Constraint Satisfaction Problems

Chapter 3, Section 7 and Chapter 4, Section 4.4
\diamond CSP examples
\diamond General search applied to CSPs
\diamond Backtracking
\diamond Forward checking
\diamond Heuristics for CSPs

Constraint satisfaction problems (CSPs)

Standard search problem:
state is a "black box"-any old data structure that supports goal test, eval, successor

CSP:
state is defined by variables V_{i} with values from domain D_{i}
goal test is a set of constraints specifying allowable combinations of values for subsets of variables

Simple example of a formal representation language
Allows useful general-purpose algorithms with more power than standard search algorithms

Example: 4-Queens as a CSP

Assume one queen in each column. Which row does each one go in?
V ariables $Q_{1}, Q_{2}, Q_{3}, Q_{4}$
Domains $D_{i}=\{1,2,3,4\}$
Constraints

$$
\left.Q_{i} \neq Q_{j} \text { (cannot be in same row }\right)
$$

$$
\left|Q_{i}-Q_{j}\right| \neq|i-j| \text { (or same diagonal) }
$$

Translate each constraint into set of allowable values for its variables
E.g., values for $\left(Q_{1}, Q_{2}\right)$ are $(1,3)(1,4)(2,4)(3,1)(4,1)(4,2)$

Binary CSP: each constraint relates at most two variables
Constraint graph: nodes are variables, arcs show constraints

Example: Cryptarithmetic

Variables
DEMNORSY
Domains

$$
\{0,1,2,3,4,5,6,7,8,9\}
$$

Constraints

$$
\begin{aligned}
& M \neq 0, S \neq 0 \text { (unary constraints) } \\
& Y=D+E \text { or } Y=D+E-10, \text { etc. } \\
& D \neq E, D \neq M, D \neq N, \text { etc. }
\end{aligned}
$$

Example: Map coloring

Color a map so that no adjacant countries have the same color
Variables
Countries C_{i}
Domains
\{Red, Blue, Green $\}$
Constraints

$$
C_{1} \neq C_{2}, C_{1} \neq C_{5}, \text { etc. }
$$

Constraint graph:

Real-world CSPs

Assignment problems
e.g., who teaches what class

Timetabling problems
e.g., which class is offered when and where?

Hardware configuration
Spreadsheets
Transportation scheduling
Factory scheduling
Floorplanning

Notice that many real-world problems involve real-valued variables

Let's start with the straightforward, dumb approach, then fix it
States are defined by the values assigned so far
Initial state: all variables unassigned
Operators: assign a value to an unassigned variable
Goal test: all variables assigned, no constraints violated

Notice that this is the same for all CSPs!

Implementation

CSP state keeps track of which variables have values so far
Each variable has a domain and a current value

```
datatype CSP-STATE
    components: UNASSIGNED, a list of variables not yet assigned
    Assigned, a list of variables that have values
datatype CSP-VAR
    components: NAME, for i/o purposes
        Domain, a list of possible values
        Value, current value (if any)
```

Constraints can be represented
explicitly as sets of allowable values, or
implicitly by a function that tests for satisfaction of the constraint

Standard search applied to map-coloring

Complexity of the dumb approach

Max. depth of space $m=$??
Depth of solution state $d=$??
Search algorithm to use??
Branching factor $b=$??
This can be improved dramatically by noting the following:

1) Order of assignment is irrelevant, hence many paths are equivalent
2) Adding assignments cannot correct a violated constraint

Complexity of the dumb approach

Max. depth of space $m=$?? n (number of variables)
Depth of solution state $d=$?? n (all vars assigned)
Search algorithm to use?? depth-first
Branching factor $b=$?? $\Sigma_{i}\left|D_{i}\right|$ (at top of tree)
This can be improved dramatically by noting the following:

1) Order of assignment is irrelevant so many paths are equivalent
2) Adding assignments cannot correct a violated constraint

Backtracking search

Use depth-first search, but

1) fix the order of assignment, $\Rightarrow b=\left|D_{i}\right|$
(can be done in the Successors function)
2) check for constraint violations

The constraint violation check can be implemented in two ways:

1) modify Successors to assign only values that
are allowed, given the values already assigned
or 2) check constraints are satisfied before expanding a state
Backtracking search is the basic uninformed algorithm for CSPs
Can solve n-queens for $n \approx 15$

Forward checking

Idea: Keep track of remaining legal values for unassigned variables Terminate search when any variable has no legal values

Simplified map-coloring example:

	RED	BLUE	GREEN
C_{1}			
C_{2}			
C_{3}			
C_{4}			
C_{5}			

Can solve n-queens up to $n \approx 30$
.
.
.

	$\sqrt{ }$		
	\times		
	\times		
	\times		

\cdot
-
.

		$\sqrt{\prime}$	
		\times	
		\times	
		\times	

-
-

.

			$\sqrt{ }$
			\times

Heuristics for CSPs

More intelligent decisions on which value to choose for each variable which variable to assign next

Given $C_{1}=$ Red, $C_{2}=$ Green, choose $C_{3}=$??
Given $C_{1}=$ Red, $C_{2}=$ Green, what next??

Can solve n-queens for $n \approx 1000$

Heuristics for CSPs

More intelligent decisions on which value to choose for each variable which variable to assign next

Given $C_{1}=$ Red, $C_{2}=$ Green, choose $C_{3}=$??
$C_{3}=$ Green: least-constraining-value
Given $C_{1}=$ Red, $C_{2}=$ Green, what next??
C_{5} : most-constrained-variable

Can solve n-queens for $n \approx 1000$

Iterative algorithms for CSPs

Hill-climbing, simulated annealing typically work with
"complete" states, i.e., all variables assigned
To apply to CSPs:
allow states with unsatisfied constraints
operators reassign variable values
Variable selection: randomly select any conflicted variable min-conflicts heuristic: choose value that violates the fewest constraints i.e., hillclimb with $h(n)=$ total number of violated constraints

Example: 4-Queens

States: 4 queens in 4 columns ($4^{4}=256$ states)
Operators: move queen in column
Goal test: no attacks
Evaluation: $h(n)=$ number of attacks

Performance of min-conflicts

Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., $n=10,000,000$)

The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

$$
R=\frac{\text { number of constraints }}{\text { number of variables }}
$$

Tree-structured CSPs

Theorem: if the constraint graph has no loops, the CSP can be solved in $O\left(n|D|^{2}\right)$ time

Compare to general CSPs, where worst-case time is $O\left(|D|^{n}\right)$
This property also applies to logical and probabilistic reasoning: an important example of the relation between syntactic restrictions and complexity of reasoning.

Basic step is called filtering:
$\operatorname{Filter}\left(V_{i}, V_{j}\right)$
removes values of V_{i} that are inconsistent with ALL values of V_{j}
Filtering example:

allowed pairs:
$<1,1$ >
$<3,2>$
$<3,3$ >
remove 2 from domain of V_{i}

1) Order nodes breadth-first starting from any leaf:

2) For $j=n$ to 1 , apply $\operatorname{Filter}\left(V_{i}, V_{j}\right)$ where V_{i} is a parent of V_{j}
3) For $j=1$ to n, pick legal value for V_{j} given parent value

Summary

CSPs are a special kind of problem:
states defined by values of a fixed set of variables goal test defined by constraints on variable values

Backtracking $=$ depth-first search with

1) fixed variable order
2) only legal successors

Forward checking prevents assignments that guarantee later failure
Variable ordering and value selection heuristics help significantly
Iterative min-conflicts is usually effective in practice
Tree-structured CSPs can always be solved very efficiently

