Calibrating Expressiveness of Collective Notions

Barbara Dunin-Keplicz

Warsaw University and Polish Academy of Sciences

Based on work with Rineke Verbrugge

TARK'2011

Barbara Dunin-Keplicz TARK, Groningen, The Netherlands 1/27

A modern perspective of collective activity

- autonomous, intelligent cooperative systems
- teamwork (or Cooperative Distributed Problem Solving) as a paradigmatic activity
- spectacular and complex patterns of interaction

The objective

- to isolate the essential aspects of collective behavior
- to (possibly separately) characterize them
- to construct expressive enough, still possibly minimal formal model of collective behavior

A compromise between abstract model and reality is to be reached.

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・

A modern perspective of collective activity

- autonomous, intelligent cooperative systems
- teamwork (or Cooperative Distributed Problem Solving) as a paradigmatic activity
- spectacular and complex patterns of interaction

The objective

- to isolate the essential aspects of collective behavior
- to (possibly separately) characterize them
- to construct expressive enough, still possibly minimal formal model of collective behavior

A compromise between abstract model and reality is to be reached.

ヘロン 人間 とくほど くほとう

Tuning collective notions

(ロ) (同) (E) (E) (E)

Circumstances of collective behavior vary significantly w.r.t.:

- topological structure of groups (societies)
- power relations
- communication medium

Collective aspects need to be studied in detail *each and every time* when tailoring a model for a specific application.

Goal:

to diversify the expressive power of modeled notions, including formal mechanisms to *calibrate* their expressiveness.

Tuning collective notions

(日)(4月)(4日)(4日)(日)

Circumstances of collective behavior vary significantly w.r.t.:

- topological structure of groups (societies)
- power relations
- communication medium

Collective aspects need to be studied in detail *each and every time* when tailoring a model for a specific application.

Goal:

to diversify the expressive power of modeled notions, including formal mechanisms to *calibrate* their expressiveness.

BGI model of agency

(ロ) (同) (E) (E) (E)

Distributed AI perspective

- agents of many different sorts (e.g. software agents, robots, UAV's: unmanned aerial vehicles)
- working together, but also with humans
- in an unstable and unpredictable environment

BGI (or BDI: beliefs, desires, intentions) systems

Our focus on mental state of cooperating participants

- beliefs (informational aspect)
- goals
- intentions (motivational aspect)

BGI model of agency

(ロ) (同) (E) (E) (E)

Distributed AI perspective

- agents of many different sorts (e.g. software agents, robots, UAV's: unmanned aerial vehicles)
- working together, but also with humans
- in an unstable and unpredictable environment

BGI (or BDI: beliefs, desires, intentions) systems

Our focus on mental state of cooperating participants

- beliefs (informational aspect)
- goals
- intentions (motivational aspect)

Informational attitudes

[Fagin, Halpern, Moses, Vardi] [Meyer, Van der Hoek]

Individual belief

BEL(i, φ): agent i believes φ

General belief

- Notation: *G* a group
- E-BEL_G(φ): each agent in group G believes φ

Common belief

 C-BEL_G(φ): everyone in G believes φ, everyone in G believes that everyone in G believes φ, etc.

Informational attitudes

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

[Fagin, Halpern, Moses, Vardi] [Meyer, Van der Hoek]

Individual belief

• BEL (i, φ) : agent *i* believes φ

General belief

- Notation: G a group
- E-BEL_G(φ): each agent in group G believes φ

Common belief

 C-BEL_G(φ): everyone in G believes φ, everyone in G believes that everyone in G believes φ, etc.

Informational attitudes

[Fagin, Halpern, Moses, Vardi] [Meyer, Van der Hoek]

Individual belief

• BEL (i, φ) : agent *i* believes φ

General belief

- Notation: G a group
- E-BEL_G(φ): each agent in group G believes φ

Common belief

 C-BEL_G(φ): everyone in G believes φ, everyone in G believes that everyone in G believes φ, etc.

Modal operators for group beliefs

Axioms & rule

- $KD45_n^C$ is the modal system $KD45_n$ plus:
- $\text{E-BEL}_{G}(\varphi) \leftrightarrow \bigwedge_{i \in G} \text{BEL}(i, \varphi)$
- $\operatorname{C-BEL}_{\mathcal{G}}(\varphi) \to \operatorname{E-BEL}_{\mathcal{G}}(\varphi \land \operatorname{C-BEL}_{\mathcal{G}}(\varphi))$
- From φ → E-BEL_G(ψ ∧ φ) infer φ → C-BEL_G(ψ) (Induction Rule).

C-BEL_G(ψ) is easy to understand, hard to a achieve. Established by *communication* + *reasoning*

Barbara Dunin-Keplicz TARK, Groningen, The Netherlands 6/27

・ロン ・回 と ・ ヨ と ・ ヨ と … ヨ

Modal operators for group beliefs

Axioms & rule

- $KD45_n^C$ is the modal system $KD45_n$ plus:
- E-BEL_G(φ) $\leftrightarrow \bigwedge_{i \in G} \text{BEL}(i, \varphi)$
- $\operatorname{C-BEL}_{\mathcal{G}}(\varphi) \to \operatorname{E-BEL}_{\mathcal{G}}(\varphi \land \operatorname{C-BEL}_{\mathcal{G}}(\varphi))$
- From φ → E-BEL_G(ψ ∧ φ) infer φ → C-BEL_G(ψ) (Induction Rule).

C-BEL_G(ψ) is easy to understand, hard to a achieve. Established by *communication* + *reasoning*

・ロン ・回 と ・ ヨ と ・ ヨ と … ヨ

Different degrees of belief in group

[Parikh, Krasucki]

BEL(ψ), E-BEL_G(ψ), E-BEL_G²(ψ), ..., C-BEL_G(ψ) For teamwork, E-BEL_G(ψ) is not sufficient: C-BEL_G(ψ) needed.

Important to realize

- How wide is the spectrum of possibilities to express knowledge/beliefs of agents and teams?
- How frequently we use models of others in our everyday commonsense reasoning?
- How important in modern intelligent systems is to create and/or revise models of others' minds and reason about them?

Different degrees of belief in group

[Parikh, Krasucki]

BEL(ψ), E-BEL_G(ψ), E-BEL_G²(ψ), ..., C-BEL_G(ψ) For teamwork, E-BEL_G(ψ) is not sufficient: C-BEL_G(ψ) needed.

Important to realize

- How wide is the spectrum of possibilities to express knowledge/beliefs of agents and teams?
- How frequently we use models of others in our everyday commonsense reasoning?
- How important in modern intelligent systems is to create and/or revise models of others' minds and reason about them?

(ロ) (同) (E) (E) (E)

Tuning and awareness

From our experience in modeling group behavior

- Crucial: to differentiate the scope and strength of group attitudes.
- The resulting characteristics may differ significantly, and even become logically incomparable.

Agents' *awareness* forms the main difference over various contexts of common activity

Awareness about the situation: the state of agent's:

- beliefs about itself
- beliefs about other agents
- beliefs about the environment

Various epistemic notions: from distributed beliefs to common knowledge are adequate to formalize agents' awareness

 $) \land ()$

Tuning and awareness

From our experience in modeling group behavior

- Crucial: to differentiate the scope and strength of group attitudes.
- The resulting characteristics may differ significantly, and even become logically incomparable.

Agents' *awareness* forms the main difference over various contexts of common activity

Awareness about the situation: the state of agent's:

- beliefs about itself
- beliefs about other agents
- beliefs about the environment

Various epistemic notions: from distributed beliefs to common knowledge are adequate to formalize agents' awareness

 $) \land ()$

Tuning and awareness

From our experience in modeling group behavior

- Crucial: to differentiate the scope and strength of group attitudes.
- The resulting characteristics may differ significantly, and even become logically incomparable.

Agents' *awareness* forms the main difference over various contexts of common activity

Awareness about the situation: the state of agent's:

- beliefs about itself
- beliefs about other agents
- beliefs about the environment

Various epistemic notions: from distributed beliefs to common knowledge are adequate to formalize agents' awareness

Awareness in teamwork

(ロ) (同) (E) (E) (E)

The question

who needs to know what in order to cooperate effectively?

luning awareness

- possibly minimal solution per context is searched (communication and reasoning necessary for higher levels of awareness are costly and complex)
- awareness of different aspects should be tuned separately

Outcome

A sort of logical tuning mechanism.

Awareness in teamwork

The question

who needs to know what in order to cooperate effectively?

Tuning awareness

- possibly minimal solution per context is searched (communication and reasoning necessary for higher levels of awareness are costly and complex)
- awareness of different aspects should be tuned separately

Outcome

A sort of logical *tuning mechanism*.

Awareness in teamwork

The question

who needs to know what in order to cooperate effectively?

Tuning awareness

- possibly minimal solution per context is searched (communication and reasoning necessary for higher levels of awareness are costly and complex)
- awareness of different aspects should be tuned separately

Outcome

A sort of logical tuning mechanism.

Groups and teams

Group

A group is a system of agents that are somehow constrained in their mutual interactions. [Weiss]

leam

A team is a group in which the agents are restricted to having a common goal of some sort. [Weiss]

From group to team

Joint intention by a team does not consist merely of simultaneous and coordinated individual actions; to act together, a team must be aware of and care about the status of the group effort as a whole [Levesque et al.]

・ロン ・四 ・ ・ ヨン ・ ヨン

Э

Groups and teams

Group

A group is a system of agents that are somehow constrained in their mutual interactions. [Weiss]

Team

A team is a group in which the agents are restricted to having a common goal of some sort. [Weiss]

From group to team

Joint intention by a team does not consist merely of simultaneous and coordinated individual actions; to act together, a team must be aware of and care about the status of the group effort as a whole [Levesque et al.]

・ロン ・回 と ・ ヨン ・ ヨン

Groups and teams

Group

A group is a system of agents that are somehow constrained in their mutual interactions. [Weiss]

Team

A team is a group in which the agents are restricted to having a common goal of some sort. [Weiss]

From group to team

Joint intention by a team does not consist merely of simultaneous and coordinated individual actions; to act together, a team must be aware of and care about the status of the group effort as a whole [Levesque et al.]

Bratman's theory

Future-directed intentions

- can **not** be reduced to desires (goals) and beliefs
- have to do with partial plans and enable intra- and interpersonal coordination

Intentions play an important role in practical reasoning

- drive means-end reasoning
- constrain future deliberation
- persist
- influence beliefs upon which future practical reasoning is based

(ロ) (同) (E) (E) (E)

Bratman's theory

Future-directed intentions

- can **not** be reduced to desires (goals) and beliefs
- have to do with partial plans and enable intra- and interpersonal coordination

Intentions play an important role in practical reasoning

- drive means-end reasoning
- constrain future deliberation
- persist
- influence beliefs upon which future practical reasoning is based

(日)(4月)(4日)(4日)(日)

TEAMLOG, a theory of teamwork

TeamLog

[Dunin-Keplicz, Verbrugge: *Teamwork in multiagent systems. A formal approach*, Wiley 2010]: a theory of motivational attitudes of cooperating agents.

- TEAMLOG is founded on individual and social attitudes
- **TEAMLOG** addresses a nontrivial problem of group attitudes: collective intention and collective commitment
- collective notions are tuned to circumstances and organizational structure of the team
- agents reason about mental attitudes of others
- in applications, assumptions regarding others are kept to a minimum (to avoid overthinking and assure flexibility)

TEAMLOG, a theory of teamwork

TeamLog

[Dunin-Keplicz, Verbrugge: *Teamwork in multiagent systems. A formal approach*, Wiley 2010]: a theory of motivational attitudes of cooperating agents.

- TEAMLOG is founded on individual and social attitudes
- **TEAMLOG** addresses a nontrivial problem of group attitudes: collective intention and collective commitment
- collective notions are tuned to circumstances and organizational structure of the team
- agents reason about mental attitudes of others
- in applications, assumptions regarding others are kept to a minimum (to avoid overthinking and assure flexibility)

Collective intentions in strictly cooperative groups

Postulates for a collective intention

Again, φ : the goal of the system.

- All members of the group *individually intend* φ: a general intention M-INT_G(φ)
- All members in the group *intend* other members intend φ, etc.: a mutual intention M-INT_G(φ) (a motivational core of group intention expressing reciprocity).
- Group members are aware about this mutual intention.

By means of collective intention a loosely coupled group becomes a strictly cooperative team.

Collective intentions in strictly cooperative groups

Postulates for a collective intention

Again, φ : the goal of the system.

- All members of the group *individually intend* φ: a general intention M-INT_G(φ)
- All members in the group *intend* other members intend φ, etc.: a mutual intention M-INT_G(φ) (a motivational core of group intention expressing reciprocity).
- Group members are aware about this mutual intention.

By means of collective intention a loosely coupled group becomes a strictly cooperative team.

(日)(4月)(4日)(4日)(日)

Axioms for mutual and collective intention

- E-INT_G(φ): "every agent in G intends φ".
- $KD45_n^{\text{M-INT}_G}$ is the modal system $KD45_n$ plus:
- E-INT_G(φ) $\leftrightarrow \bigwedge_{i \in G} INT(i, \varphi)$
- $\operatorname{M-INT}_{G}(\varphi) \leftrightarrow \operatorname{E-INT}_{G}(\varphi \wedge \operatorname{M-INT}_{G}(\varphi))$
- From φ → E-INT_G(ψ ∧ φ) infer φ → M-INT_G(ψ) (Induction Rule).

Definition of collective intention

 $\operatorname{C-INT}_{G}(\varphi) \leftrightarrow \operatorname{M-INT}_{G}(\varphi) \land \operatorname{awareness}_{G}(\operatorname{M-INT}_{G}(\varphi))$

Barbara Dunin-Keplicz TARK, Groningen, The Netherlands 14/27

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Axioms for mutual and collective intention

- E-INT_G(φ): "every agent in G intends φ ".
- $KD45_n^{\text{M-INT}_G}$ is the modal system $KD45_n$ plus:
- E-INT_G(φ) $\leftrightarrow \bigwedge_{i \in G} INT(i, \varphi)$
- $\operatorname{M-INT}_{G}(\varphi) \leftrightarrow \operatorname{E-INT}_{G}(\varphi \wedge \operatorname{M-INT}_{G}(\varphi))$
- From φ → E-INT_G(ψ ∧ φ) infer φ → M-INT_G(ψ) (Induction Rule).

Definition of collective intention

 $\operatorname{C-INT}_{G}(\varphi) \leftrightarrow \operatorname{M-INT}_{G}(\varphi) \land awareness_{G}(\operatorname{M-INT}_{G}(\varphi))$

Example of a collective intention

- Two violinists, *a* and *b*, have studied together and toyed with the idea of giving a concert together someday.
- Later this becomes more concrete: INT(a, φ) and INT(b, φ), where φ = "a and b perform the solo parts of the Bach Double Concerto".
- After communicating with each other about this, they start practising together.
 - A mutual intention M-INT_G(φ) is now in place for
 - $G = \{a, b\}$, plus a collective belief about this, so $C\text{-INT}_G(\varphi)$.
- An opportunity appears: Carnegie Hall plans a concert for Christmas Eve, including the Bach Double Concerto.

(日)(4月)(4日)(4日)(日)

Example of a collective intention cntd.

- Now a, b refine their collective intention to C-INT_G(ψ), where ψ = "a and b perform the solo parts of the Bach Double Concerto at the Christmas Eve concert in Carnegie Hall".
- a, b are chosen to be the soloists, and both sign the appropriate contract.
 Because they do this together, they have common knowledge, not merely collective belief, of their mutual intention:
 M-INT_G(ψ) ∧ C-KNOW_G(M-INT_G(ψ)).
- Common knowledge can be justified if needed, and a commonly signed contract provides a perfect basis for this.

a, *b* have developed a very strong variant of collective intention

Example of a collective intention cntd.

- Now a, b refine their collective intention to C-INT_G(ψ), where ψ = "a and b perform the solo parts of the Bach Double Concerto at the Christmas Eve concert in Carnegie Hall".
- a, b are chosen to be the soloists, and both sign the appropriate contract.
 Because they do this together, they have common knowledge, not merely collective belief, of their mutual intention:
 M-INT_G(ψ) ∧ C-KNOW_G(M-INT_G(ψ)).
- Common knowledge can be justified if needed, and a commonly signed contract provides a perfect basis for this.

a, b have developed a very strong variant of collective intention

Collective commitment in TEAMLOG

Collective commitment

- the *key* concept in TEAMLOG
- subject to calibration: various building blocks tuned separately

Subjects related to agents' autonomy

- collective responsibility
- collective decision making
- collective planing
- collective revision making
- hiding classified issues

Collective commitment in TEAMLOG

Collective commitment

- the *key* concept in TEAMLOG
- subject to calibration: various building blocks tuned separately

Subjects related to agents' autonomy

- collective responsibility
- collective decision making
- collective planing
- collective revision making
- hiding classified issues

Detailed vs. global awareness

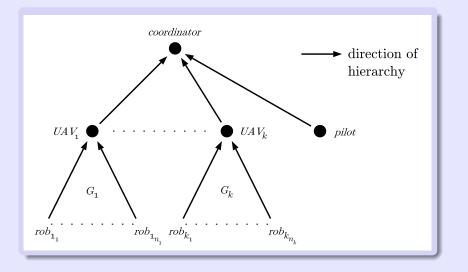
◆□ → ◆□ → ◆三 → ◆□ → ◆□ → ◆○ ◆

The distinction de dicto vs. de re

- $\bigwedge_{\alpha \in P} \bigvee_{i,j \in G} \text{C-BEL}_G(\text{COMM}(i,j,\alpha))$ detailed awareness
- C-BEL_G($\bigwedge_{\alpha \in P} \bigvee_{i,j \in G} \text{COMM}(i,j,\alpha)$) global awareness

TEAMLOG's complexity

Complexity


- The key notions are highly complex infinite concepts: its satisfiability problem is EXPTIME-complete.
- Domain-specific knowledge helps to tailor TEAMLOG to the circumstances, reducing the complexity by applying weaker forms of awareness.

Example

Team structure

- coordinator coordinates teamwork between subteams of G.
- Helicopter with a *pilot* directly accountable to the coordinator, communicates as equal with the UAVs.
- Several subteams G₁,... G_k ⊆ G work in parallel.
 Each of these subteams G_i consists of:
 - UAV_i responsible for assigned sectors
 - n_i identical robots rob_{i1},..., rob_{ini} responsible to their UAV_i.

Team hierarchy

Barbara Dunin-Keplicz TARK, Groningen, The Netherlands 21/27

・ロト ・回ト ・ヨト ・ヨト

Э

Adjusting collective intention to the case-study

Robots - two cases

- 1 Only individual actions are performed.
- 2 Limited form of cooperation: teams of two robots.

Robots – two cases for intentions

- A general intention E-INT_G about the goals is enough.
- E-INT²_G is enough to form two-robot teams that are not competitive internally!

Adjusting collective intention to the case-study

Robots – two cases

- 1 Only individual actions are performed.
- 2 Limited form of cooperation: teams of two robots.

Robots – two cases for intentions

- **1** A general intention E-INT_G about the goals is enough.
- 2 E-INT²_G is enough to form two-robot teams that are not competitive internally!

Robots: minimal levels of awareness and group intention

Robots - two cases for beliefs

- General belief about every group intention
 E-BEL_G(E-INT_G(φ)).
- 2 E-BEL²_G suffices to allow deliberation about other robots' intentions and beliefs, especially E-BEL²_G(E-INT²_G(φ)).

・ロン ・回 と ・ ヨン ・ ヨ

UAV: minimal levels of awareness and group intention

The UAVs – two cases for intentions

Within the team *UAV* must make sure that all agents are motivated to do their tasks.

- INT(UAV, E-INT_G(φ)) is required w.r.t. the subteam group intention E-INT_G(φ),
- **2** INT(*UAV*, E-INT²_G(φ)) is required w.r.t.

the level of subteam group intention $E-INT_{\mathcal{G}}^{2}(\varphi)$.

The UAVs – beliefs

For *UAVs* to work with each other, they need at least E-BEL²_G of other *UAVs'* intentions.

UAV: minimal levels of awareness and group intention

The UAVs – two cases for intentions

Within the team *UAV* must make sure that all agents are motivated to do their tasks.

- INT(UAV, E-INT_G(φ)) is required w.r.t. the subteam group intention E-INT_G(φ),
- **2** INT(*UAV*, E-INT²_G(φ)) is required w.r.t.

the level of subteam group intention $E-INT^2_{\mathcal{G}}(\varphi)$.

The UAVs – beliefs

For *UAVs* to work with each other, they need at least E-BEL²_G of other *UAVs'* intentions.

Coordinator: minimal levels of awareness and group intention

The coordinator – intentions

Similarly, one level of intention more than the *UAVs* suffices to ensure the proper level of motivations: INT(coordinator, INT²_G(φ))).

The coordinator – beliefs

The coordinator sees the team as a collection of cooperating subteams: Therefore $\operatorname{BEL}(\operatorname{coordinator}, \operatorname{E-BEL}^2_G(\operatorname{E-INT}^2_G(\varphi)))$ w.r.t. every group intention $\operatorname{E-INT}^2_G(\varphi)$.

Substantial question

To what extend cognitive science can help in these issues?

・ロン ・回 と ・ ヨ と ・ ヨ と …

Coordinator: minimal levels of awareness and group intention

The coordinator – intentions

Similarly, one level of intention more than the *UAVs* suffices to ensure the proper level of motivations: INT(coordinator, INT²_G(φ))).

The coordinator – beliefs

The coordinator sees the team as a collection of cooperating subteams: Therefore $\text{BEL}(coordinator, \text{E-BEL}_G^2(\text{E-INT}_G^2(\varphi)))$ w.r.t. every group intention $\text{E-INT}_G^2(\varphi)$.

Substantial question

To what extend cognitive science can help in these issues?

Coordinator: minimal levels of awareness and group intention

The coordinator – intentions

Similarly, one level of intention more than the *UAVs* suffices to ensure the proper level of motivations: INT(coordinator, INT²_G(φ))).

The coordinator – beliefs

The coordinator sees the team as a collection of cooperating subteams: Therefore $\text{BEL}(coordinator, \text{E-BEL}_G^2(\text{E-INT}_G^2(\varphi)))$ w.r.t. every group intention $\text{E-INT}_G^2(\varphi)$.

Substantial question

To what extend cognitive science can help in these issues?

Another possibility to calibrate collective concepts

Graded concepts

- In BGI graded concepts express e.g.
 - the strength of beliefs
 - the importance of goals
 - the degree of commitment to intentions.
- By reinterpreting beliefs, goals and intentions and then group attitudes, a graded version of TEAMLOG has been constructed [Dunin-Keplicz, Nguyen and Szałas]

Lowering the complexity of reasoning

Reasoning via querying deductive/knowledge databases

The tradeoff:

- complexity of computing queries
- expressiveness of query language

A candidate rule query language: **4**QL (http://4ql.org)

- 4QL [Małuszyński and Szałas] is a general purpose DATALOG^{¬¬} rule language
- $4 \mathrm{QL}$ addresses lack of knowledge and inconsistencies
- 4QL has PTIME data complexity and captures PTIME

A shift from the multimodal BGI model to a $4 \mathrm{QL}\textsc{-}based$ BGI model

- by reinterpreting beliefs, goals and intentions
- by reinterpreting group attitudes

Lowering the complexity of reasoning

Reasoning via querying deductive/knowledge databases

The tradeoff:

- complexity of computing queries
- expressiveness of query language

A candidate rule query language: 4QL (http://4ql.org)

- 4QL [Małuszyński and Szałas] is a general purpose DATALOG^{¬¬} rule language
- $4\mathrm{QL}$ addresses lack of knowledge and inconsistencies
- 4 QL has PTIME data complexity and captures PTIME

A shift from the multimodal BGI model to a 4QL-based BGI model
by reinterpreting beliefs, goals and intentions

• by reinterpreting group attitudes

Lowering the complexity of reasoning

Reasoning via querying deductive/knowledge databases

The tradeoff:

- complexity of computing queries
- expressiveness of query language

A candidate rule query language: 4QL (http://4ql.org)

- 4QL [Małuszyński and Szałas] is a general purpose DATALOG^{¬¬} rule language
- $4\mathrm{QL}$ addresses lack of knowledge and inconsistencies
- 4 QL has PTIME data complexity and captures PTIME

A shift from the multimodal BGI model to a $4\mathrm{QL}\textsc{-}based$ BGI model

- by reinterpreting beliefs, goals and intentions
- by reinterpreting group attitudes