
Laboratory Games and Quantum Behaviour:
The Normal Form with a Separable State Space

Peter J. Hammond∗

June 30, 2011

Abstract
To describe quantum behaviour, Kolmogorov’s definition of probability is extended to accom-
modate subjective beliefs in a particular “laboratory game” that a Bayesian rational decision
maker plays with Nature, Chance and an Experimenter. The Experimenter chooses an orthonor-
mal subset of a complex Hilbert space of quantum states; Nature chooses a state in this set along
with an observation in a measurable space of experimental outcomes that influences Chance’s
choice of random consequence. Imposing quantum equivalence allows the trace of the product
of a density and a likelihood operator to represent the usual Bayesian expectation of a likelihood
function w.r.t. a subjective prior.

1 Introduction

1.1 Subjective Probability Measures
The first axiomatic foundation for expected utility appeared in an appendix to von Neumann and
Morgenstern’s Theory of Games and Economic Behavior (1953). Their focus was on “objective” or
hypothetical probabilities, with definite numerical values. Savage (1954) extended the earlier ideas
of Keynes, Ramsey and de Finetti in order to provide an axiomatic justification for maximizing
subjective expected utility (SEU). Later, Anscombe and Aumann (1963) devised a more transparent
approach that combines: (i) “roulette lotteries” having objective probabilities; (ii) “horse lotteries”
that, as their theory implies, should be given subjective probabilities.1 Their ideas have been elabo-
rated by Fishburn (1982) and Hammond (1998b) in order to derive a countably additive subjective
probability measure over a single general measurable space of uncertain events. The latter builds on
Hammond (1998a) in order to derive many of the standard rationality axioms in Bayesian decision
theory using a “consequentialist” perspective intended to embrace von Neumann and Morgenstern’s
claim that no generality is lost in reducing an extensive form game to its normal form.2 This paper,
accordingly, confines its attention to analysing the SEU hypothesis in a “laboratory” game in normal
form that is rich enough to describe quantum behaviour observed in many experiments.
∗Department of Economics, University of Warwick, Coventry CV4 7AL, UK; e-mail: p.j.hammond@warwick.

ac.uk. The European Commission provided research support from 2007 to 2010 for a Marie Curie Chair under contract
number MEXC-CT-2006-041121. Without implicating him in any errors, many thanks also to Patrick Suppes whose
stimulating discussions at Stanford, along with foundational work such as Suppes (1961, 1976), did so much to provoke
my interest in quantum probability. And to Ariane Lambert-Mogiliansky for encouragement via e-mail.

1Following earlier work on qualitative probability, a crucial axiom in Savage’s theory explicitly requires that prefer-
ences be consistent with events being ordered by their likelihood. Lehrer and Shmaya (2006) use a similar axiom in their
approach to subjective quantum probability. Hammond (1998b) discusses why it may be desirable to follow Anscombe
and Aumann in not imposing such an axiom directly.

2Actually, much of modern game theory rejects this claim, with two major exceptions: (i) any two-person zero-sum
game; (ii) any single-person decision problem of the kind that our laboratory games reduce to.
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1.2 Quantum Bayesian Decision Theory
Heisenberg’s uncertainty principle is an often cited example where setting up an experimental ap-
paratus intended to observe one variable, such as a particle’s position, may make it impossible to
observe simultaneously some other variable, such as the same particle’s momentum. Physical laws
force a choice of what to observe — either position, or momentum, or perhaps some combination
of the two. Similarly, in the two-slit laboratory experiment famously discussed by Feynman (1951),
if the apparatus can detect which slit the particle passes through, that destroys whatever wave-like
interference effects would otherwise have been observed.

Even so, several prominent “quantum Bayesians” have set out to identify quantum states with
the subjective probabilities that feature in Bayesian decision theory.3 Their task has remained far
from straightforward, however, because quantum behaviour can only be fully described within an
extended probability system that allows the experiment to influence the measurable space of events
on which probabilities are defined. Up to now, indeed, quantum Bayesians typically consider only:
(i) a finite-dimensional Hilbert space of possible quantum states, which obviously excludes many
important physical phenomena; (ii) a special model involving what economists call a “risk-neutral”
agent — i.e., one whose decisions maximize subjective expected wealth rather than the subjective
expected utility (SEU) of wealth that is typical in modern Bayesian decision theory, and that allows
the agent’s preferences to be risk averse or even risk seeking.

This paper begins an attempt to extend both general measure-theoretic Bayesian decision theory
and Bayesian inference so that they can accommodate uncertainty caused by quantum phonomena.
For now we limit our analysis to a separable Hilbert space where operators have matrix represen-
tations;4 non-separable Hilbert spaces allowing general “likelihood operators”, whose spectral de-
compositions may require integrals rather than countable sums, are left for later work.5

1.3 Outline of Paper
Section 2 sets out a four-person “laboratory game”.6 Its first three players are the Decision Maker
(D), Nature (N), and Chance (C), who have essential roles in any non-trivial game that is consistent
with the Anscombe–Aumann approach to subjective probability. But here they are joined by a
fourth player: an Experimenter (E) whose strategy, possibly in the form of a choice of physical
apparatus, determines (perhaps inadvertently) both: a) a measurable subspace representing what
kinds of function can be observed; b) what probability law governs the observable result of the
experiment. In this setting, SEU theory requires player D to have a subjective probability measure
defined on an appropriate σ-algebra over the space of triples (e, s, x) that combine: (i) player E’s
choice of experiment e ∈ E; (ii) player N’s choice of state s consistent with e; (iii) the observed
result of the experiment x that then informs player C’s choice of random consequence.

Indeed, different choices by E will typically induce not only different σ-algebras, as in Vorob′ev
(1962), but also different measurable subspaces of Nature’s strategy space.7 Even so, although in

3See in particular Schack, Brun and Caves (2001), Caves, Fuchs and Schack (2002), and Fuchs and Schack (2009),
as well as the extensive work they cite.

4Recall that a topological space is separable if there is a countable subset whose closure is the whole space.
5Danilov and Lambert-Mogiliansky (2008, 2010) consider partially ordered sets in a more general framework that

admits as a special case orthonormal subsets of (finite-dimensional) Hilbert space. La Mura (2009) limits himself to
“projective” expected utility on finite-dimensional Euclidean space.

6There are key differences from the games considered by Shafer and Vovk (2001, pp. 189–191) or Pitowsky (2003).
7Hess and Philipp (2005) appear to have been first to realize how relevant Vorob′ev’s insufficiently appreciated work

is to quantum theory, though Pitowsky (1994) does note Boole’s (1862) related ideas from exactly 100 years earlier.
See also Khrennikov (2008). Somewhat similar ideas appear in work by Slavnov (2001) and by Janssens (2004), who
nevertheless seem uanware of Vorob′ev’s contribution.
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principle player D’s subjective probability of any event could depend on which experiment e ∈ E
is used to detect its presence or absence, we follow Vorob′ev (1962) in postulating that it does not.

Following this discussion of general experiments, section 3 specifies the laboratory game in a
quantum setting. Each state chosen by Nature is identified with a normalized hidden stochastic
parameter vector h in the unit sphere S of a separable Hilbert space H over the complex field C.
Then E’s choice of experiment is assumed to determine an orthonormal subset of H. Quantum
theory, however, treats as one event all orthonormal subsets of H that are equivalent in the sense of
having the same closed linear span. When Gleason’s (1957) theorem applies — as it does provided
H has dimension at least 3 — there must be both density and likelihood operators on H that together
allow probabilities in particular and expectations in general to be calculated, whenever they are
defined, using the familiar trace rule of quantum mechanics.

The brief final Section 4 contains concluding remarks and an agenda for further research.

2 A Four-Person Laboratory Game

2.1 Players, Strategies, and Payoffs
In effect, the decision problems which Anscombe and Aumann (1963) consider involve a general
consequence domain Y , a finite set A of possible actions a, and a finite set S of possible states of
nature s. Our laboratory game is considerably more general, with measurable spaces (X,B) and
(S,S) whose elements are, respectively, directly observable experimental outcomes x, and states of
nature s that are unobservable latent parameters of the relevant probability law that determines x.
We assume that states can at best be inferred only indirectly and incompletely from the observed
value of x.

To avoid inessential measurability issues, we restrict attention to a finite consequence domain Y .
To avoid trivialities, we assume that Y has at least two elements, one of which is superior to the other.
We also assume that the space (X,B) is Polish — i.e., metrizable by some metric d : X ×X → R+

that makes (X, d) a complete separable metric space, with B as its Borel σ-algebra. Let ∆(X,B)
denote the set of Kolmogorov probability measures on (X,B).

As mentioned in the introduction, we consider a game with the following four players:

D is a Decision Maker, who chooses an optimal decision strategy or action a ∈ A.

E is an Experimenter, whose choice of experiment e ∈ E determines a measurable space (Se,Se)
of (hidden) states, where Se ∈ S and Se ⊆ S ∩ {Se} := {S ′ ∩ Se | S ′ ∈ S};

N is Nature, who chooses any mappingE 3 e 7→ (se, xe) ∈ Se×X that, for each e ∈ E, determines
both the state se and the experimental outcome xe in a “horse lottery”.

C is Chance who, after being informed of both player D’s action a ∈ A and the experimental
observation x ∈ X , but not knowing anything more about either the state s ∈ S or the
experiment e ∈ E, sets up a “roulette lottery” with random consequences y ∈ Y , whose
probability distribution y 7→ λ(a, x; y) player D knows, and where, for each fixed a ∈ A and
y ∈ Y , the map x 7→ λ(a, x; y) is B-measurable.

To complete the description of the game, we must specify the four players’ payoff functions. In
fact players E, N and C will be treated as passive, meaning that their payoffs are arbitrary constants,
entirely independent of the game’s outcome. Player D, however, is assumed to have an expected
payoff which depends on the action a and experimental outcome x through the probability law
(a, x, y) 7→ λ(a, x; y), but does not depend directly on either the experiment e or the state s.
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2.2 Subjective Expected Utility (SEU)
In the context of this laboratory game, applying an SEU axiom system such as that of Fishburn
(1982) or (very closely related) Hammond (1998) implies that player D must have:

1. a unique cardinal equivalence class of von Neumann–Morgenstern utility functions (NMUFs)
Y 3 y 7→ u(y) ∈ R;8

2. a unique Bayesian prior probability measure F 3 K 7→ π(K) ∈ [0, 1], where S := ∪e∈ESe

and F is the σ-algebra of all sets F ⊆ E × S ×X whose sections

Fe := {(s, x) ∈ S ×X | (e, s, x) ∈ F} (1)

are Se ⊗ B-measurable subsets of Se ×X , for all e ∈ E;9

3. a unique preference ordering10 over A represented by the well-defined SEU integral function

A 3 a 7→ U(a) :=

∫
E×S×X

[∑
y∈Y

λ(a, x; y)u(y)
]
dπ. (2)

Define pe := π({e}×Se×X) as the probability that player E chooses experiment e ∈ E. Then,
given any e ∈ E with pe > 0, define Qe(J) := π({e} × J)/pe so that Se ⊗ B 3 J 7→ Qe(J) is
the conditional probability measure on S × X . Because (X,B) is Polish, the measure F 3 F 7→
π(F ) ∈ [0, 1] has values given by the composition

π(F ) =
∑

e∈E
peQe(Fe) =

∑
e∈E

pe

∫
Se

[∫
X

1F (e, s, x) ξe(dx|s)
]
Pe(ds) (3)

where, given any e ∈ E with pe > 0, Nature chooses both:

1. a random state s ∈ Se according to a Bayesian prior probability measure Pe(ds) on (Se,Se)
satisfying Pe(G) = π({e} ×G×X)/pe for each G ∈ Se.

2. an observed experimental result x according to the Bayesian likelihood law in the form of a
regular conditional distribution (rcd) Se 3 s 7→ ξe(dx|s) ∈ ∆(X,B) which is Se-measurable
and satisfies∫

Se

[∫
X

1F (e, s, x) ξe(dx|s)
]
Pe(ds) = Qe(Fe) =

π({e} × Fe)

pe

for all F ∈ F . (4)

For each experiment e ∈ E, the marginal of Qe on X is a probability measure on (X,B) that we
denote by ξ∗e . For any event B ∈ B, it equals the expected value

B 3 B 7→ ξ∗e (B) := Qe(Se ×B) =

∫
Se

ξe(B|s)Pe(ds), (5)

of the likelihood ξe(B|s) w.r.t. the prior Pe(ds) on (Se,Se).

8Two NMUFs u, ũ : Y → R are cardinally equivalent iff there exist both an additive constant α ∈ R and a positive
multiplicative constant γ ∈ R such that ũ(y) ≡ α+ γu(y) on Y .

9We emphasize that π is a countably additive probability measure, as in Arrow’s (1970) and Fishburn’s (1982)
refinements of Savage’s (1954) theory. By contrast, Savage derived only finitely additive probability, as do Gyntelberg
and Hansen (2009) in the quantum context.

10A preference ordering onA is a binary relation % onA that is complete and transitive. It is represented by U : A→
R just in case U(a) ≥ U(a′) iff a % a′, for all a, a′ ∈ A.
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In turn, each of player D’s possible actions a ∈ A generates the unconditional roulette lottery

Y 3 y 7→ λ∗e(a; y) :=

∫
X

λ(a, x; y) ξ∗e (dx) =

∫
Se

[∫
X

λ(a, x; y)ξe(dx|s)
]
Pe(ds) (6)

on Y whose expected utility to player D, given the experiment e ∈ E, is determined by the SEU
function

A 3 a 7→ Ve(a) :=
∑

y∈Y
λ∗e(a; y)u(y). (7)

This decomposition allows the SEU formula (2) to be rewritten as U(a) =
∑

e∈E peVe(a).

2.3 Vorob′ev Consistent Extended Probability Systems
The subjective probability structure set up in Section 2.2 places no restrictions at all on either the
subjective prior probabilities Pe of states s ∈ S in the measurable spaces (Se,Se) corresponding to
different experiments e ∈ E, or on the associated likelihood laws s 7→ ξe(dx|s) ∈ ∆(X,B). Yet
presumably good experiments should do as little as possible to perturb either of these. Extending
an idea due to Vorob′ev (1962) so that we can meet the needs of quantum mechanics, the only
change in both the probability measures Se 3 G 7→ Pe(G) and the Se-measurable likelihood law
Se 3 s 7→ ξe(dx|s) for different experiments e ∈ E will be in their domain of definition (Se,Se).11

Specifically, there must exist a set function P : S∗ → [0, 1] and likelihood law S 3 s 7→ ξ(dx|s),
both independent of e, such that: (i) P (G) = Pe(G) whenever G ∈ Se; (ii) ξ(B|s) = ξe(B|s)
whenever s ∈ Se; (iii) for each B ∈ B and e ∈ E, the restriction of s 7→ ξe(dx|s) to Se must be
Se-measurable. In particular, we have a Vorob′ev consistent extended probability system

(S, {(Se,Se)}e∈E, P ) (8)

where each (Se,Se) is a measurable space, and S = ∪e∈ESe.
It should be noted that, given any pairG,G′ of disjoint subsets of S, the usual additivity condition

P (G ∪ G′) = P (G) + P (G′) needs to hold only if there is at least one experiment e ∈ E such that
both G and G′ belong to the same space (Se,Se).12 Furthermore, given any countable13 collection
{Gn}n∈N of pairwise disjoint subsets of S, the usual countable additivity condition

P
(⋃

n∈N
Gn

)
=
∑

n∈N
P (Gn) (9)

must hold if there exists at least one experiment e ∈ E such that Gn ∈ Se for all n ∈ N .
Indeed, it is instructive to compare Vorob′ev consistency with a stronger condition for the exis-

tence of a Kolmogorov extension. The latter would require P (G) to be defined for allG in σ(S∗), the
smallest σ-algebra containing all the sets in S∗, which is typically much larger than S∗; moreover,
(9) must hold for any collection {Gn}n∈N of pairwise disjoint subsets in σ(S∗).

Finally, for future reference we record how Vorob′ev consistency implies that, for each e ∈ E,
the probability measure Se ⊗ B 3 J 7→ Qe(J) on Se ×X defined by (4) must satisfy

Qe(J) =

∫
Se

[∫
X

1J(s, x) ξ(dx|s)
]
P (ds). (10)

Of course, the probability measure J 7→ Qe(J) depends on e only through the domain Se ⊗ B of
measurable sets J , precisely as Vorob′ev consistency requires.

11Vorob′ev (1962) considered a special case where the family of measures takes the form (S, {Se}e∈E , P ) with a
varying σ-algebra Se which, however, always includes the entire space S as its largest member.

12This is an obvious extension to σ-algebras of Griffiths’ (2003) “single-framework rule” for Boolean algebras.
13We regard any finite set as countable, as well as any countably infinite set.
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3 Application to Quantum Experiments

3.1 Extended Probability over Quantum States
In the quantum version of our four-person laboratory game, players D, E and C have the same
strategy spaces. Moreover, player C’s chosen probability law (a, x, y) 7→ λ(a, x; y) still describes
the random consequence of the game. Player N, however, is now assumed to have a specific strategy
set S equal to the unit sphere S of a particular physically relevant separable Hilbert space H over
the complex field C. This formulation, of course, is chosen so that solutions to Schrödinger’s wave
equation can be represented more easily.

Recall that a set G ⊂ H is orthonormal iff the inner products of all its pairs h, h′ ∈ G satisfy
〈h, h′〉 = δhh′ , where G × G 3 (h, h′) 7→ δhh′ ∈ {0, 1} is the Kronecker delta function. Moreover,
any orthonormal set G is a linearly independent subset of S. When H has finite dimension d, then
#G ≤ d; in any case, separability of H implies that G is countable.14

Given any subset G ⊆ H (not necessarily orthonormal), let spG denote the closure in H of the
linear subspace spanned by G; it is also a linear subspace of H. An orthonormal set G ⊂ H is
complete, or an orthonormal basis of H, if spG = H — i.e., for any h ∈ H, there exist matching
countable sets of basis elements {en}n∈N ⊂ G and of scalars {cn}n∈N ⊂ C such that: either (i) N
is finite and h =

∑
n∈N cnen; or (ii) N = N and the Hilbert norm ‖h−

∑k
n=1 cnen‖ → 0 as k →∞.

In our laboratory game, we suppose that the measurable subspace determined by each possible
experiment e ∈ E takes the form (Ge, 2

Ge) for some orthonormal set Ge, where 2Ge denotes the
power set of all subsets of Ge.15 However, we consider what Vorob′ev consistency implies, not just
for a finite collection of experiments, but for all measurable subspaces (G, 2G) as G varies over the
entire (non-empty) set G of orthonormal subsets of H. Then the domain of the probability map
G 7→ P (G) must be all of G. So our Vorob′ev consistent extended probability system (8) becomes

(S, {(G, 2G)}G∈G, P ). (11)

3.2 Quantum Equivalent Events
The usual physical formulation of quantum mechanics (QM) represents uncertain events by members
of the set L of all closed linear subspaces of H or, equivalently, of the set P of all orthogonal
projections of H onto such subspaces. In our framework, QM imposes extra conditions on (11)
through a quantum equivalence relation ∼ defined on the set G of all orthonormal subsets of H by

G ∼ G′ ⇐⇒ spG = spG′. (12)

Thus, each orthonormal set G ⊂ S belongs to its own equivalence class [G] of events, which cor-
responds to both the closed linear subspace spG ∈ L, and the associated orthogonal projector
Π[G] ∈ P mapping H onto this linear subspace. In fact there are obvious bijections

[G]↔ sp[G]↔ Π[G] (13)

between the three spaces: (i) [S] := S/∼ of equivalence classes of orthonormal subsets of H; (ii) L

of closed linear subspaces of H; and (iii) P of orthogonal projections onto closed subspaces in L.

14Friedman (1982, Lemma 6.4.7) proves concisely the equivalent property that any orthonormal basis is countable.
15Equivalently, each Ge is a set of mutually orthogonal one-dimensional projectors, as in Caves, Fuchs and Schack

(2002) for the case when H is finite-dimensional.
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3.3 Quantum Probability Systems
As G varies over the orthonormal sets in G, the bijections (13) induce in turn bijections

2G ↔ LG ↔ PG (14)

between each: (i) σ-algebra 2G; (ii) family LG ⊆ L of closed linear subspaces spanned by subsets
of G; (iii) family PG ⊆ P of orthogonal projections onto the corresponding closed linear subspaces
in LG. We take the liberty of describing both LG and PG as quantum σ-algebras.16

In addition to Vorob′ev consistency, an obvious additional requirement is the quantum consis-
tency condition requiring that quantum equivalent events be given the same probability. Specifically,
whenever [G] = [G′] because spG = spG′, we insist that P (G) = P (G′). Then the bijections (13)
allow us to define set functions L 3 L 7→ ν(L) ∈ [0, 1] and P 3 Π 7→ µ(Π) ∈ [0, 1] so that
P (G) = ν(spG) = Π[G] for all G ∈ [G]. These definitions imply the obvious bijections

(S, {(G, 2G)}G∈G, P )↔ (L, {LG}G∈G, ν)↔ (P, {PG}G∈G, µ) (15)

between the extended probability system (11) and its images induced by the bijections (14).
Next, suppose that {Πn}n∈N is any countable collection of pairwise orthogonal projectors —

i.e., they satisfy ΠiΠj = 0 whenever i, j ∈ N with i 6= j. This is equivalent to their respective
ranges {Ln}n∈N being pairwise orthogonal closed subspaces of H. For each n ∈ N , let Gn be an
orthonormal basis of the subspace Ln. Pairwise orthogonality of the subspaces Ln evidently implies
that the union G := ∪n∈NGn of these orthonormal bases is also an orthonormal set. Let L := spG,
and note that the orthogonal projection onto L satisfies Π[G] = ΠL =

∑
n∈N Πn. It follows that the

mapping Π 7→ µ(Π) satisfies the countable additivity condition

µ
(∑

n∈N
Πn

)
= µ(ΠL) = P (G) =

∑
n∈N

P (Gn) =
∑

n∈N
µ(Πn) (16)

whenever the projectors {Πn}n∈N are pairwise orthogonal. Hence Π 7→ µ(Π) meets Parthasarathy’s
(1992, p. 31) definition of a probability distribution on P. A triple (S,P, µ), where P 3 Π 7→
µ(Π) ∈ [0, 1] satisfies (16) for any countable collection {Πn}n∈N of pairwise orthogonal projectors,
will therefore be called a quantum probability system. It succinctly summarizes an extended
probability system (11), as well as its equivalents given by (15), that happen to be both Vorob′ev and
quantum consistent.

3.4 Quantum Likelihood Operators
Section 2.3 introduced the Vorob′ev consistent likelihood law S 3 s 7→ ξ(dx|s) that is Se-measurable
on each set Se, as well as the probability measure J 7→ Qe(J) given by (10) on the product measur-
able space (Se ×X,Se ⊗ B) of states and experimental observations. Because H is separable, each
orthonormal set G ⊂ S must be countable, so these two have respective quantum counterparts:

1. the quantum likelihood law S 3 h 7→ ξ(dx|h) which specifies how the likelihood ξ(B|h) of
any Borel set B ⊂ X changes as h varies over G;

2. the joint probability measure 2G ⊗ B 3 J 7→ qG(J) on G×X given by

qG(J) =
∑

h∈G

[∫
X

1J(h, x) ξ(dx|h)

]
P ({h}) =

∑
h∈G

ξ(Jh|h)P ({h}), (17)

where Jh := {x ∈ X | (h, x) ∈ J} is the appropriate section of the set J , for each h ∈ G.

16A well known result of quantum logic is that L, or equivalently P, can be given an orthomodular lattice structure.
Each family LG, or equivalently PG, is then an orthocomplemented Boolean sublattice.
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For each fixed orthonormal set G ⊂ S, consider the set function

B 3 B 7→ ΞG(B) :=
∑

h∈G
ξ(B|h) Π[{h}] (18)

whose value is a positive linear combination of the family Π[{h}] (h ∈ G) of one-dimensional projec-
tors on H. For each B ∈ B, this combination must be a self-adjoint or Hermitean (linear) operator
H 3 h 7→ ΞG(B) h that is positive — i.e., 〈h,ΞG(B) h〉 ≥ 0 for all h ∈ H. We call B 7→ ΞG(B)
a quantum likelihood operator. Because each B 7→ ξ(B|h) is a probability measure on the Borel
sets B ⊆ X , the countable additivity condition ΞG(∪m∈NBm) =

∑
m∈N ΞG(Bm) is satisfied when-

ever the countable family {Bm}m∈N is pairwise disjoint. Also ΞG(∅) and ΞG(X) are equal to the
null and identity operators on H, respectively. For each fixed orthonormal set G ⊂ S, this makes
B 7→ ΞG(B) a positive operator-valued measure (or POVM) on the measurable space (X,B).

Note that for each fixed Borel set B ∈ B and orthonormal set G ⊂ S, the countable range
ΛG(B) := ∪h∈G{ξh(B)} ⊂ [0, 1] of possible likelihood numbers must constitute the (pure point
or discrete) spectrum of eigenvalues for the operator ΞG(B). Indeed, each eigenvalue ` ∈ ΛG(B)
has its own eigenspace L`

G(B) := sp Γ`
G(B), where Γ`

G(B) := {h ∈ G | ξh(B) = `}. Of course
eigenspaces associated with distinct eigenvalues must be orthogonal.

Finally, as in (18), we define a POVM 2G ⊗ B 3 J 7→ QG(J) for each orthonormal G ⊂ S by

QG(J) :=
∑

h∈G
ξ(Jh|h) Π[h]. (19)

This is the operator equivalent of the joint probability measure J 7→ qG(J) on the product measur-
able space (G×X, 2G ⊗ B) given by (17).

3.5 Gleason’s Theorem and the Trace Rule
Let {en}n∈N be any orthonormal basis of H. Then the trace of any positive self-adjoint operator ρ is
defined by tr ρ :=

∑
n∈N〈en, ρen〉 even if this sum of non-negative term diverges to +∞; its value is

preserved by applying the same unitary transformation to all the vectors in H, which is equivalent to
changing its orthonormal basis. A density operator on H is any positive operator satisfying tr ρ = 1.

Suppose the separable space H has dimension d ≥ 3. Then a corollary of Gleason’s (1957)
theorem due to Parthasarathy (1992, Theorem 9.18) establishes that, because (16) holds, there is a
density operator ρ satisfying µ(Π) = tr(ρΠ) for all projections Π ∈ P. This implies the trace rule

P (G) = µ(Π[G]) = tr(ρΠ[G]) for every orthonormal set G ⊂ S. (20)

Similar trace rules also apply to the joint probability measure J 7→ qG(J) on (G×X, 2G ⊗ B),
as well as to its marginal distribution B 7→ ξ∗G(B) = QG(G × B) on (X,B). Indeed, using (20) to
substitute for each instance of the term P ({h}) in both (17) and (19) gives

qG(J) =
∑

h∈G
ξ(Jh|h) tr(ρΠ[{h}]) = tr[ρQG(J)]. (21)

Putting J = G×B in (21) and then using (18), we obtain

ξ∗G(B) =
∑

h∈G
ξ(B|h) tr(ρΠ[{h}]) = tr[ρΞG(B)]. (22)

In particular, given any experiment e ∈ E that gives rise to the orthonormal set Ge ⊂ S, the
expected likelihood ξ∗Ge

(B) of any Borel set B ⊆ X is determined as the trace of the fixed density
operator ρ — the quantum equivalent of a Bayesian prior — multiplied by the appropriate POVM
likelihood operator ΞGe . The quantum counterpart of equation (6) is then the roulette lottery

Y 3 y 7→ λ∗e(a; y) :=

∫
X

λ(a, x; y) tr[ρΞGe(dx)] = tr

[
ρ

∫
X

λ(a, x; y) ΞGe(dx)

]
(23)

whose expected utility is given by (7).
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4 Concluding Summary and Research Agenda
In our laboratory game, depending on the experiment e ∈ E, player E implicitly selects an orthonor-
mal subset Ge of a complex Hilbert space H, along with a range of possible subjective likelihood
laws defined on Ge. When the trace rule (20) holds, then regardless of what the set Ge may be,
quantum consistency implies that there exists a “quantum state” in the form of a density operator ρ
on H which, just as quantum Bayesians claim it should, completely characterizes player D’s prior
subjective beliefs over the unit sphere S of H. Furthermore, the quantum state can be combined
with a subjective likelihood operator through the trace rule in order to derive the joint distribution of
states and experimental observations, as well as the marginal distribution of observations alone.

One important technical task is to extend the analysis to non-separable Hilbert spaces, which
will allow likelihood operators that go beyond a discrete or pure point spectrum. In addition, fu-
ture work should consider extensive form laboratory games that allow sequences of observations
and/or decisions to be made at different times. Modelling these will involve solving Schrödinger’s
wave equation, which is most easily done in what is otherwise the rather counter-intuitive complex
Hilbert space that quantum theory always uses. Not least, applying Bayesian decision theory to
such extensive games may also allow further illumination of important interpretational issues such
as how Bayesian updating of density operators relates to “collapsing” quantum states, as well as its
relationship to the vexing measurement problem.

For the moment we have merely enriched the standard Kolmogorov probability framework to
allow multiple measurable subspaces, generally incompatible, in which Bayesian rational decision
making under quantum uncertainty can be described. We did without exotic probabilities whose
values could not only be negative, but even involve both complex numbers and multi-dimensional
positive operators. And without any special “quantum logic” that differs from ordinary set theory.
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