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Abstract
This paper examines six theoretical reasons for considering the applica-

tion of quantum theory to human cognition. It also presents six empirical
examples that �while puzzling from a classic probability framework �are
coherently explained by a quantum approach.

Quantum physics was created to explain puzzling �ndings that were impos-
sible to understand using the older classical physical theory. In the process of
creating quantum mechanics, physicists also created a new theory of probability.
Can this new probability theory be usefully applied to �elds outside of physics?
This paper explores the application of quantum probability theory to the �eld
of cognition and decision making. Almost all previous modeling in cognitive
and decision sciences has relied on principles derived from classical probability
theory. But these �elds have also encountered puzzling �ndings that also seem
impossible to understand within this limited framework. Quantum principles
may provide some solutions. In the following paper, we �rst provide some gen-
eral reasons for considering the application of quantum probability to human
cognition1 , second we review �ndings that are very puzzling from a classic prob-
ability theory framework, �nally we show how quantum theory provides a more
coherent and uni�ed account of these diverse �ndings.

1 Six reasons for a quantum approach to cogni-
tion

The �rst reason concerns the quantum concept of superposition. Classic cog-
nitive models assume that at each moment a person is in a de�nite state with

�This material is based upon work supported by US National Science Foundation Grant
No. 0817965. The authors thank the IU quantum group for comments and ideas including
J. Michael Dunn, Andrew J. Hanson, Andrew Lumsdaine, Lawrence S. Moss, Gerardo Ortiz,
Amr Sabry, and Jeremiah Willcock

1Sixe reasons are described but they can be boiled down to one (incompatability between
subspaces used to de�ne events). But we prefer to spell out the six implications of this one
general reason.
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respect to some judgment. Of course, it is not known what the person�s true
state is at each moment, and so the model can only assign a probability to a
response with some value at each moment. But the model is stochastic only
because it does not know exactly what trajectory (de�nite state at each time
point) a person is following. In this sense, cognitive and decision sciences cur-
rently model the cognitive system as if it was a particle producing a de�nite
sample path through a state space. Quantum theory works di¤erently by al-
lowing you to be in an inde�nite state (formally called a superposition state)
at each moment in time. Strictly speaking, being in an inde�nite or super-
position state means that the model cannot assume that you have a de�nite
value with respect to some judgment scale at each moment in time. You can
be in an inde�nite state that allows all of these de�nite states to have potential
(technically called probability amplitudes) for being expressed at each moment
(Heisenberg, 1958). A superposition state provides a better representation of
the con�ict, ambiguity, or uncertainty that people experience at each moment.
In this sense, quantum theory allows one to model the cognitive system as if it
was a wave moving across time over the state space.
A second reason concerns sensitivity to measurement of the cognitive system.

Traditional cognitive models assume that whatever we record at a particular
moment re�ects the state of the system as it existed immediately before we
inquired about it. The answer to a judgment question simply re�ects the state
regarding this question just before we asked it. One of the more provocative
lessons learned from quantum theory is that taking a measurement of a system
creates rather than records a property of the system (Peres, 1998). Immediately
before asking a question, a quantum system can be in an inde�nite state. The
answer we obtain from a quantum system is constructed from the interaction of
the inde�nite state and the question that we ask (Bohr, 1958). This interaction
creates a de�nite state out of an inde�nite state. We argue that the quantum
principle of constructing a reality from an interaction between the person�s
inde�nite state and the question being asked actually matches psychological
intuition better for complex judgments than the assumption that the answer
simply re�ects a pre-existing state.
The third reason concerns the quantum concept of measurement incompat-

ibility. The change in state that results after answering one question causes
a person to respond di¤erently to subsequent questions. Answering one ques-
tion disturbs the answers to subsequent questions and the order of questioning
becomes important. In other words, the �rst question sets up a context that
changes the answer to the next question. Consequently, we cannot de�ne a joint
probability of answers simultaneously to a conjunction of questions, and instead
we can only assign a probability to the sequence of answers. In quantum physics,
order dependent measurements are said to be non-commutative and quantum
theory was especially designed for these types of measures. Many of the mathe-
matical properties of quantum theory arise from developing a probabilistic model
for non-commutative measurements, including Heisenberg�s (1927) famous un-
certainty principle (Heisenberg, 1958). Question order e¤ects are major concern
for attitude researchers, who seek a theoretical understanding of these e¤ects
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similar to that achieved in quantum theory (Feldman & Lynch, 1988).
The fourth reason is that human judgments do not always obey classic laws

of logic and probability. The classic probability theory used in current cogni-
tive and decision models is derived from the Kolmogorov axioms (Kolmogorov,
1933/1950), which assign probabilities to events de�ned as sets. Consequently,
the family of sets in the Kolmogorov theory obey the Boolean axioms of logic,
and one important axiom of Boolean logic is the distributive axiom. From this
distributive axiom, one can derive the law of total probability, which provides the
foundation for inferences with Bayes nets. However, as reviewed below, the law
of total probability is violated by the results of many psychological experiments.
Quantum probability theory is derived from the Dirac (Dirac, 1958) and von
Neumann axioms (Von Neumann, 1932/1955). These axioms assign probabili-
ties to events de�ned as subspaces of a vector space, and the logic of subspaces
does not obey the distributive axiom of Boolean logic (Hughes, 1989).2 The fact
that quantum logic does not always obey the distributive axiom implies that the
quantum model does not always obey the law of total probability (Khrennikov,
2010). Essentially, quantum logic is a generalization of classic logic and quan-
tum probability is a generalized probability theory. Classic probability theory
may be too restrictive to explain human judgments.
The �fth reason concerns an assumption of classic probability models called

the principle of unicity (Gri¢ ths, 2003).3 A single sample space is proposed that
provides a complete and exhaustive description of all events that can happen
in an experiment.4 We argue that it is over simplifying the extremely complex
nature of our world. It becomes implausible to think that a person is able to
assign joint probabilities to all di¤erent kinds of events. Quantum probability
does not assume the principle of unicity (Gri¢ ths, 2003), and this assumption
is broken as soon as we allow incompatible questions into the theory which
cause measurements to be non-commutative. Incompatible questions cannot be
evaluated on the same basis, so that they require setting up di¤erent sample
spaces. This provides more �exibility for assigning probabilities to events, and
it does not require forming all possible joint probabilities, which is a property
we believe is needed to understand the full complexity of human cognition and
decision.
The last reason concerns the quantum concept of entanglement.5 In cog-

nitive science, judgments are often assumed to be �decomposable" so that the
whole can be understood in terms of their constituent parts and how these are
related together. This decomposability is re�ected in the common assumption
that there exists complete joint probability distribution across all of the ques-

2They do, however, form a partial Boolean algebra structure.
3This �fth reason is closely related to the third reason but spells out an important new

consequence.
4Kolmogorov realized that di¤erent sample spaces are needed for di¤erent experiments,

but his theory does not provide a coherent principle for relating these separate experiments.
This is exactly what quantum probability theory is designed to do.

5The use of entanglement here refers only to the failure to construct a joint probability
distribution for all pairwise events. It has nothing to do with the concept of reality or locality
discussed in physics.
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tions that can be asked, from which one can reconstruct any possible observed
pairwise joint distribution for any pair of questions. Quantum probability the-
ory allows systems to act in a non-decomposable manner such that pairwise
probabilities cannot be derived from a common joint probability distribution.
Intuitively this result suggests there is an extreme form of correlation between
the systems which goes beyond the correlations derived from traditional prob-
ability theory.
Now that we have identi�ed some general reasons for considering a quantum

approach to cognition and decision, we review some puzzling empirical results
that motivate the application of quantum probability to human cognition.

2 Six empirical examples from cognition and de-
cision

2.1 Disjunction e¤ect

The �rst example is a phenomenon discovered by Amos Tversky and Eldar
Sha�r called the disjunction e¤ect (Tversky & Sha�r, 1992). It was discovered
in the process of testing a rational axiom of decision theory called the sure thing
principle (Savage, 1954). According to the sure thing principle, if under state
of the world X you prefer action A over B, and if under the complementary
state of the world ~X you also prefer action A over B, then you should prefer
action A over B even when you do not know the state of the world. Tversky
and Sha�r experimentally tested this principle by presenting 98 students with
a two stage gamble, that is a gamble which can be played twice. At each stage
the decision was whether or not to play a gamble that has an equal chance of
winning $200 or losing $100 (the real amount won or lost was actually $2.00
and $1.00 respectively). The key result is based on the decision for the second
play, after �nishing the �rst play. The experiment included three conditions:
one in which the students were informed that they already won the �rst gamble,
a second condition in which they were informed that they lost the �rst gamble,
and a third in which they didn�t know the outcome of the �rst gamble. If they
knew they won the �rst gamble, the majority (69%) chose to play again; if they
knew they lost the �rst gamble, then again the majority (59%) chose to play
again; but if they didn�t know whether they won or lost, then the majority chose
not to play (only 36% wanted to play again).
Tversky and Sha�r explained the �nding in terms of choice based on reasons

as follows. If the person knew they won, then they had extra house money
with which to play and for this reason they chose to play again; if the person
knew they had lost, then they needed to recover their losses and for this other
reason they chose to play again; but if they didn�t know the outcome of the
game, then these two reasons did not emerge into their minds. Why not? If the
�rst play is unknown, it must de�nitely be either a win or a loss, and it can�t
be anything else. Busemeyer, Wang, and Townsend (2006) originally suggested
that this �nding was an example of an interference e¤ect similar to that found
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in the double slit type of experiments conducted in particle physics.
Consider the following analogy between the disjunction experiment and the

classic double slit type of physics experiment. Both cases involve two possible
paths: in the disjunction experiment, the two paths are inferring the outcome
of either a win or a loss with the �rst gamble; for the double split experiment,
the two paths are splitting the photon o¤ into the upper or lower channel by a
beam splitter. In both experiments, the path taken can be known (observed)
or unknown (unobserved). Finally in both cases, under the unknown (unob-
served) condition, the probability (of gambling for the disjunction experiment,
of detection at a location for the two slit experiment) falls far below each of the
probabilities for the known (observed) cases. So we speculate that for the dis-
junction experiment, under the unknown condition, instead of de�nitely being
in the win or loss state, the student enters a superposition state that prevents
�nding a reason for choosing the gamble.

2.2 Categorization - decision interaction

The second example is based on a paradigm that provides an examination of
the interaction between categorization and decision making (Townsend, Silva,
Spencer-Smith, & Wenger, 2000), which we discovered is highly suitable for test-
ing Markov and quantum models (Busemeyer, Wang, & Lambert-Mogiliansky,
2009). On each trial, participants were shown pictures of faces, which varied
along two dimensions (face width and lip thickness). The participants were
asked to categorize the faces as belonging to either a �good�guy or �bad guy�
group, and/or they were asked to decide whether to take a �attack�or �withdraw�
action. The primary manipulation was produced by using the following two test
conditions, presented on di¤erent trials, to each participant. In the C-then-D
condition, participants made a categorization followed by an action decision; in
the D-Alone condition, participants only made an action decision. In total, 26
undergraduate students from a Midwest university participated in the study,
and each person participated for 6 blocks of C-D trials with 34 trials per block,
and one block of D-alone trials with 34 trials per block. Little or no learning was
observed (because instructions provided all of the necessary information) and
so the C-D trials were pooled across blocks. The main results for the narrow
face condition are shown in Table 1 below.

Table 1
C-then-D D-Alone

p(G) p(AjG) p(B) p(AjB) pT (A) p(A)
.17 .41 .83 .63 .59 .69

The �rst and third columns indicate the probability of categorizing a face
as a �good guy�versus �bad guy�, and the second and fourth column indicate
the probability of attacking conditioned on being a �good guy�or a �bad guy�
respectively. The last column shows the probability of attacking under the D-
alone condition. The column labeled pT (A) is the total probability, which is
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computed by the well known formula

pT (A) = p(G) � p(AjG) + p(B) � p(AjB): (1)

The critical prediction concerns the probability of attacking in the D-alone
condition. According to the law of total probability, the attack probability in
the D-alone condition should be a weighted average of the two probabilities of
attacking conditioned on each categorization state. In other words, we should
always �nd p(AjG) � p(A) � p(AjB): However, when we look at the results in
Table 1 above, we see that p(A) substantially exceeds pT (A). More dramatic
is the fact that the probability of attacking in the D-alone condition is even
greater than the probability of attacking after categorizing the face as a �bad
guy�so that p(A) > p(AjB):

2.3 Perception of ambiguous �gures

A third example comes from a study in perception of ambiguous �gures. Inter-
ference e¤ects were �rst investigated in the perceptual domain by Elio Conte
(Conte et al., 2009). Approximately 100 students randomly were divided into
two groups: One was given 3 seconds to make a single binary choice (plus vs.
minus) concerning an ambiguous �gure A, and the other group was given 3
seconds to make a single binary choice for an ambiguous �gure B followed 800
msec later by a 3 second presentation requesting another single binary choice
(plus vs. minus) for �gure A.

p(B+) p(A+ jB+) p(A+ jB�) pT (A+) p(A+)
:62 :78 :54 :69 :55

The results produced signi�cant interference e¤ects. For example, for one
type of testing stimuli, when test B preceded test A, the following results were
obtained (p(B+) := probability of plus to �gure B, p(A+ jB+) := probability
of plus to �gure A given plus to �gure B, pT (A+) := total probability of plus
to �gure A, p(A+) := probability of plus to �gure A alone). The interference
e¤ect refers to the di¤erence pT (A+)� p(A = +) = +:14:

2.4 Conjunction and disjunction fallacies

A fourth example is an important probability judgment error, called the con-
junction fallacy (Tversky & Kahneman, 1983). Judges are provided a brief story
(e.g., a story about a woman named Linda, who used to be a philosophy student
at a liberal university and who used to be active in an anti-nuclear movement).
Then the judge is asked to rank the likelihood of the following events: event
F (e.g., that Linda is now active in the feminist movement), event B (e.g.,
that Linda is now a bank teller), event �F \ B�(e.g., Linda is currently active
in the feminist movement and a bank teller). The conjunction fallacy occurs
when option F \ B is judged to be more likely than option B (even though
the latter contains the former) (Tversky & Kahneman, 1983). Students also
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tend to judge the disjunction F [ B to be less likely than the individual event
F which is called the disjunction fallacy (Carlson & Yates, 1989).These e¤ects
are very robust and they have been found with many di¤erent types of stories.
The conjunction fallacy is also obtained using betting procedures that do not
involve even involve asking directly for probabilities (Sides, Osherson, Bonini,
& Viale, 2002). The conjunction error is considered an interference e¤ect for
the following reason. De�ne F as the event �yes to feminism,�B as the event
�bank teller,�and S is the Linda story. According to the law of total probability
pT (BjS) = p(F \BjS) + p(F \BjS) > p(F \BjS); but the judgments produce
p(BjS) < p(F \BjS) < pT (BjS) which implies a negative interference e¤ect.

2.5 Overextension of Category membership

A �fth example arises from research on category membership. Hampton asked
students to judge the strength of category membership for various natural items
and found that they often rated the membership for a conjunction of two cat-
egories to be greater than one of the individual categories (Hampton, 1988b).
For example when presented the item �Cuckoo� they rated its strength (on a
zero to one scale) for the category pet to be .575; and they rated its strength
for the category bird to be 1.0; but they rated its strength for the category �pet
bird�to be .842. This is analogous to the conjunction fallacy described above.
In a second study, Hampton found that students often rate the membership
strength of an item to a disjunction of two categories to be smaller than the rat-
ing for one of the individual categories (Hampton, 1988a). For example, when
presented with the item �ashtray�they rated its strength (on a zero to one scale)
for �home furnishings�to be .7; they rated its strength for furniture to be .30;
but they rated its strength for �home furnishings or furniture�to be .25. This
is analogous to the disjunction fallacy described above. These and other e¤ects
were later replicated by Hampton.
The overextension e¤ect for the conjunction can be viewed as an interference

e¤ect by using the following interpretation. De�ne p(Ajx) as the probability
that category A is true given the item x, and p(A \ Bjx) as the probability
that category A\B is true when given the item x:Then according to the law of
total probability we have p(A\Bjx) < pT (Ajx) but the judgments demonstrate
p(Ajx) < p(A \ Bjx) < pT (Ajx) which again implies a negative interference
e¤ect.

2.6 Memory recognition over-distribution e¤ect

The �nal (sixth) example is found in research on memory recognition. The
phenomenon of interest is observed in experiments that use a paradigm called
the conjoint �recognition paradigm. Initially, participants are rehearsed on a
set T of memory targets (e.g., each member is a short description of an event).
After a delay, a recognition test phase occurs, during which they are presented
a series of test probes that consist of trained targets from T, related non-targets
from a di¤erent set R of distracting events (e.g. each member is a new event
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that has some meaningful relation to a target event), and unrelated set U of
non-target items (e.g. each member is completely unrelated to the targets).
During the memory test phase, three di¤erent types of recognition instructions
are employed: the �rst is a verbatim instruction (V) that requires one to accept
only exact targets from T ; the second is a gist instruction (G) that requires one
to accept only distractors from the related non targets from R; the third is an
instruction to accept verbatim or gist items (VorG), that is it requires one to
accept probes from either from T or R. Hereafter V represents the event �accept
as a target from T�, G represents the event �accept as a non target from R�and
VorG represents the event �accept as either a target from T or a non target from
R.�Note that T \R =? , and so logically V and G are supposed to be mutually
exclusive events. Also, logically the event VorG should equal the event V[G,
but this remains an empirical question.
Consider memory test trials that employ a test probe belonging to the target

set T . If the verbatim question is asked, then probability of accepting the target
is formally de�ned by the conditional probability p(V jT ); if the gist question
is asked, then the probability of accepting the target is formally de�ned by the
probability p(GjT ); �nally if the verbatim or gist question is asked, then this is
formally de�ned by the probability p(V orGjT ).
Logically, a probe x comes from T orG but not both, implying that p(V orGjT ) =

p(V jT ) + p(GjT ). The di¤erence, EOD(T ) = p(V jT ) + p(GjT )� p(V orGjT ) is
an episodic over distribution e¤ect. A positive EOD e¤ect was obtained from
116 di¤erent experimental conditions (Brainerd & Reyna, 2008). All but 10%
of the 116 studies produced this e¤ect, and the mean value of the EOD equals
.18.

3 A uni�ed explanation for interference e¤ects

Applications of quantum theory to cognition and decision began over ten years
ago with pioneering work by Aerts (Aerts & Aerts, 1994), Atmanspacher (At-
manspacher & Romer, 2002), Bordley (Bordley, 1998), Khrennikov (Khrennikov,
1999). Quantum probability theory provides a simple and coherent explanation
for all six of the above empirical �ndings of interference e¤ects. Various special
versions of quantum theory have been developed for these �ndings, including
models by Blutner (2009),Pothos and Busemeyer (2009), Khrennikov and Haven
(2009), Franco (2009)(Franco, 2009), Aerts (2009), and Yukalov and Sornette
(2008) and Busemeyer, Pothos, Franco, Trueblood (2011) (Busemeyer, Pothos,
Franco, & Trueblood, 2011). But all of these models share the following simple
ideas. Consider the disjunction e¤ect described earlier for the two stage gamble.
It is assumed the decision maker begins in a superposition state j i which is a
vector in an N dimensional Hilbert space that represents the decision maker�s
potentials for di¤erent events. The event �choose to play the second gamble�is
represented by a projector PG which projects states onto the subspace consis-
tent with this event. The event ��rst play is a win�is represented by a projector
PW that projects the state onto the subspace consistent with this fact. The
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event ��rst play is a loss�is represented by a projector PL = I � PW where I is
the identity operator. If the �rst play produces a win, then according to Lüder�s
rule the state that follows this observation equals

j W i =
PW j i
kPW j ik

:

Given this new state, the probability to play again is

p (GjWin) = kPGj W ik2 =
kPGPW j ik2

kPW j ik2
:

Similarly, if the �rst play produces a loss, then the probability to play again is

p (GjLoss) = kPGPLj ik2

kPLj ik2
:

Now consider the probability of choosing to gamble on the second play when
the outcome of the �rst play is unknown:

p (Gjunknown) = kPGj ik2

= kPG (PW + PL) j ik2

= kPGPW j i+ PGPLj ik2

= kPGPW j ik2 + kPGPLj ik2 + Int
Int = h jPWPGPGPLj i+ h jPWPGPGPLj i�

The term Int is called the interference term, which can be positive, or neg-
ative, or zero. If it is zero, and there is no interference, and in this special
caseskPGj ik2 obeys the law of total probability. But if the interference term
is negative, then the law of total probability is be violated, which is consistent
with the observed �ndings. The previous articles cited above provide explicit
ways to represent this interference e¤ect.
All six �ndings can be accounted by using the same model. For example,

the categorization - decision making results are obtained by identifying PW
with the event that the face is categorized as a �good guy�and PL represents
the categorizing the face as a bad guy, and PG represents the decision to attack.
The perceptual experimental results are obtained by identifying PW with the
event that the judgment for �gure B is a plus, PL represents the case that the
judgment for �gure B is a minus, and PG represents the decision about �gure A.
As a �nal example, the conjunction fallacy results are explained by identifying
PW with the event that �Linda is a feminist�and PL represents the event �Linda
is not a feminist�and PG represents the event �Linda is a bank teller.�
In summary, there are strong empirical reasons for calling into question

classic probability theory as an adequate explanation for human judgment and
decision making behavior. Quantum theory provides a simple account that uni-
�es all of the diverse �ndings within a common theoretical framework. Finally,
quantum theory introduces important new concepts, including superposition,
compatibility, and entanglement, to help explain human cognition.
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