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The concept of Nash equilibrium has become central in game theory, economics,
and other social sciences. A Nash equilibrium is defined as an n-tuple of strategies
or strategy profile (one strategy for each player) if each player’s strategy is optimal
against the others’ strategies. As is well-known by now, the interactive epistemol-
ogy under which rational individuals play such a “social equilibrium point” is
quite demanding. Aumann and Brandenburger (1995) have notably demonstrated
that it presumes that each player knows, or correctly guess his opponents’ be-
liefs about the other players’ strategy choices. In addition, as acknowledged in
most of the literature, the notion of a mixed-strategy Nash equilibrium leads to
some seemingly insuperable conceptual difficulties (see e.g., Aumann (1987)).
The main trouble lies in the fact that, in a Nash equilibrium, each player who
selects a mixed-strategy is always indifferent between two pure strategies of the
support.
The purpose of this paper is to firm up the foundation of Nash equilibrium and
provide a compelling (quantum) interpretation of this concept in the original ra-
tionalistic framework of Nash. The bulk of the paper is devoted to show how the
Nash equilibrium notion can be constructively derived. The gist of our approach
builds on the following two observations:
(i)The classical game model is complete in the sense that its complete description
is given by the strategy sets, the outcome map, and the payoff functions and;
(ii)Rationality is a relativistic or relational concept in the sense that it consists of
making an optimal choice that has to be justifiable by some beliefs.
Taken together, (i) and (ii) imply that absolute statements like Ai :=“strategy a is
optimal in the game G for player i” are generally neither absolutely “true”, nor
absolutely “ false” but indeterminate. Hence, a non-classical logic—the three-
valued logic of Lukasiewicz (1930)—enters the picture of the game model in its
own right because this model does not (generally) contain the answers to ques-
tions like “what constitutes a rational behavior?”.
So the question naturally arises: How will a player ascribe a relative truth-value,
true, to a particular rational strategy?
The answer is simple; in the game model, each player possesses only pieces of a
puzzle made of contingent statements about the optimality of a strategy. Playing
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a Nash equilibrium is the picture on the box—the principle so to speak—to guide
their assembly. Alternatively put, since absolute statements are generally neither
true nor false, each player i who “speaks” a “rationalistic language” about ratio-
nal strategies or beliefs can find the relative-truth values of contingent statements
like “strategy a is rational for player i” is true if and only if “each component of
strategy profile b is (simultaneously) rational for each other player” is true. 2 Of
course, these tautologies correspond precisely to the Nash equilibria of the game.
This is the central idea of the paper: The initial indeterminacy of what constitutes
a rational strategy leads each player to break the Gordian Knot of endless chain of
contingent statements by “self-interacting” in a Nash equilibrium. From this per-
spective, the Nash equilibrium notion must be seen as a “rational determination
principle” followed by each player in order to unravel the initial indeterminacies
of the game. This result is worth noting in view of the criticisms that have been
made in the literature (see e.g., Bernheim (1984) and Pearce (1984)).
In the second part of the paper we are naturally led to ask: What are the conceptual
and behavioral implications of this result on the interpretation of Nash equilibrium
mixtures?
A Nash equilibrium has the advantage of existing in broad classes of games. How-
ever, existence results require the use of “mixed strategies” on the part of players.
3 In spite of the widespread use of these “probabilistic” equilibria, there is a
small literature (see e.g., Harsanyi (1973), Aumann (1987) and Reny (2004)) and
a much larger oral tradition arguing that there are conceptual problems for inter-
preting equilibrium mixtures. In order to respond to these criticisms, the second
part of the paper examines the nature of equilibrium mixtures in games when we
explicitly incorporate the indeterminism inherent to the rationality concept. We
show that before the actual choice (of a pure strategy), the equilibrium state of
mind of a player is described by the so-called “density matrices” of quantum me-
chanics (QM). Here, the density matrice represents the structure of knowledge
of each player when he introspects himself (i.e. self-interacts) to determine his
equilibrium strategy. We show that these density matrices are the inevitable con-
sequence of the mental introspection of rational players. Finally, we prove that
probabilities arising in an equilibrium mixture automatically satisfy the Born rule

2Hereafter, we will use the terms “relative” or “contingent”, interchangeably.
3For example, Nash (1950) has proved its existence in finite strategic-form games. Glicksberg

(1952) has proved existence when strategy spaces are non-empty and compact subset of a metric
space and when payoff functions are continuous. More recently, Reny (1999), showed new results
on the existence of mixed strategy Nash equilibria generalizing many existing conditions allowing
for discontinuities in payoff functions.
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of QM—one of the key postulates of QM—which demonstrates that equilibrium
mixtures have a quantum origin. From a QM perspective, this rule which is re-
sponsible for practically all predictions of quantum physics has not been given
a foundation from a first principle to date (see e.g., Landsman (2009)) As a re-
sult, these results unveil a deep connection between the mathematical formalism
of QM and game theory.
Different streams of papers (see e.g., Eisert et al. (1999), Danilov and Lambert-
Mogiliansky (2008) and Busemeyer and Lambert-Mogiliansky (2010)) have intro-
duced formal tools of QM in game theory. This paper argues instead that classical
game theory is already quantum-mechanical in nature. In a recent paper, Branden-
burger (2010) establishes a formal connection between game theory and QM: He
proves that adding quantum signals does not necessarily differ from the addition
of classical signals. From this perspective, our results might be seen as a con-
tribution to the rise of this literature. The next section provides a brief informal
discussion of the main results of the paper.

Ontological conditions for Nash Equilibrium

In our first main result we show that the determination of a (intrinsic) Nash equi-
librium, one for each player is the unavoidable consequence of rationality: Be-
cause of the indeterminism of what constitutes a rational strategy in a game, each
player has to “self-interact” (in a consistent way) in order to break this initial in-
determinism. We then have the following (Theorem 1)4: Suppose we have a finite
n-person game in strategic form where each player is rational and knows that the
others are rational. Then σ is a Nash equilibrium profile in the game being played
if and only each player determines the same intrinsic Nash equilibrium, σ.
Theorem 1 shifts the usual interpretation of an equilibrium: Instead of describing
the end-point of complex (social) strategic interactions, a Nash equilibrium ex-
plains the “internal” process of choice, wherein each individual self-interacts in a
consistent way in order to determine his own rational behavior. Of course this ac-
counts for the difference with Aumann and Brandenburger (1995)’s result which
delineates the (tight) sufficient epistemic conditions leading each player to coor-
dinate on the same equilibrium. From this perspective Theorem 1 lends support to
the various interpretations of a Nash equilibrium as a norm of behavior or a focal

4In Theorem 1 we exclude the non-generic situations where a Nash equilibrium exists in
strongly dominant strategy for some players and games where some players may use the same
strategy in two different Nash equilibria. As shown in the formal analysis, this additional restric-
tion can be easily dropped. Theorem 1 can also be extended to Euclidean games and some other
usual classes of games with infinite strategy spaces.
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The observation that rationality incorporates a non-Boolean logic is new. Hence,
it is worth some discussion. The way of making logically precise the notion
that a player behavior is not settled in a game is to use the three-valued logic
of Lukasiewicz (1930). This non-Boolean logic captures the “ontological open-
ness” of the players behavior in the game model i.e., the fact that the behavior is
not settled in the game model until it is determined by the players themselves.6

Hence, the interpretation of this logic is ontic here; the ontic (relative) sharp truth-
values model the act of determination of what constitutes a rational behavior by a
player in a game.
A natural interpretation of the hierarchies of beliefs is that players have an his-
tory or a “context” (see e.g., Brandenburger and Friendenberg (2008)). Of course,
adding such a “context” would allow players to resolve the initial indeterminacy
outright. But the original “rationalistic” game model does not a priori make such
an assumption. Thus, from a methodological perspective, one could say that the
presence of a non-Boolean logic marks the transition from an epistemic game
theory (see e.g., Harsanyi (1973), Aumann (1987) and Brandenburger and Dekel
(1993)) to an ontological analysis of game theory.
To the best of our knowledge, the Nash equilibrium concept has never been in-
terpreted as a “self-interactive” solution concept. A notable exception is Perea
(2007). In an epistemic model, Perea analyzes the classical game model from
a single player’s perspective by imposing conditions solely on the beliefs that a
player has about the other players’ strategy choices and the other players’ beliefs
i.e., he does not impose any “social” interactive epistemology. In this setting,
Perea interprets a Nash equilibrium as describing the state of mind of a player.
Theorem 1 confirms that this one-person interpretation is precisely the essence of
the Nash equilibrium concept. From this perspective, Theorem 1 can be seen as
the “ontological” complement of Perea.
The first part of the paper is concerned with the ontological condition for a Nash
equilibrium. In the second part of the paper we aim at drawing the conceptual
implications of this result. In particular we investigate the conceptual meaning of
Nash equilibrium mixtures.

The quantum nature of Nash equilibrium mixtures

In the second main result of the paper we show that the “self-interaction” (in-
5See e.g., Schelling (1960), Binmore (2005) and Cubitt and Sugden (2011).
6Philosophically, this view is consistent with the idea that the truth of a proposition consists in

representing an actual state of affairs.
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trospection) of players induces each player to have a quantum state of mind.
(Theorem 2)7: Suppose we have a finite n-person game in strategic form where
each player is rational and knows that the others are rational. Then in any mixed
Nash equilibrium profile (σi)i∈N of the game being played, the state of mind of
each player i can be identified by a (unit) vector in a complex vector space, the
state of mind of player i is fully described by an idempotent operator of trace 1
with complex off-diagonal terms8 , and the empirical probability of having a pure
strategy si in an experiment is given by the Born rule.
Theorem 2 is a corollary of Theorem 1: By incorporing the initial indetermin-
ism ingrained in the classical game model, Theorem 2 shows that the state-space
structure and the probability rule—the so-called Born rule—of the textbook for-
mulation of QM arises naturally in equilibrium. As an immediate corollary, when
we incorporate the multiplicity of Nash equilibria in a game we obtain that the
state space of possible (equilibrium global intrinsic) mixed states of a player is the
space of density matrices (operators) of QM. Intuitively, a player may think that
a pure strategy (in the support of the mixed strategy) is rational when looking at
the game from his own perspective, but he may simultaneously think that another
pure strategy is rational when he considers the (rational) common belief held by
the other players at his other meta-perspective. This accounts for the fact that
the state of mind of a player will always be given by a density matrix with some
(complex) off-diagonal terms.9 Hence, the heart of the quantum structure emerges
naturally from two basic principles: The initial indeterminacy of what constitutes a
rational behavior, together with its rational determination principle—the so-called
Nash equilibrium concept.
Our results provide a compelling interpretation for the entries of the density ma-
trices. Broadly speaking, we prove that these objects describe the knowledge
structure built by players during their introspection. The off-diagonal terms of
the density matrices—the so-called interferences in QM— turn out to be the hall-
mark of this (rational) “self-interaction”. These interferences which appear in the
so-called two slit experiment express the central puzzles of QM and are often con-
sidered to capture the essence of QM (Feynman et al. (1965)). There are indeed

7As for Theorem 1, this result can also be extended to Euclidean games and some other classes
of games with infinite strategy spaces.

8It follows that, as in QM, the true intrinsic state space of a player is a complex projective
space.

9Formally, the impossibility to have more than two perspectives is a consequence of Gleason’s
Theorem, while the impossibility to have a single perspective follows from the initial indetermin-
ism of what constitutes a rational strategy.
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numerous experimental evidences indicating that each individual particle (e.g., a
photon in the classic two-slit experiment) can behave as if it were in different
places at once. According to Theorem 2, if an observer were reading in the mind
of a player before his choice, he would see the same quantum phenomena.10

Prima facie, the quantum nature of equilibrium mixtures in games seems to re-
solve the so-called “mixing problem”. It says that the indifference condition is
nothing but the expression of the quantum superposition of the player’s states of
mind between the different pure strategies in the support of his mixed strategy. In
plain terms: Players are in a state of (rational) “indecision”. This view certainly
offers a resolution of the mixing problem before the actual choice (play) of the
player. But it remains silent on how and when a player takes a particular pure
strategy (in the support of his mixed strategy) during a measurement. Of course,
this is the (unsolved) measurement problem of QM.
As in QM, the probabilities arising in a Nash equilibrium must therefore be seen
as an expression of an “irreducible” randomness. This accounts for the intrinsic
randomness of game theory: To put it in a nutshell, an outside observer cannot
have more knowledge on the choice of the player than the player himself. From
this viewpoint, the present approach can also be seen as a contribution to the grow-
ing literature on the information theoretic foundation of QM (see e.g., Zeilinger
(1999), Fuchs and Schack (2011)).
Another important consequence of Theorem 2 is our derivation of the Born rule.
Gleason’s theorem gives both the state space of quantum mechanics and the prob-
ability rule but does not provide insight into the meaning of these postulates. In
QM, recent attempts to derive the Born rule from more basic postulates of quan-
tum theory include e.g., Deutsch (1999) and Landsman (2008). Deutsch is the first
to study the emergence of QM probabilities within the non-probabilistic part of
classical decision theory. The crucial difference with Deutsch’s approach— and
any other attempts to derive quantum axioms to date—is that in our case the entire
structure of QM, together with the Born rule follows from a single unavoidable
principle: The rational indeterminism ingrained in any system exhibiting an opti-
mal behavior. 11 In Pelosse (2011a), we show that this “rational indetermination
principle” implies that classical models of decision under uncertainty falls within
the ambit of game theory and study the consequence thereof through the founda-

10In this experiment a stream of identical particles—all with the same speed and direction—is
directed at a barrier with two slits. For an experimental evidence of the quantum nature of a single
photon see e.g., Mandel (1999).

11In particular, Deutsch’s framework requires the existence of some additional decision theoretic
axioms, like the “zero-sum rule.”
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tion of random choice models. A thorough investigation of the implications of the
present results for the foundations of QM is out of the scope of this paper. We do
so, in a separate paper (Pelosse, 2011b) by analyzing the consequences of the “ra-
tional indetermination” of a single particle. There, we provide a game-theoretic
account of the standard QM axioms, a justification for the von-Neumann alge-
bra, derive the Heisenberg inequalities and show that the standard Schrödinger
dynamics arise automatically.
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