problem domain.

At knowledge engineering time the expert
specifies the conditional probability of observ-
ing a particular symptom given the occurrence
of some fault. At runtime these conditional
probabilities are inverted: Given some se-
quence {s1, s2, ... , sj} of observed symptoms,
we compute for each possible fault fi the condi-
tional probability p(fi|s1, s2, ... , sj) of that fault
given the sequence of observations. At each
stage in the sequence a decision is taken wheth-
er to accept the currently most probable fault as
the diagnosis or to make another observation.
That decision can be based on either formal
utility theory, informal heuristics, or the user's
own judgment.

Information Retrieval Component. The in-
formation resources available in our setting are
contained in a full-text database (including dia-
grams represented as bitmaps) of maintenance
reference manuals, training manuals and fre-
quently-modified maintenance notes and up-
dates. Fortunately, this mass of material is very
well structured by a chapter, section and sub-
section organization imposed by its authors.
We refer to these organizational units collec-
tively as topics. Authors take great care to
choose the literal name of each topic to be as
descriptive as is reasonably possible.

Our information retrieval (IR) subsystem2

focuses on topics as the primitive elements to
be returned to the user. Topics can be searched
for, located and retrieved only by referencing
the collection of their literal names. We limit
ourselves to this level of representation out of
respect for the difficulties of 'understanding' a

full text-and-graphics database at a deeper lev-
el.

Operating as an isolated component, the in-
formation retrieval subsystem can in principal
accept restricted natural language queries con-
taining terms from a limited vocabulary. Que-
ries are parsed to produce semantic
constituents3 that are used as the search terms
for accessing the database.

Even though we have simplified matters by
restricting attention to the level of database top-
ics and by using a limited vocabulary, some ad-
ditional machinery is still needed for two
reasons. First, though topic names are descrip-
tive they are frequently elliptical. For example,
a topic named “Removal” can be understood
only as a sub-topic of, say, “Fusing Unit”. Sec-
ond, a direct string match against literal names
is too restrictive; a change in nomenclature
might require burdensome system updates.

We deal with both these complications by
appealing to our semantic representation in
combination with a Table of Contents, or ToC,
tree that captures the organization of the main-
tenance documentation (Figure 2). A ToC tree

data structure mirrors the form of the Table of
Contents of the maintenance documentation,
with each node in the tree corresponding to a
topic in the documentation. However, the node
contains not the literal topic name, but instead
contains the constituents obtained by parsing
the topic name.

Retrieval is performed by matching query

3. Fusing Unit
3.1 Cleaning
3.2 Removal

4. Corona Wires
4.1 Charge Corona Wire

- Connector -
- Adjustment -

4.2 Transfer & Separation Corona Wires
4.3 Prequenching Corona Wires

5. ID Sensor
5.1 Adjustment
5.2 Removal

Figure 2: A fragment of the table of contents tree

4

constituents top-down against ToC constitu-
ents. A partial match at any level of the ToC--
i.e., a match between at least one constituent of
a query with at least one constituent of a ToC
node-- triggers a recursive attempt to match ad-
ditional query constituents lower in the ToC
tree. Proceeding down any single path through
the tree, we retrieve the topic corresponding to
the deepest node at which a match is obtained.
This matching procedure propagates informa-
tion down the tree from higher to lower nodes
and effectively handles ellipsis like that men-
tioned earlier. It returns multiple topics if
matches are found on separate paths, but al-
ways returns only the most specific topic along
any single path.

As an example of how the ToC IR system
works, Figure 3 depicts the fault node Corona
Currents Out of Adjustment and the results of
matching it against a portion of the ToC tree.
The IR system uses a matching function which
produces a results vector for each comparison.
Each value in the vector directly corresponds to

a concept (at that position) in the semantic pat-
tern. This value will reflect the amount of sim-
ilarity between a semantic pattern concept and
the constituents which make up the ToC topics.
For simplicity, we use 0.0 to mean “No Match”
and anything between 0.8 and 1.0 to mean a
“Valid Match”.

The figure displays two sets of results for
each topic the semantic pattern is compared
with: local and global. The local results repre-
sent the comparison between semantic pattern
and the individual topic.

The global result vector depicts a compo-
nent-wise merge of local and global results
which effectively propagates the context of
parent topics to subordinate topics throughout
the ToC. The straight arrows drawn from the
local to the global results show how the values
are passed on to create what amounts to be the
most contextually rich version of the results
vector.

For example, given the semantic pattern in
the figure, our first concept match comes when

3. Fusing Unit

3.1 Cleaning

3.2 Removal

4. Corona Wires

4.1 Charge Corona Wires

- Connector -

- Adjustment -

4.2 Transfer & Separation Corona Wires

Corona Currents Out Of Adjustment

FAULT NODE:

SEMANTIC PATTERN:
(CORONA-CURRENTS-CONCEPT ADJUSTMENT-CONCEPT)

PATTERN MATCHER RESULTS

(0.0, 0.0)(0.0,0.0)
Local Global

TOC TREE SECTION:

(0.0, 0.0)(0.0,0.0)

(0.0, 0.0)(0.0,0.0)

(0.9, 0.0)(0.9,0.0)

(0.9, 0.0)(0.9,0.0)

(0.9, 0.0)(0.0,0.0)

(0.9, 1.0)(0.0,1.0)

(0.9, 0.0)(0.9,0.0)

Figure 3 - ToC Information Retrieval Example

Valid
Topic Match

Merge

Propagate
Superordinate

Values

ToC Topics

5

we compare the semantic pattern to the topic
“4. Corona Wires”. The resulting vector, (0.9,
0.0), represents a Valid Match between the first
query constituent, CORONA-CURRENTS-
CONCEPT, and No Match between the second
query constituent ADJUSTMENT-CONCEPT
(the pattern matcher produces a value of 0.9 for
the above match because the concepts CORO-
NA-CURRENTS and CORONA-WIRE are simi-
lar but not exact). Next, we recursively process
the nodes subordinate to “4. Corona Wires”, by
propagating the parent vector, (0.9, 0.0), to the
subordinate topics so that the full context of
these topics can be realized when comparing
them with the semantic pattern.

When the search compares the semantic pat-
tern with the subtopic “- Adjustment -”, we get
a local match for the second constituent in the
semantic pattern, (0.0,1.0). By merging the cur-
rent local results with the current global results,
(0.9, 1.0), we produce a Valid Match, utilizing
the context provided by a superordinate topic.

We have informally assessed the precision
and recall of the ToC information retrieval sub-
system by running about 60 successfully-
parsed queries against a database of almost 400
topics. We estimated the precision to be about
85% and the recall about 95%. While the sam-
ple size and rigor of our evaluation process
might leave something to be desired, we cer-
tainly established that the subsystem is suffi-
ciently robust to support the pursuit of our main
experimental interest in query-free information
retrieval.

Autonomous Query Construction. With the
belief net and ToC subsystems as building
blocks, we can frame our central issue: How
does the context defined by the interactions be-
tween the user and the expert system provide
clues about what documentation is currently
most relevant? Put slightly differently: Can we
guess what query a user would construct if he
or she had a model of what information was
available, understood the query language, and
chose to type a request? If we can construct ap-

propriate queries autonomously, our existing
machinery is well able to do the rest of the job*.

Our approach to this problem relies on the
twin concepts of focus of attention of the user
and support for a hypothesis. An appeal to
these concepts in turn depends on the fact that
the technician invoked the expert system with a
single, well-defined goal: identifying the cause
of the copier malfunction.

Activated Faults. We assess the technician's
focus of attention through the use of the fault
probabilities computed by the expert system.
We define an activation predicate, or AP, to fo-
cus attention on a manageably small number of
faults from among possibly hundreds of diag-
nostic alternatives. It is easy to construct many
AP definitions ranging from simple static
thresholds to more elaborate comparisons that
take recent history into account. For our initial
experiments, a fault node in the belief net satis-
fies the AP simply when its current probability
(i.e., its conditional probability given all symp-
toms observed thus far) is at least 0.03.

An activated fault node autonomously gen-
erates a request for further information in a nat-
ural way. The node name or descriptor is
treated as a query, the ToC information retriev-
al machinery is invoked and a set of topics
(possibly null) is returned. For this machinery
to work successfully, the knowledge base de-
signer and implementor must take a little care
so that node names have some reasonable re-
semblance to the standard terminology em-
ployed in the maintenance documentation and
the ToC. This is rarely difficult since knowl-
edgeable people in a given field, whether they
are documentation specialists or other experts,
usually share a common vocabulary. Certainly,
relying on even a loosely-controlled conven-

* A more sophisticated approach would also
use interactions with the full-text database,
not just with the expert system, to establish
a context.

6

tional vocabulary is less problematic than deal-
ing with uncontrolled queries from casual
users.

Supporting Symptoms. With activated faults
providing an operational definition of the user's
focus of attention, we next want to operational-
ize a definition of their support. If the expert
system were based on formal logic, the notion
of support for a proof would be well-defined. In
our probabilistic expert system we have less
theoretical guidance and adopt a pragmatic ap-
proach.

We use the computational results of the be-
lief net subsystem directly to obtain a measure
of how strongly associated a symptom is with
an activated fault. Suppose the first j-1 symp-
toms {s1, s2, ... , sj-1} have already been ob-
served and we now observe the jth symptom sj.
For each activated fault fi we easily compute
Dpij as p(fi|s1, s2, ... , sj) - p(fi|s1, s2, ... , sj-1). In
words, ∆pij measures the marginal effect on fi
of observing sj in the context of the previous j-
1 observations.

As with the AP, it is easy to construct many
alternative definitions of a support predicate,
or SP, that focuses attention on significant val-
ues of ∆pij. After some experimentation we set-
tled on a simple static threshold, 0.01, applied
to |Dpij|; i.e., we say a symptom sj supports an
activated fault fi when |Dpij| > 0.01.

The support predicate leads directly to au-
tonomous query construction just as the activa-
tion predicate does. The names or descriptors
of nodes that support an activated fault are
treated as queries, the ToC machinery is in-
voked, and a set of topics is returned.

Our definition of SP is obviously sensitive to
the order in which symptoms are observed. A
symptom sj that strongly supports some fault
diagnosis in one sequence of observations may
be irrelevant in another sequence. This will oc-
cur whenever sj is largely unnecessary or re-
dundant given previous observations. From an

information retrieval standpoint we consider
this to be desirable behavior, arguing that the
user is most likely to be interested in symptoms
that substantially effect the diagnosis in the
context of previous observations.

Connecting Faults and Symptoms. The com-
bination of activation and support predicates
enables us to take advantage of the opportunity
-- not rare-- to identify database topics that con-
nect faults and symptoms directly. This is sim-
ply accomplished by noting when a topic
retrieved for an activated fault node is also
present among the topics retrieved from a sup-
porting symptom node-- i.e., by intersecting the
sets of topics retrieved for each node individu-
ally. We call such co-occurring topics primary
topics. We call a topic secondary if either (i) it
was retrieved from an activated fault node, or
(ii) it was retrieved from any symptom node as-
serted by the user.

To summarize, the foregoing concepts lead
directly to the construction of an intelligent
agent supporting query-free information re-
trieval. The agent monitors symptoms asserted
by the user and employs the activation predi-
cate to establish the user's focus of attention.
The support for activated nodes is computed
and queries based on asserted nodes, activated
nodes, and supporting nodes are issued. Topics
returned are identified as primary if the neces-
sary set intersections are non-null, and are iden-
tified as secondary otherwise. Incidentally, the
identification of a topic as primary or second-
ary affects only our user interface design; we
alert the user to the availability of both types,
but invite attention to primary topics when they
are available.

FIXIT Implementation
FIXIT's component subsystems originated

from different sources. For the belief net expert
system shell we use DXpress™, a commercial
product currently available from Knowledge

7

Industries*. Several probabilistic knowledge
bases were built in collaboration with RICOH
technical experts, and cover a variety of the
most widely distributed RICOH products. (For
our illustrative example in the next section we
use the simplest fax machine knowledge base,
which covers about a hundred or so malfunc-
tions.) The full-text database is prepared and
maintained by RICOH operational staff. The
ToC information retrieval system was devel-
oped by one of us2.

Fully-integrated versions of FIXIT run under
several versions of Windows, including a Japa-
nese version. The actual implementation differs
from the foregoing slightly simplified descrip-
tion in only a couple of respects.

First, while the system would run well exact-
ly as described, we can increase the robustness
of information retrieval by augmenting the set
of node descriptors beyond the minimum re-
quired for the belief net. The expert, at design
time, simply specifies additional descriptors
that might be semantically related to the node.
This approach was adopted instead of any of
several much more complex, but better-found-
ed, alternatives.

Second, as the reader has probably already
noticed, the universe of individual queries is
limited to the node names (or node descriptors)
in the belief net. This suggests parsing all pos-
sible queries at compile time, invoking the ToC
retrieval machinery, and returning for each
node a pointer to the relevant full-text database
topic(s). Accordingly, substantially all the
computation required to support information
retrieval is performed at compile time; only the
computationally trivial tasks of computing the
AP, the SP, and intersecting small sets are per-
formed at runtime.

An Illustration of Fixit Behavior. We illus-
trate FIXIT's run-time behavior with two brief,
related examples.

Figure 4a shows a FIXIT window as it ap-

pears to a customer support representative dur-
ing a diagnostic session. The top left quarter of
the window displays a hierarchical menu con-
taining all possible observable symptoms. Se-
lecting first a symptom category (e.g.
“Indicators”) and then a specific symptom (e.g.
“Clear Copy Indicator”) results both in assert-
ing that symptom as “observed” and posting it
to the current history of the session (bottom
left). The expert system computes the probabil-
ity of each of the hundred or so faults given this
symptom, and displays the leading candidates
in the lower half of the window (“Possible
Problems”) along with their probabilities and
fault categories. The agent indicates, via a text
icon, that relevant documentation was found
for some faults.

There are three kinds of icons used by the
agent to indicate that relevant documentation is
available for a fault. The primary text icon, as
previously mentioned, indicates the availability
of topics relevant to both the fault and to one or
more of the observed symptoms. The second-
ary text icons represent the availability of doc-
umentation relevant to the fault. (We use two
different icons to denote “many” or “few”
available topics.)

In figure 4b we see that selecting the text
icon results in a new window containing all
topics found to be relevant to the fault “Paper
Nonfeed-RX”. By selecting a topic in the list
we can see which document this topic comes
from: “User’s” manual.

Figure 4c shows that selecting a topic places
the user in a documentation browser, which for
convenience uses two windows to display the
images and text separately so that they may be
scaled and viewed independently.

In addition to serving as the interface to FIX-
IT’s information retrieval component, the
browser also provides access to the table of
contents for this document, to all documents in
the library for this particular machine, and to
convenience features like bookmarks. In our
example, the retrieved topic “1. Replacing Pa-
per” is indeed relevant to the fault “Paper Non-*http://www.kic.com/

8

List of Fault
Candidates

Fault
Probabilities

Fault Type and
Icons depicting

Category

List of
Observed
Symptoms

Advice
Button Symptom

Categories

Figure 4a. FIXIT’s Diagnostic Window

Text Icon
Selected

Selected Fault

Relevant topics
for this fault:

Relevant Text
Indicator

Document
Name

Figure 4b. Relevant topics for a fault

9

feed-RX”.
The context-sensitive nature of FIXIT's infor-

mation retrieval can be illustrated by continu-
ing the diagnosis. Figure 5a presents the same
diagnostic session after asserting a few more
symptoms. The number one fault is now “Pa-
per Nonfeed-RX”. However, the text icon for
this fault has changed to indicate that there are
primary topics available. Figure 5b shows the
available topics and Figure 5c shows the topic
retrieved, which is indeed relevant to both the
“Paper Nonfeed-RX” fault and the “Chk Cas-
sette Area-No” observed symptom.

Field Experience
 In January of 1995 an alpha test was begun

at a RICOH customer support center. Both the
percentage of calls successfully resolved and
the average time required to resolve them great-
ly surpassed the expectations of operational
managers. Accordingly, in June 1995 the sys-
tem was put into production use at one RICOH

center.
In January 1996, following continuing effec-

tive use, the system was rolled out to additional
RICOH locations. At the same time, knowledge
engineering activities were expanded to in-
crease the coverage of RICOH’s broad product
line, and development of a Japanese version
was begun. As of this writing it seems fair to
say that, viewed from the standpoint of opera-
tional managers (rather than from only our per-
spective as researchers and developers), the
system is successful.

Discussion
We have introduced query-free information re-
trieval, an apparently new paradigm in which
queries are constructed autonomously and in-
formation relevant to a user’s task context is of-
fered without explicit request. FIXIT, begun as
a research project in cooperative information
systems, has progressed from early concepts, to
a research prototype, to a fielded commercial

Figure 4c. Documentation Browser

Text Window

Document

Image Window

Library

Other topics

Relevant topic

10

Responses
to question

Figure 5a. Agent indicates availability of primary topics

Observation
Question

Suggested
Observations

New Text
Indicator

Text Icon
Selected

Selected Fault

Relevant topics
for this fault:

Figure 5b - User selects a primary topic

11

system.

What has been learned from this experience?

Related Work. Decision support systems uti-
lizing multiple technologies can provide fertile
ground for exploring new software architec-
tures. As with many developments in this
emerging field, the work reported here bears a
tantalizing similarity to several other previous-
ly-described ideas and yet appears to be differ-
ent from any of them. For example, work on
information filtering might appear to be closely
related to ours, but the emphasis there is on a
user's “...relatively stable, long-term... goals...
that may change slowly over time.”4 This con-
trasts sharply with the query-free emphasis on
contextually-dependent user needs that typical-
ly change in the few seconds required to com-
plete a single interaction with the base task.
Alternatively, work on plan recognition might
in principle support query-free retrieval from
external information resources, but the focus

there is more typically on generating natural
language output from formal internal
representations5.

FIXIT's design philosophy of providing unre-
quested yet “relevant” information resembles
the philosophy underlying the query relaxation
approach6. There, however, the emphasis is on
generalizing a query already posed by a user in
order to find “neighboring” information, rather
than on avoiding explicit queries entirely. Pos-
sibly, the two approaches could be usefully
combined.

Related Goals. A common thread running
through all these approaches is the goal of pro-
viding a user with relevant information beyond
that which has been explicitly requested. We
believe this to be an important goal because the
ever-increasing availability-- and most espe-
cially the heterogeneity-- of data, computation-
al and communication resources threatens to
overwhelm the abilities of users to access them
effectively. This trend has been evident for

Figure 5c - Documentation browser displaying primary topic

Relevant topic for both
Paper Nonfeed and
Chk Cassette Area

12

many years, but the needs have of course be-
come especially acute with the explosive
growth of the World Wide Web. In the context
of both the Web as well as in more localized
contexts, we should also be thinking about in-
voking active computation rather than only ac-
cessing static databases7.

Lessons from Fixit. We think the present work
provides evidence that the fundamental archi-
tecture of FIXIT --namely, a base application
which furnishes contextual clues about relevant
external information-- is an effective way to
provide users with additional useful informa-
tion that was not explicitly requested. More-
over, the intelligent agent at the core of FIXIT
provides the architectural benefit of cleanly
separating system components.

At a more detailed level, what can be learned
from FIXIT's specific mechanisms? Plainly, the
activation predicate and support predicate are
tied directly to the belief net formalism. On the
other hand, the abstractions underlying these
predicates-- focus of attention and support for
hypothesis-- have great generality and appeal.
The critical assumption underlying their utility
is that the user is engaged in a task-oriented di-
alog whose goals are known or can be deter-
mined. While that assumption is not always
valid there are of course many application set-
tings in which it is, and in such settings useful
if imperfect surrogates for these abstractions
may be identified.

Future Research. In the near term, FIXIT
might be improved by extending the activation
and support predicates, moving beyond the cur-
rent static thresholds to more refined dynamic
ones. More ambitiously, the intelligent agent
could be improved to exploit user interactions
with the full-text database, rather than with the
expert system alone, to assess the current con-
text. Either improvement might lead to greater
precision in retrieving database topics.

We think that other exciting opportunities lie
in the direction of applying the underlying ap-

proach to new application areas. Of these, the
Web has been an irresistible magnet for new
applications, but at the same time raises diffi-
cult interoperability issues at several levels: in-
teroperability across protocol domains8;
interoperability across pre-existing
ontologies9; and interoperability by means of
cooperative information retrieval agents10. In
this expansive-- literally global-- context FIX-
IT’s architecture perhaps suggests a solution to
one important sub-problem: How can process-
es for retrieving information from distributed
sources be invoked without explicit user re-
quest?

While we have developed considerable con-
fidence in FIXIT’s architecture, we have no
doubt that many challenges lie ahead.

Acknowledgments
We thank our colleagues at Ricoh locations

in North America and Japan for their contribu-
tions to this work. We also thank the editors
and referees of this special issue for sugges-
tions that have improved the presentation of
this work.

References
1. D. Heckerman and M.P. Wellman, “Baye-

sian Networks”, Comm. ACM, Vol. 38, No.
3, March 1995.

2. J. Graham, “A natural language method of
semantic pattern matching for user manual
text retrieval”, Ricoh California Research
Center (CRC) Technical Report CRC-TR-
91-16, March 28, 1991.

3. J. Allen, Natural Language Understand-
ing, The Benjamin/Cummings Publishing
Company, Menlo Park, 1987.

4. N.J. Belkin and W.B. Croft, “Information
filtering and information retrieval: two
sides of the same coin?”, Comm. ACM,

13

Vol. 35, No. 12, 1992.

5. U. Wolz, “Providing opportunistic enrich-
ment in customized on-line assistance”,
Proc. 1993 International Workshop on
Intelligent User Interfaces, Orlando, Flor-
ida, January 1993. ACM Press.

6. T. Gaasterland, “Restricting query relax-
ation through user constraints”, Int. Conf.
on Intelligent and Cooperative Information
Systems, Rotterdam, The Netherlands, May
1993, IEEE Computer Society Press.

7. C. Brown, L. Gasser, D. O’Leary, and A.
Sangster, “AI on the WWW: Supply and
Demand Agents”, IEEE Expert/Intelligent
Systems & Their Applications, Vol. 10, No.
4, August 1995.

8. E. Mena, V. Kashyap, A. P. Sheth, A. Illar-
ramendi, “OBSERVER: An Approach for
Query Processing in Global Information
Systems based on Interoperation across
Pre-existing Ontologies”, International
Conference on Cooperative Information
Systems, Brussels, Belgium, June 1996,
IEEE-CS Press, 1996.

9. A. Paepcke, S.B. Cousins, H. Garcia-
Molina, S.W.Hassan, S.P. Ketchpel, M.
Roscheisen, and T. Winograd, “Using Dis-
tributed Objects for Digital Library
Interoperability”, Computer, Vol. 29, No.
5, May 1996, pp. 61-68.

10. L.F. Bic, M. Fukuda, and M.B. Dillen-
court, “Distributed Computing Using
Autonomous Objects”, Computer,
Vol.,No., August 1996, pp. 55-61.

