
An abstract multi-agent framework applied to a
social interaction game

Hendrik Wietze de Haan Wim H. Hesselink
Gerard R. Renardel de Lavalette

Department of Mathematics and Computing Science, University of
Groningen,

P.O. Box 800, 9700 AV Groningen, The Netherlands

Abstract

We develop an abstract framework for modelling multi-agent systems. The frame-
work splits the state of an agent into an internal state and a set of observables. In the
execution model, an agent performs either an observation step, a reasoning step, or
an external step, i.e. an action that affects other agent’s observables. We use this
framework to model the game Mafia as a multi-agent system.

1 Introduction

In this paper we report on ongoing research in the design of multi-agent systems (MAS).
We intend to contribute to a methodology for design of and reasoning about MAS, based
on mathematical semantics. We see MAS as a special kind of concurrent systems, and
therefore we base our work on existing theories related to concurrency [1, 8]. We work
out a mathematical framework, based on the distinction between internals (the mental
states of the agents) and externals (things in the outside world that can be observed by
the agents). We focus on the structure of the mental states and the kind of reasoning that
takes place. As a test case, we apply our framework to model the social interaction game
Mafia.

Current multi-agent frameworks focus on the agent programming language or the ar-
chitecture. Agent0 [11] emphasizes the formal semantics of the mental state of an agent,
but offers no formal language for programming these agents. AgentSpeak(L) [10] and
3APL [6] provide such languages. DESIRE [2] is a compositional architecture frame-
work used to specify a real world multi-agent system. The focus there is on what kind
of knowledge is needed for which agents. Agents are typically described in intentional
terms such as beliefs, knowledge, desires, intentions etc, generally expressed using modal
logics.

In earlier work ([4], [5]), we investigated the semantics of knowledge-based programs,
focusing on the resolution of a circularity: the knowledge of an agent is defined in terms
of possible behaviours of the program, while the possible behaviours are determined by
actions that depend on the knowledge of agents. The link with the work reported here is
that we use the same mathematical starting point (trace theory), but the emphasis is now
on the structure of the mental state of the agents.



In section 2 we present our abstract framework. The game Mafia is described in
section 3. In section 4, the game is formalized with some strategies for the players. We
end with discussion and ideas for further work in section 5.

2 Abstract Agent Model

Let A be the set of all agents in the system. Each agent a ∈ A has an internal state Ia.
Agents can observe (part of) the external world, and so we let E be the set of exter-

nals. Agents can perform actions that change the external world, and thus influence the
externals observed by other agents.

We concentrate on a core of three activities present in most agent frameworks. These
three activities of an agent are: making observations, reasoning about the observations
and taking actions. This is a common design known as sense-reason-interact-cycle.

The essence of these three activities is captured by

sensea : Ia × E _ Ia,

reasona : Ia _ Ia,

acta : Ia × E _ E.

An agent may change her internal state due to externals, or by reasoning. The external
world is changed by an agent when she takes actions. The choice of action is based on
her internal state.

The multi-agent system in itself has a global state consisting of the internal states of
the agents and the state of the external world. That is, the global state space X is defined
as X = (Πa∈A Ia) × E. For simplicity we assume interleaving semantics, i.e. actions
are serialized. True parallelism complicates more than that it adds in expressiveness. An
execution of the multi-agent system is a sequence of global states i.e. an element from
X∗, such that subsequent pairs of elements are related via one of the three functions
sensea, reasona or acta of some agent a. The set of all executions is regarded as the
semantics of the system.

For the moment we place no restriction on the order in which the agents perform their
activities. This is in contrast to [12], where reasoning should precede (inter)action. We
prefer a more general framework: if a specific order is needed this can be coded into the
activities.

2.1 A more concrete framework

In this section we pin down the formalism more strictly. For the sake of incremental
design, it is advantageous to model sensea, reasona, and acta as binary relations rather
than functions. In these relations, we also change the arguments for sensing, reasoning or
acting, so that the agent “knows” about its own steps and need not repeat them unwittingly.

We distinguish a set Obs of observables and a set Act of action symbols. With each
action symbol f ∈ Act an interpretation [[f ]] ⊆ E × E is associated. Each agent a has a
mailbox Ea ⊆ Obs of observables that have not yet been sensed. The set E of externals
is refined to E = Πa∈A Ea. For 1-to-1 communication we introduce a primitive action
symbol send(Receiver, Message) where Receiver ∈ A and Message ∈ Obs . Similarly,



Pending Observations Internal State

PSfrag replacements

sense

reason

act

observe

deliberate

decide

γ σ α

Figure 1: local state of an agent, and relations between components

we introduce a primitive broadcast(Message). Interpretation of these primitives is quite
standard: send(r, m) places observable m in mailbox Er, and broadcast(m) places m in
all mailboxes.

We model the activities sense, reason and act nondeterministically, i.e. as relations
rather than functions. Relation sensea moves an observable from mailbox Ea and places
it into the internal state Ia. Relation reasona updates beliefs based on the new observa-
tions, and plans actions to be executed. The relation acta arbitrarily executes a planned
action. The internal state Ia of agent a is a triple (γ, σ, α) of performed observations
γ ⊆ Obs , a mental state component σ and a representation α ⊆ Act of planned actions.
All agents have the same sense and act relations, the difference (and complexity) will be
in the reason relation.

The relation reason implements the strategy of the player, and may be split up into
updating the beliefs based on observations, further deliberation, and selecting an action
based on beliefs. That is, reason is a choice between observe , deliberate and decide :

reason = observe ∪ deliberate ∪ decide .

Figure 1 illustrates the state of an agent and relations between components. Figure 1
does not imply any sequentiality, but only a causual relation of the elementary steps. For
simple agents the relation deliberate will be the empty relation, since no higher order
reasoning is done. This relation will play a role when the mental state represents higher
order beliefs, or beliefs on strategies of other agents.

Our framework offers a programming language in which the designers of the multi-
agent system can define these relations for its agents. A program is a nondeterministic
choice over some guarded commands. Each guarded command is preceded by a [] and
consists of a guard and a body (actions) separated by an arrow. The guard expresses a
condition on the internal state (γ, σ, α) of the agent. The body expresses how the internal
state changes. Free variables in a guarded command are implicitly quantified existentially.

3 The game Mafia

To investigate our framework we have chosen to model a simple social game called Mafia;
see [7] for some versions of this game. The behaviour of the players within the rules of
the game is unrestricted. Strategies of the players can vary wildly, and may be as complex



as one wants. As a consequence no exact analysis of (winning) strategies is possible.
Simulation on the other hand is quite feasible. The game can be seen as a situation that
might be studied in the social sciences. We chose this game since it serves to investigate
our framework. It is not our aim to find winning strategies.

In the game Mafia the players are either civilians or mafiosi. At the beginning of
the game the games-master secretly assigns some players as mafia. Only mafiosi know
who are mafia, i.e. mafia-membership is common knowledge for the mafia. Civilians are
ignorant who might be mafia. A civilian knows herself to be civilian.

The task of the civilians is to eliminate the mafia, while the mafiosi try to eliminate
all civilians. The mafiosi are allowed to settle on a strategy, before the game proceeds.
Civilians have no common strategy. The game proceeds in rounds of day and night.

During the day the players, civilians and mafiosi, publicly discuss and accuse each
other of being mafia. After some time the games-master calls for a voting round. Each
player publicly nominates one other player as a mafiosa. The games-master keeps track
of the votes. A player with the most votes is eliminated from the game.

After a player has been voted out of the game, the games-master announces that it has
become night. During the night mafiosi shoot at players: each mafiosa secretely commu-
nicates to the games-master at whom she shoots. Each mafiosa must shoot precisely once
during the night. When all mafiosi have fired, the games-master announces who were
killed during the night. A player is killed if she is shot at least twice during the same
night. If there is only a single mafiosa remaining, a single shot is fatal. The game ends
when all civilians or all mafiosi have been eliminated.

4 Modelling the game Mafia

In this section we fill in the framework from 2.1, such that we can model the game Mafia
and show how simple strategies can be defined. We start by defining the external world in
terms of observables and action symbols. For the internal state the mental state component
σ must be defined.

We assume a set A of agents, that is partitioned into a set of players Ap and a games-
master denoted by gm.

Actions in the game are accusing, voting for or shooting at players. Other actions are
the announcements by the games-master. We define a set of observables by

Obs = {accusing, voting, shooting, eliminated(a),
accuse(a, b), vote(a, b), shoot(a, b) | a, b ∈ Ap}

The intended meaning of accuse(a, b) is that player a accuses player b of being a mafia-
member. All communications are broadcast, except for the shots of the mafia, so the set
of action symbols is

Act = {broadcast(accusing), broadcast(voting), broadcast(shooting),
broadcast(eliminated(a)), broadcast(accuse(a, b)),
broadcast(vote(a,b)), send(gm, shoot(a, b)) | a, b ∈ Ap}

We must choose how to represent the beliefs. Only civilians have beliefs on who
might be mafia while mafia know who are mafia. Civilians may also believe players not



to be mafia. So the mental component σ of civilian a may contain propositional atoms
ismafia(b) or isnotmafia(b) (b ∈ Ap) expressing that a believes b to be mafia or believes
that b is not mafia. For a mafiosa, the set σ contains propositions ismafia(b) for all players
b that are mafia.

The component σ should also track which players are still in the game, since ac-
cusing, voting or shooting at players that are already out of the game is not useful.
Therefore, alive(b) ∈ σ means that player b is known to be in the game. The atoms
accusing, voting, shooting indicate the phase of the game.

4.1 Initial state

Initially nothing has been communicated, and the γ component and the mailbox for all
agents is the empty set. The players have not yet planned any action, so the α compo-
nent for all players is the empty set. Only the games-master has an action planned, viz.
announcing that the players may accuse each other.

The mental state component σ is a bit different. For a mafiosa (and also the games-
master) the component σ contains propositions ismafia(b) for all players b that belong to
the mafia. Player a is a civilian if and only if isnotmafia(a) ∈ σ(a). For a civilian a,
the mental state component may contain ismafia(b) or isnotmafia(b) for some arbitrary
players b, e.g. initially civilians have unspecified beliefs. The mental state component σ

for all agents also contains propositions alive(b) for all players b.

4.2 Games-master

The games-master coordinates the game. The games-master is reactive, i.e. she performs
no real reasoning to decide what actions to take. We present the program as a nondeter-
ministic choice between alternatives.

reasongm :
[] eliminated(b) ∈ γ −→ γ := γ \ {eliminated(b)}, σ := σ \ {alive(b)}
[] accusing ∈ γ −→ γ := γ \ {accusing}, σ := σ ∪ {accusing}
[] voting ∈ γ −→ γ := γ \ {voting}, σ := σ ∪ {voting}
[] shooting ∈ γ −→ γ := γ \ {shooting}, σ := σ ∪ {shooting}
[] AccusingDone −→ α := α ∪ {broadcast(voting)},

γ := γ \ {accuse(b, c) | b, c ∈ Ap}, σ := σ \ {accusing}
[] VotingDone −→ α := α ∪ {broadcast(shooting)} ∪ VoteOffAPlayer,

γ := γ \ {vote(b, c) | b, c ∈ Ap}, σ := σ \ {voting}
[] ShootingDone −→ α := α ∪ {broadcast(accusing)} ∪ KillPlayers,

γ := γ \ {shoot(b, c) | b, c ∈ Ap}, σ := σ \ {shooting}

where VotingDone, ShootingDone and AccusingDone are conditions on γ and σ of the
games-master. For brevity we only define ShootingDone. This holds when shooting holds
and all living mafiosi have fired:

shooting ∈ σ ∧
(∀ b ∈ Ap . ismafia(b) ∈ σ ∧ alive(b) ∈ σ ⇒ (∃c ∈ Ap . shoot(b, c) ∈ γ))



The abbreviation VoteOffAPlayer is a singleton set of the form {broadcast(eliminate(p))}
where p is a living player with the maximal number of votes. Similarly, KillPlayers is a
set of actions to eliminate players that have been killed by the mafia.

4.3 Mafia

For reasons of simplicity, we assume that the mafia is not organized. A mafia-member
accuses, votes and shoots at civilians as she pleases. Just like the games-master, the
mental state component σ keeps track of what phase the game is in, which players have
been eliminated, and who are mafiosi. The program for a mafia-member does not differ
much from the games-master, but a mafiosa may only act when she is still in the game.

4.4 Civilian

We present a program for a civilian in parts. The mental state component σ represents
what phase of the game an civilian is in, and which players are still in the game. The first
part of the program is similar to that of a mafiosa. A civilian that is out of the game can
not act.

[] eliminated(b) ∈ γ −→ γ := γ \ {eliminated(b)}, σ := σ \ {alive(b)}
[] accusing ∈ γ −→ γ := γ \ {accusing}, σ := σ ∪ {accusing}
[] voting ∈ γ −→ γ := γ \ {voting}, σ := σ ∪ {voting}
[] shooting ∈ γ −→ γ := γ \ {shooting}, σ := σ ∪ {shooting}

Next, the actions that a civilian takes are specified. These actions are prescribed by
her strategy. A strategy can be seen as a complete description of an agent, that specifies
how the agent reasons about new observations and chooses her actions given her mental
state. For simplicity, we only consider simple strategies, that do not include higher order
beliefs or beliefs on other agents’ strategies.

We can decompose a strategy of a civilian into strategies for accusation, voting and
updating of beliefs. For example, a civilian accuses any player that she believes to be
mafia.

[] accusing ∈ σ ∧ ismafia(b) ∈ σ ∧ alive(b) ∈ σ −→
σ := σ \ {accusing}, α := α ∪ {broadcast(accuse(self , b))}

She may vote for a player that she believes to be mafia and that has been accused by some
other trustworthy player.

[] voting ∈ σ ∧ ismafia(b) ∈ σ ∧ alive(b) ∈ σ ∧ accuse(c, b) ∈ γ ∧ isnotmafia(c) ∈ σ

−→ σ := σ \ {voting}, α := α ∪ {broadcast(vote(self , b))}

Civilians may not shoot, so they pass over this stage of the game and may clear the past
accusations and votes. One might have more complex strategies where all communication
is remembered.

[] shooting ∈ σ −→ γ := γ \ {accuse(b, c), vote(b, c) | b, c ∈ Ap}, σ := σ \ {shooting}

Updating of beliefs can be done in various ways. Believing the accusations made by
players believed not to be mafia is expressed by



[] accuse(b, c) ∈ γ ∧ isnotmafia(b) ∈ σ ∧ c 6= self −→
σ := σ ∪ {ismafia(c)} \ {isnotmafia(c)}

Dropping a belief that player c is mafia when c is accused by a player believed to be mafia:

[] accuse(b, c) ∈ γ ∧ ismafia(b) ∈ σ ∧ ismafia(c) ∈ σ −→ σ := σ \ {ismafia(c)}

This is by no means a complete specification of a civilian. A civilian may have multi-
ple strategies for accusing, voting and updating of beliefs.

5 Discussion and Further Work

We have presented a simple framework for designing MAS. We do not a priori choose
the mental state of an agent to be a sentence in some formal language. This gives us the
flexibility e.g. to assume that the mental state contains a priority queue of aims, without
the need to encode such priority queues. Also, the mental state may contain a belief
base, where every belief is tagged with a fidelity factor. Of course, everything can be
expressed in a suitable formal language, but we prefer to specify in the universal language
of mathematics and to delay the choice of specific encodings as long as possible.

As yet, our design has no higher-order reasoning in the agents, but we plan to incor-
porate beliefs, desires, and strategies of an agent in her mental state, in such a form that
the agent can reason about them.

The amount of parallelism of our framework is good for general MAS, but somewhat
inconvenient in this specific game, since the game imposes a strict sequential ordering
of the activities: all agents are in the same phase, be it accusing, voting, or shooting
(being shot at). This however is an aspect of the game to be modelled and not an intrinsic
property of multi-agent systems. It has been treated therefore in the game-specific code.
Most of it is done in the code for the games-master. In more general, or more flexible
multi-agent systems, we expect that the great potential for parallelism is an asset.

The relational, i.e. nondeterministic, flavour of our framework is very important for
a successful design process. Even if one aims at deterministic agents, it is useful to
program the agents first in a nondeterministic way such that they operate correctly in the
given environment. In a later stage of the design, one can then reduce the nondeterminism
so that the agent still operates correctly but now more according to her own strategy. The
relational style of the programs is easily translated to an implementation in a declarative
programming language such as Prolog.

It is important that every agent has her own set of externals to observe. This gives us
the possibility of peer-to-peer communication. On a more technical level, it allows us to
discard information that has been processed by the agent, so that we need no time stamps
to distinguish new facts from older ones.

Even the present low-level representation in our modelling of the Mafia game will
enable us to simulate the game using Prolog with several randomized strategies for the
players. It will be interesting to see whether we can predict the outcomes based on the
amount of Mafia members and the strategies of the civilians.

We think the Mafia game is a good test case to test frameworks and methodologies for
the design of multi-agent systems. It also is an interesting case since the possibility for
variations allow for further investigations in different areas of multi-agent systems.



References

[1] K.R. Apt, E.-R. Olderog: Verification of Sequential and Concurrent Programs.
Springer-Verlag, 1991.

[2] F.M.T. Brazier, B. Dunin-Kȩplicz, N.R. Jennings and J. Treur, Formal Specification
of Multi-Agent Systems: a Real-World Case. In: V. Lesser (ed.), Proc. of the First
International Conference on Multi-Agent Systems, ICMAS-95, MIT Press, Cam-
bridge, MA, 1995, pp. 25-32.

[3] S. Franklin, A. Graesser, Is it an Agent, or just a Program?: A Taxonomy for Au-
tonomous Agent, Proceedings of the Third International Workshop on Agent The-
ories, Architectures, and Languages, published as Intelligent Agents III, Springer-
Verlag, 1997, 21-35.

[4] H.W. de Haan, W.H. Hesselink, G.R. Renardel de Lavalette, Knowledge-based pro-
gramming inspired by an asynchronous hardware leader election problem In: B.
Dunin-Kȩplicz, R. Verbrugge (eds.): FAMAS’03, ETAPS 2003, Warsaw, Poland.
pp. 117-132.

[5] H.W. de Haan, W.H. Hesselink, G.R. Renardel de Lavalette, Knowledge-based asyn-
chronous programming, Fundamenta Informaticae, 2004 (to appear)

[6] K. Hindriks, Agent Programming Languages: Programming with Mental Models,
Utrecht University, SIKS Dissertation Series No. 2001-2, ISBN 90-393-2590-1.

[7] http://www.princeton.edu/˜mafia/

[8] Z. Manna, A. Pnueli: Temporal verification of reactive systems: safety. Springer-
Verlag, 1995.

[9] J.P. Müller, ’Control Architectures for Autonomous & Interacting Agents: A Sur-
vey’, in Intelligent Agent Systems: Theoretical and Practical Issues, L.Cavedon,
A.Rao, W.Wobcke (eds.), LNCS 1209, Springer-Verlag, Berlin, 1996, pp. 1-26.

[10] A.S. Rao, AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Lan-
guage, in W. van der Velde & J. Perram (eds.), “Agents Breaking Away”, LNAI
1038, Springer-Verlag, 1996, pp. 42-55.

[11] Y. Shoham, Agent-oriented programming, Artificial Intelligence 60, 1993, pp. 51-
92.

[12] W. de Vries, Agent Interaction: Abstract Approaches to Modelling, Programming
and Verifying Multi-Agent Systems, Utrecht University. SIKS Dissertation Series No.
2002-14, ISBN 90-393-3197-9.


