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Abstract. We formulate the problem of inference in nonlinear dynamical sys-
tems (NLDS) in the Expectation-Propagation framework, and propose two novel
inference algorithms based on Laplace approximation and the unscented trans-
form (UT). The algorithms are compared empirically and employed as an im-
proved E-step in a conjugate gradient learning algorithm. We illustrate its use
for data mining with two high-dimensional time series from marketing research.
This contribution is based on work that appeared in [1] and [2]. More informa-
tion can be obtained via www.snn.kun.nl/~ypma/papers/list_of_papers.html
or ypma@snn.kun.nl. The work is supported by STW, project NNN.5321 “Graph-
ical models for data mining”. Data was provided by BrandmarC.

Model. We consider dynamical systems with nonlinearities in the state- and
observation equations and additive Gaussian noise,

xt = f(xt−1) + vt, vt ∼ N (0, Q); yt = g(xt) + wt, wt ∼ N (0, R) (1)

where f(·) and g(·) are nonlinear functions. In the well-known Kalman filter and
smoother all functions are assumed linear and posterior beliefs on the hidden states
can be computed exactly. In the nonlinear model, forward and backward messages
cannot be computed exactly any more, so one has to resort to approximations.

Inference with unscented and Laplace approximation. One can express in-
ference in a graphical model as a sequence of multiplications and a summation (or
integral) of local factors and messages. In the NLDS model, p(x1:T , y1:T ) factorizes:
p(x1:T , y1:T ) =

∏
t Ψt(xt−1, xt) =

∏
t p(xt|xt−1)p(yt|xt). Beliefs p(xt|y1:T ) are

computed by p(xt|y1:T ) = α̂t(xt)β̂t(xt), where α̂t(xt) and β̂t(xt) are the forward
and backward messages at xt. We express a two-slice belief as a product of a two-
slice potential and ’incoming messages’, p̂t(xt−1, xt) ∝ α̂t−1(xt−1)Ψt(xt−1, xt)β̂t(xt).
Belief qt(xt) is obtained as qt(xt) = collapse p̂t(xt−1, xt)dxt−1, where “collapse” in-
volves projection to a Gaussian and marginalization (in this case over xt−1). In our
first approach we collapse the nongaussian marginal onto a Gaussian by applying
Laplace approximation. In our second approach, we use the unscented transform to
collapse the nongaussian two-slice joint pt(xt−1, xt) to a Gaussian, in three steps:

1. prediction: approximate α̂t−1(xt−1)Ψa
t (xt−1, xt) p∗t (xt−1, xt) with UT;

2. correction: compute p∗t (xt) by marginalization; approximate p∗t (xt)Ψ
b
t(xt, yt)

with a Gaussian p∗t (xt, yt) using UT; incorporate evidence into p∗t (yt|xt) =
p∗t (xt, yt)/p

∗
t (xt), resulting in p∗∗t (yt|xt);



3. combination: compute qt(xt−1, xt) = p∗t (xt−1, xt)p∗∗t (yt|xt)β̂t(xt), and ob-
tain qt(xt−1) and qt(xt) by marginalization.

We use UT for computing moments of the joints p∗t (xt−1, xt) and p∗t (xt, yt). For
example, in the prediction step we need to compute∫ ∫

α̂t−1(xt−1)Ψa
t (xt−1, xt)h(xt−1, xt)dxt−1dxt ≈

∑
i

wiFh(χi) (2)

Here we denote with h(xt−1, xt) a generalization of Giτ (xt−1, xt) that also includes
the cross-moment of xt−1 and xt. This is needed since we need to compute all
first- and second-order moments of the two-slice posterior p∗t (xt−1, xt) using UT.
With Fh we express that the ’effective nonlinearity’ through which the samples
have to be propagated is now determined by h(xt−1, xt) as well.

Conjugate gradient learning. We parameterize the nonlinearities in (1) with
radial basis functions ρif (dynamics) and ρig (observer), and include weighted inputs

ut. E.g. for the dynamics, xt+1 =
∑If
i=1 h

i
fρ
i
f (xt)+Afxt+Bfut+bf+vt ≡ θfΦft +vt

where vt ∼ N (0, Q) and ρif (xt) are Gaussians in xt space. We then compute the
gradient of the loglikelihood L with respect to Q and θf as

∇Q(L) =
1
2
Q−1SQ−1 − J

2
Q−1

∇θf (L) = Q−1

(∑
t

〈xt+1Φf,Tt 〉t − θf
∑
t

〈Φft Φf,Tt 〉t

)
(3)

Results. In experiments with a one-dimensional nonlinear dynamical system, our
unscented algorithm proved to be robust and consistently better than extended and
unscented Kalman filtering. Our Laplace algorithm allowed for the best estimates
of the hidden state means, but also proved less robust to high observation noise. We
then applied our combined inference-learning algorithm to the task of data mining
of marketing time series, where the underlying assumption is that a marketing
steering variable has both an immediate influence on the output (via the observer)
and a delayed influence via the dynamics (e.g. when ’the general opinion’ about a
brand gradually changes as a result of PR activities).
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