Informed search algorithms

Chapter 4, Sections 1-2, 4
\diamond Best-first search
$\diamond A^{*}$ search
\diamond Heuristics
\diamond Hill-climbing
\diamond Simulated annealing
function GEnERAL-SEARCH (problem, QUEUING-FN) returns a solution, or failure
nodes $\leftarrow \operatorname{Make-Queue}($ Make-Node $($ Initial-State[$p r o b l e m]))$
loop do
if nodes is empty then return failure
node \leftarrow Remove-Front(nodes)
if Goal-TESt[problem] applied to State (node) succeeds then return node nodes \leftarrow QUEUING-FN(nodes, EXPAND(node, Operators[problem]))
end

A strategy is defined by picking the order of node expansion

Best-first search

Idea: use an evaluation function for each node - estimate of "desirability"
\Rightarrow Expand most desirable unexpanded node
Implementation:
$\overline{\text { QUEUEINGFN }}=$ insert successors in decreasing order of desirability
Special cases:
greedy search
A* search

Romania with step costs in km

Straight-line distance to Bucharest

Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	178
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	98
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

Evaluation function $h(n)$ (heuristic)
$=$ estimate of cost from n to goal
E.g., $h_{\text {SLD }}(n)=$ straight-line distance from n to Bucharest

Greedy search expands the node that appears to be closest to goal

Greedy search example

Arad 366

Properties of greedy search
Complete??
Time??
Space??
Optimal??

Properties of greedy search

Complete?? No-can get stuck in loops, e.g., lasi \rightarrow Neamt \rightarrow lasi \rightarrow Neamt \rightarrow
Complete in finite space with repeated-state checking
Time?? $O\left(b^{m}\right)$, but a good heuristic can give dramatic improvement
Space?? $O\left(b^{m}\right)$-keeps all nodes in memory
Optimal?? No

A* search

Idea: avoid expanding paths that are already expensive
Evaluation function $f(n)=g(n)+h(n)$
$g(n)=$ cost so far to reach n
$h(n)=$ estimated cost to goal from n
$f(n)=$ estimated total cost of path through n to goal
A* search uses an admissible heuristic
i.e., $h(n) \leq h^{*}(n)$ where $h^{*}(n)$ is the true cost from n.
E.g., $h_{\text {SLD }}(n)$ never overestimates the actual road distance

Theorem: A* search is optimal

A* search example

Arad
366

Optimality of A* (standard proof)

Suppose some suboptimal goal G_{2} has been generated and is in the queue. Let n be an unexpanded node on a shortest path to an optimal goal G_{1}.

$$
\begin{aligned}
f\left(G_{2}\right) & =g\left(G_{2}\right) & \quad \text { since } h\left(G_{2}\right)=0 \\
& >g\left(G_{1}\right) \quad & \quad \text { since } G_{2} \text { is suboptimal } \\
& \geq f(n) \quad & \text { since } h \text { is admissible }
\end{aligned}
$$

Since $f\left(G_{2}\right)>f(n)$, A^{*} will never select G_{2} for expansion

Optimality of A^{*} (more useful)

Lemma: A^{*} expands nodes in order of increasing f value
Gradually adds " f-contours" of nodes (cf. breadth-first adds layers)
Contour i has all nodes with $f=f_{i}$, where $f_{i}<f_{i+1}$

Complete?? Yes, unless there are infinitely many nodes with $f \leq f(G)$
Time?? Exponential in [relative error in $h \times$ length of soln.]
Space?? Keeps all nodes in memory
Optimal?? Yes—cannot expand f_{i+1} until f_{i} is finished

Proof of lemma: Pathmax

For some admissible heuristics, f may decrease along a path
E.g., suppose n^{\prime} is a successor of n

But this throws away information!
$f(n)=9 \Rightarrow$ true cost of a path through n is ≥ 9
Hence true cost of a path through n^{\prime} is ≥ 9 also
Pathmax modification to A^{*} :
Instead of $f\left(n^{\prime}\right)=g\left(n^{\prime}\right)+h\left(n^{\prime}\right)$, use $f\left(n^{\prime}\right)=\max \left(g\left(n^{\prime}\right)+h\left(n^{\prime}\right), f(n)\right)$
With pathmax, f is always nondecreasing along any path

Admissible heuristics

E.g., for the 8-puzzle:
$h_{1}(n)=$ number of misplaced tiles
$h_{2}(n)=$ total Manhattan distance
(i.e., no. of squares from desired location of each tile)

5	4	
6	1	8
7	3	2

Start State

1	2	3
7		4
7	6	5

Goal State
$h_{1}(S)=? ?$
$\overline{h_{2}(S)=} ? ?$

Admissible heuristics

E.g., for the 8-puzzle:
$h_{1}(n)=$ number of misplaced tiles
$h_{2}(n)=$ total Manhattan distance
(i.e., no. of squares from desired location of each tile)

5	4	
6	1	8
7	3	2

Start State

1	2	3
7		4
7	6	5

Goal State

```
\[
h_{1}(S)=? ? 7
\]
\[
\underline{\overline{h_{2}(S)}=} ? ? 2+3+3+2+4+2+0+2=18
\]
```

If $h_{2}(n) \geq h_{1}(n)$ for all n (both admissible)
then h_{2} dominates h_{1} and is better for search
Typical search costs:

$$
\begin{array}{ll}
d=14 & \mathrm{IDS}=3,473,941 \text { nodes } \\
& \mathrm{A}^{*}\left(h_{1}\right)=539 \text { nodes } \\
& \mathrm{A}^{*}\left(h_{2}\right)=113 \text { nodes } \\
d=14 & \mathrm{IDS}=\text { too many nodes } \\
& \mathrm{A}^{*}\left(h_{1}\right)=39,135 \text { nodes } \\
& \mathrm{A}^{*}\left(h_{2}\right)=1,641 \text { nodes }
\end{array}
$$

Relaxed problems

Admissible heuristics can be derived from the exact solution cost of a relaxed version of the problem

If the rules of the 8 -puzzle are relaxed so that a tile can move anywhere, then $h_{1}(n)$ gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent square, then $h_{2}(n)$ gives the shortest solution

For TSP: let path be any structure that connects all cities
\Longrightarrow minimum spanning tree heuristic

Iterative improvement algorithms

In many optimization problems, path is irrelevant; the goal state itself is the solution

Then state space $=$ set of "complete" configurations; find optimal configuration, e.g., TSP or, find configuration satisfying constraints, e.g., n-queens

In such cases, can use iterative improvement algorithms; keep a single "current" state, try to improve it

Constant space, suitable for online as well as offline search

Example: Travelling Salesperson Problem

Find the shortest tour that visits each city exactly once

Example: n-queens

Put n queens on an $n \times n$ board with no two queens on the same row, column, or diagonal

Hill-climbing (or gradient ascent/descent)

"Like climbing Everest in thick fog with amnesia"

```
function Hill-Climbing( problem) returns a solution state
    inputs: problem, a problem
    local variables: current, a node
        next, a node
    current \(\leftarrow\) Make-Node(Initial-State[problem])
    loop do
        \(n e x t \leftarrow\) a highest-valued successor of current
        if Value[next] < Value[current] then return current
        current \(\leftarrow\) next
    end
```

Hill-climbing contd.
Problem: depending on initial state, can get stuck on local maxima

Simulated annealing

Idea: escape local maxima by allowing some "bad" moves but gradually decrease their size and frequency

```
function Simulated-AnNEALING( problem, schedule) returns a solution state
    inputs: problem, a problem
        schedule, a mapping from time to "temperature"
    local variables: current, a node
                next, a node
                            \(T\), a "temperature" controlling the probability of downward steps
    current \(\leftarrow\) Make-Node(Initial-State[problem])
    for \(t \leftarrow 1\) to \(\infty\) do
        \(T \leftarrow\) schedule \([t]\)
        if \(T=0\) then return current
        next \(\leftarrow\) a randomly selected successor of current
        \(\Delta E \leftarrow \operatorname{ValUe}[n e x t]\) - Value[current]
        if \(\Delta E>0\) then current \(\leftarrow\) next
        else current \(\leftarrow\) next only with probability \(e^{\Delta E / T}\)
```


Properties of simulated annealing

At fixed "temperature" T, state occupation probability reaches Boltzman distribution

$$
p(x)=\alpha e^{\frac{E(x)}{k T}}
$$

T decreased slowly enough \Longrightarrow always reach best state
Is this necessarily an interesting guarantee??
Devised by Metropolis et al., 1953, for physical process modelling
Widely used in VLSI layout, airline scheduling, etc.

