
Distributed (Re)Planning with Preference

Information1

Pieter Buzing Cees Witteveen

Delft University of Technology,

Faculty EEMCS, P.O. Box 5031, 2600 GA Delft

{p.buzing, c.witteveen}@ewi.tudelft.nl

Abstract

Many planning problems have a distributed nature: different parties have
to co-operate in order to make efficient use of shared resources, while not
violating any constraints. Additionally, there often are dynamic aspects to
be considered. Due to e.g., unexpected changes in the (outside) world or
changes of individual goals of the agents each of these actors might come up
with a corresponding change of their constraints. As a result, the problem
might require some form of replanning of the agent activities such that all
constraints can be satisfied.

We discuss a method to deal with changes of temporal constraints in
a distributed Simple Temporal Network using preference information. We
adapt an existing method to obtain a consistent plan using distributed tem-
poral constraints such that all preferences of all agents above a certain level
are satisfied, and changes to the constraints or preferences can be dynami-
cally incorporated, adapting the (inconsistent) plan in such a way that all
constraints of some preference level are satisfied.

1 Introduction

Quite a number of real-life planning problems have to do with solving temporal
constraints between activities. A well-known approach for solving these temporal
problems is to express them as a Constraint Satisfaction Problem (CSP), where
variables and constraints between variables are represented in a graph as nodes and
edges, respectively. A solution to the CSP is an assignment to the variables such
that no constraint relation is violated. One of the simplest temporal problems, the
Simple Temporal Planning (STP) Problem (cf. [1]) can be solved in polynomial
time using a representation in the form of a labeled directed graph, the so-called
Simple Temporal Network or STN. In this STN, the nodes are time points and
the edges are temporal intervals that restrict the values of the difference between
the time points. Recently (cf. [2, 3]), the introduction of preference functions for
STNs has been proposed, to indicate in a more expressive way than used in the
standard STPs which intervals can be chosen for start/endpoints of activities and
how these intervals are preferred by the planner. While in standard STPs it suffices
to assign values to variables such that the temporal constraints are satisfied, the

1This research is supported by the Technology Foundation STW, applied science division of
NWO and the technology programme of the Ministry of Economic Affairs (project DIT5780:
Distributed Model Based Diagnosis and Repair).



use of preferences allow us to search for the highest preference level (p-level) at
which all constraints can be satisfied.

In this paper we will concentrate on the use of both distributed control for STNs
and the use of preference functions and solutions based on p-levels for replanning
in STNs. The idea is as follows: A solution for an STN can be easily used to derive
an executable plan for the activities represented. Using preference information, we
can search for solutions with a maximal preference value for all the agents. If the
constraints in an STN do change, the original solution might become infeasible
and a new solution for the changed STN has to be computed, resulting in a new
plan. If, however, we use preference information, some changes in the constraints
could be accommodated by just letting the actor maintaining the constraint to
change his preference function. A new solution then may be found by just letting
the agents simply lower their preference level and (re)use an STP-solution from
a lower p-level. In this way the consistency of the network (plan) is repaired
without too much communication and computation. Moreover, it can be detected
in polynomial time whether or not, due to these changes, there still exists an
executable plan for the activities represented.

2 STPs and STNs

A Temporal Constraint Problem (TCP) consists of a number of time points (cor-
responding to the start and end points of actions) and a set of binary constraints
a1 ≤ X − Y ≤ a2 expressing that the difference between the time points X and
Y should differ minimally a1 and maximally a2 for some a1, a2 ∈ Z. These in-
tervals can be used to specify the order in which actions a and a′ have to occur,
or the minimum amount of delay between a and a′. A Simple Temporal Problem
(STP)[1] is a TCP with at most one constraint involving X and Y between a pair
(X,Y ) of time points. To express that the temporal distance constraint between
the beginning and end of an action a is between 10 and 20 time units we denote
Xae
−Xab

∈ [10, 20].
We will illustrate STPs by using a simple air traffic control (ATC) problem

domain to serve as a guiding example. In Figure 1(a) we have an airport with
two gates G1 and G2 and two landing/departure runways S1 and S2. There
are also three aircraft A, B and C: aircraft A is at gate G1, aircraft B at gate
G2 (they both intend to use runway S2 for departure) and C has just landed at
landing runway S1 and wants to make use of gate G1. Obviously, since the airport
resources cannot be used by multiple airplanes simultaneously, we need (temporal)
constraints on the arrival and departure planning. We assume the aircraft in our
example to have (some) autonomy over their planning – effectively being their own
planners – and refer to them as agents.

Expressing this example in terms of an STP is not difficult (see Figure 1(b)).
Here, the first constraint XA

lG1
−X0 ∈ [10, 30] specifies that plane A has to leave

gate G1 between time t = 10 and t = 30.2 These constraints are all owned by
agent A. Likewise, agent B also has some constraints, as does agent C. The result
can be easily represented by a STN (see Figure 2).

A solution to an STP is an assignment of values to each time point X such
that all constraints are satisfied. Sometimes such a solution cannot be found
and the STP is said to be inconsistent. Checking whether a solution exists can be

2X0 specifies some arbitrary initial point of time



G1

G2

S2

S1

A

B

C

taxi

taxi

taxi

departure

P1

P2

(a) Three aircraft (A, B, and C) at an airport.

XA
lG1 −X0 ∈ [10, 30] XB

lG2 −X0 ∈ [0, 30] XC
lS1 −X0 ∈ [0, 30]

XA
aP1 −XA

lG1 ∈ [3, 5] XB
aP2 −XB

lG2 ∈ [15, 30] XC
aP1 −XC

lS1 ∈ [10, 20]
XA

lP1 −XA
aP1 ∈ [0, 30] XB

lP2 −XB
aP2 ∈ [0, 30] XC

lP1 −XC
aP1 ∈ [0, 30]

XA
aP2 −XA

lP1 ∈ [10, 20] XB
aS2 −XB

lP2 ∈ [5, 10] XC
aG1 −XC

lP1 ∈ [3, 5]
XA

lP2 −XA
aP2 ∈ [0, 30] XB

aP2 −XA
lP2 ∈ [0, 30] XC

aP1 −XA
lP1 ∈ [0, 30]

XA
aS2 −XA

lP2 ∈ [5, 10] XB
bDep −XB

aS2 ∈ [2, 30] XB
eDep −XA

bDep ∈ [1, 3]
XA

bDep −XA
aS2 ∈ [2, 30] XA

eDep −XA
bDep ∈ [1, 3] XB

aS2 −XA
bDep ∈ [0, 30]

(b) The constraints between the actions of A, B, and C.

Figure 1: The constraints for agents A, B and C, where A is at gate G1, B is at gate
G2, and C is at runway S1. Here XA

lG1
, XA

aP1
, XA

bDep, XA
eDep denote “leave gate

G1”, “arrive at stand P1”, “begin departure” and “end departure” respectively.
Mind that some constraints involve two agents.

formulated as the well-known all-pairs shortest path problem: the STP is consistent
if there are no negative cycles (i.e. when constraints imply that the latest possible
occurance of an event is before the earliest possible occurance) in the all-pairs
distance graph, also called the d-graph. Fortunately, this check can be performed
in O(n3) time where n is the number of time points (variables) involved.

3 STPs with Preferences

Sometimes multiple solutions (i.e. instantiations of the variables or time points)
to an STP instance may be found while it is not clear which should be regarded as
“best”. In many practical domains, a solution must not only be feasible, but there
is also some kind of ordering on the solutions. Khatib ([2]) and Peintner ([3])
present a method that makes use of additional preference information, i.e. an
agent that wants to make use of a certain resource not only communicates the time
interval(s) that it is aiming for, but also a measure of preference for certain time
regions within the interval. Using reasonable preference functions, the constraints
with low preference intervals are less tight than the constraints with high preference
time regions. This means that starting with a low preference standard is likely
to produce a solution (if one exists), after which the preference standard can be
increased and a better solution can be sought.

In our example, the constraint XA
lG1
− X0 ∈ [10, 30] can be extended with a



leave
B:

G2
arrive
P2

B:
leave
P2

B:
arrive
S2

B:
begin
Dep

B:
end
Dep

B:

leave
A:

P2

A:
arrive
S2

A:
begin
Dep

A:
end
Dep

leave
C:

S1
arrive
P1

C:
leave
P1

C:
arrive
G1

C:

A:
arrive
P1

leave
A:

G1
leave
A:

P1

A:
arrive
P2

[0, 30]

[0, 30]

[3, 5][10, 30] [0, 30] [10, 20] [0, 30] [5, 10] [2, 30] [1, 3]

[15, 30] [0, 30] [5, 10] [2, 30] [1, 3]

[10, 20] [0, 30] [3, 5]

[0, 30]

[0, 30] [0, 30] [3, 30]

Figure 2: A Simple Temporal Network representing the constraints of Figure 1.

preference function [2] that maps the temporal values in the interval with a pref-
erence value. E.g. XA

lG1
−X0 ∈ [10, 30], f([10, 15) ∪ [21, 30)) = 1, f([15, 20)) = 2,

f([20, 21)) = 3. This means that agent A has a low preference for the subintervals
[10, 15) and [21, 30), a higher preference for the subinterval [15, 20), but the period
[20, 21) is considered best. The preference function is defined to be 0 for all values
outside of the interval.

The idea now is to use these preferences to derive solutions with maximum
minimal preference values. Given a preference range [0,max] such a maximum
preference value can be found by applying binary search (cf. [4]) with the temporal
constraint intervals [a, b] satisfying f([a, b]) ≥ p, where p is a preference threshold.
The preference function has to be semi-convex to avoid fragmentation of intervals
at higher p-levels: This is an STN requirement (cf. [2]). Finding the highest
preference value in this way can be done in O(n3 log max ).

Basically, there are two ways to solve an STP. The first method is to produce the
complete d-graph with Floyd-Warshall’s all-pairs-shortest-paths algorithm. This
process gives a fully connected graph with the shortest paths between all pair of
nodes. The more efficient alternative method that we will adopt makes use of
triangulation and exploits the fact that not all paths are relevant.

The first step in Xu’s 4STP algorithm [5] is to produce a triangulated graph
of the STN. This produces a graph of triangles G, where the vertices are triples
of variables (i.e. 〈i, j, k〉 ∈ G iff (i, j), (i, k), (j, k) ∈ STN), and two triangles in
G are connected if they share a constraint edge. Consistency checking is done
by identifying which triangle(s) an edge (i, j) is in and updating the distance
constraints of each of the edges in the triangle. E.g. if a triangle 〈i, j, k〉 ∈ G then
the interval values are updated following these rules, where ⊗ denotes interval
composition3 and ⊕ is the intersection of intervals: I ′(i, j) ← I(i, j) ⊕ (I(i, k) ⊗
I(k, j)), I ′(i, k)← I(i, k)⊕ (I(i, j)⊗ I(j, k)), I ′(j, k)← I(j, k)⊕ (I(j, i)⊗ I(i, k)).
If one of these interval constraints is assigned a new value, e.g. I ′(i, k) 6= I(i, k),
then the algorithm performs the same re-calculation on the triangles that contain
the edge (i, k). However, if the constraint (e.g. I(i, k)) did not change, then this
recursive step is superfluous, since the edge (i, j) apparently has no propagation
effect on constraints in adjacent triangles. Here lies the pruning power of the
4STP algorithm. If during the process of constraint updating an empty interval
is produced the STN is inconsistent and the algorithm halts. If no edge labels can
be further reduced the STN is minimal and consistent, and an instantiation of the
time points can be easily extracted.

3I = S ⊗ T means that i ∈ I iff ∃s ∈ S, ∃t ∈ T : i = s + t. Note that if S and T are both
single intervals (as is a typical STP property) then the composition will also be a single interval.



4 Computing Solutions in the Distributed Case

Adapting the 4STP algorithm to the distributed case is relatively easy. If one of
the nodes in an updated edge (i.e. I ′(i, j) 6= I(i, j)) belongs to another agent (i.e.
i /∈ XA or j /∈ XA), then this update has to be propagated to the constraints that
are in the other agent’s STN. So agent A has to notify the other agent (let’s call
it agent B) involved of this constraint update: inform(A,B, i, j, I ′(i, j)). Agent
B adds all the triangles that contain edge (i, j) to his QT and starts his 4STP
process. The distributed 4STP is shown in Algorithm 1. Let’s construct an

Algorithm 1: distributed 4STP (Agent A, Plan P A)

1. consistency ← True

2. G← Triangulate(P A)

3. QT ← Triangles(G)

4. while QT ∧ consistency do

4.1. QE ← empty list
4.2. 〈i, j, k〉 ← First(QT )
4.3. I ′(i, j)← I(i, j)⊕ (I(i, k)⊗ I(k, j))
4.4. if I ′(i, j) 6= I(i, j) then

4.4.1. I(i, j)← I ′(i, j) and Enqueue((i, j), QE)
4.4.2. if i ∈ XB 6=A or j /∈ XB 6=A) then inform(A, B, i, j, I(i, j))

4.5. I ′(i, k)← I(i, k)⊕ (I(i, j)⊗ I(j, k))
4.6. if I ′(i, k) 6= I(i, k) then

4.6.1. I(i, k)← I ′(i, k) and Enqueue((i, k), QE)
4.6.2. if i /∈ XB 6=A or k /∈ XB 6=A) then inform(A, B, i, k, I(i, k))

4.7. I ′(j, k)← I(j, k)⊕ (I(j, i)⊗ I(i, k))
4.8. if I ′(j, k) 6= I(j, k) then

4.8.1. I(j, k)← I ′(j, k) and Enqueue((j, k), QE)

4.8.2. if j /∈ XB 6=A or k /∈ XB 6=A) then inform(A, B, j, k, I(j, k))
4.9. if I(i, j), I(j, k) or I(i, k) is empty then

consistency ← False
4.10. if consistency then

4.10.1. forall (m, n) ∈ QE do

Tm,n ← all triangles containing (m, n)
forall 〈r, t, s〉 ∈ Tm,n do

if 〈r, t, s〉 /∈ QT then Enqueue(〈r, t, s〉, QT )
4.10.2. QT ← Remove(〈i, j, k〉, QT )

5. Return consistency

example with a subnetwork of figure 1(b): XA
1

= A : leaveP1, XA
2

= A : arriveP2,
XA

3
= A : leaveP2, XB

1
= B : leaveG2, XB

2
= B : arriveP2, XC

1
= C : arriveP1.

See figure 3 for the global STN and the two agent views on this STN, constructed
by the agents separately. The graph of agent A is defined by STNA = ({u ∈
X|(u, v) ∈ EA}, EA), where EA denotes all the constraints of agent A. Notice that
STNA can contain some “foreign” nodes (i.e. u /∈ XA), which are uncontrollable
for A, but are involved in his constraint set. Each agent starts with interval
values [−∞,∞] for edges that he has no information about, e.g. I(0, B2) in agent
A’s network. During the construction of the minimal STP A agent A calculates



B1 B2

A3

C1

A1 A2

0

0
[0, 30]

[15, 30]

[0, 30]

[0, 30]

[10, 20]

[0, 30]

[13, 65]

(a)

B2

A3

C1

A1 A20
[0, 30]

[0, 30]

[0, 30]

[10, 20][13, 65]

(b)

B1 B2

A3

0
[15, 30]

[0, 30]

[0, 30]

(c)

Figure 3: A part of the STN (a), separated in agent A’s constraint network (b)
and agent B’s constraint network (c). Mind that they have a common constraint
(I(A3, B2)) and some common nodes: X0, XA

3
, and XB

2
.

I ′(0, B2) = [23, 145]4 and as both I ′(i, j) 6= I(i, j) and B2 /∈ XA this new value
I ′(0, B2) is sent to agent B.

Agent B had already calculated I(0, B2) = [15, 60], but this edge is assigned
the new constraint [23, 145]⊕ [15, 60] = [23, 60]. Following the steps in the 4STP
algorithm, agent B now considers all triangles effected by the I(0, B2) update. The
edge (0, A3) will be updated to a new constraint interval [−15, 60] and because
A3 /∈ XB an inform(B,A, 0, A3, [−15, 60]) is sent out.

Agent A reconsiders the edge (0, A3) and assigns it the constraint value [−15, 60]⊕
[23, 115] = [23, 60]. Through this process all constraints are propagated and if no
agent finds an inconsistency (i.e. an empty interval) the global STN is consistent.

4.1 Incorporating Preference Levels

Until now we have only discussed constraints as 1-dimensional time intervals, with-
out any further preference information. It is clear however, that there is some
slack in the STN, so improvements might be possible. Recall that we define the
preference function f([a, b]) ∈ [0,max] for each constraint. In our example these
constraint preferences might be these:

XA
1
−X0 ∈ [10, 110], f([10, 13) ∪ [65, 110]) = 1, f([13, 15)) = 3, f([15, 65)) = 2

XA
2
−XA

1
∈ [5, 30], f([5, 10) ∪ [20, 30)) = 1, f([10, 15) ∪ [16, 20)) = 2, f([15, 16)) = 3

We now have different sets of constraints, one for each preference level. The
question now is: what is the highest minimal preference level that still produces a
consistent STN? An efficient method to reach an STN with the highest preference
of all agents is through binary search. In our example we would initiate the search
process at preference level p = 2, so we use the distributed 4STP algorithm
discussed in the previous subsection to determine whether all constraints (a, b)
with ∀t ∈ I(a, b) : f(t) ≥ p produce a consistent STN. Since these level-2 intervals
are the same as the ones used earlier in this section to produce a consistent STN
we can conclude that a level-2 STN is solvable.

The next step is to increase the preference level to p = 3 and see if an even
better network can be found. These constraints are tighter than before: XA

1
−

4Essentially I ′(0, B2)← I(0, B2)⊕ (I(0, A1)⊗ I(A1, A2)⊗ I(A2, A3)⊗ I(A3, B2)).



X0 ∈ [13, 15], XA
2
− XA

1
∈ [15, 16], XA

3
− XA

2
∈ [6, 10], XB

1
− X0 ∈ [15, 18],

XB
2
−XB

1
∈ [20, 24], and XB

2
−XA

3
∈ [10, 20]

The distributed 4STP algorithm will notice an inconsistency when agent A
calculates I ′(0, B2) = I(0, B2) ⊕ (I(0, A3) ⊗ I(A3, B2)) = [23, 60] ⊕ ([34, 41] ⊗
[10, 20]) = [44, 61] and forwards this to agent B, who cannot fulfill this constraint
since he calculated I ′(0, B2) = I(0, B2) ⊕ (I(0, B1) ⊗ I(B1, B2)) = [23, 60] ⊕
([15, 18] ⊗ [20, 24]) = [35, 42]. Both agents will find an empty interval, indicating
an inconsistency.

The preference level has to be adjusted now to a lower level. In our example,
we return to p = 2, for which all agents already found a feasible solution. In
general, the distributed 4STP algorithm has to be performed at most log max
times if the preference function gives values from the range [0,max].

5 Changing Constraints and Repairing Solutions

If one or more agents change their temporal constraints, they might be forced
to reconsider their current plan based on the solution of the common distributed
STP. Most common changes in temporal constraints concern the tightening or
the relaxation of constraints. For temporal constraints specifying intervals, such
operations come down to contraction or dilatation of an interval [a, b] to an interval
[a′, b′] where either a′ < a and b′ > b or a′ > a and b′ < b holds. Together with this
interval transformation, we have to consider the transformation of the associated
preference function f . Any transformation of f to f ′ that satisfies the semi-
convexity condition for f ′ can be handled by the methods described below. We
will now only discuss the consequences for replanning of interval contraction, since
dilatation generally relaxes the constraints, possibly leading to new (and better)
solutions, but not posing a threat to the plan execution.

A contraction of the preference function between time points X and Y trans-
forms the interval I(X,Y ) to I ′(X,Y ) and in particular it changes Ip(X,Y ) =
[x ∈ I(X,Y )|f(x) ≥ p] to I ′

p(X,Y ) for preference level p. Let dp(X,Y ) denote the
(minimal) constraint between X and Y at preference level p in the network, and if
the network is consistent for preference level p then of course dp(X,Y ) ⊆ Ip(X,Y ).
Three cases need to be distinguished now. (Notice that in all scenarios the agents
don’t have to start the planning process from scratch, but can make use of the
current STN.)

Firstly, if dp(X,Y ) ⊆ I ′

p(X,Y ) then the constraint clearly is still satisfied and
the network is still consistent. Nothing needs to be changed or communicated.

Secondly, if the new preference interval only partially overlaps with the global
constraint network can be re-established by two methods: a) by restricting the
constraint to d′

p(X,Y ) = dp(X,Y )⊕I ′

p(X,Y ) and restarting the distributed4STP
algorithm with QT ← all triangles containing (X,Y ); b) by searching for the lowest
p′ value that can fulfill dp(X,Y ) ⊆ I ′

p′(X,Y ). The first option maintains the
optimal preference level at the cost of some communication and further restriction
of other agent’s constraints. The alternative is to accept the preference loss: the
agent might not achieve the highest preference value, but saves on computation
and communication effort. If such a value p′ can not be found then only option a)
is feasible.

Thirdly, if a contraction of the preference function results in two disjoint sets
(dp(X,Y ) ∩ I ′

p(X,Y ) = ∅) this implies that at the current p-level no solution can
be found: i.e. not all agents can be assigned time values of preference p. The



agent again has basically two options: a) he checks his history for a preference
level p′ < p that satisfies dp(X,Y ) ∩ I ′

p′(X,Y ) 6= ∅, i.e., is there a preference level

p′ for which the agent knows that the global constraints can be met by other agents
with minimal preference still p; b) he can use his history to find a p′ that makes a
solution possible at the global preference level p′: dp′(X,Y ) ∩ I ′

p′(X,Y ) 6= ∅. The
first option does not require a global preference fall-back, so only the new constraint
between X and Y needs to be propagated. The second strategy does call for a
global preference return and possibly a number of iterative 4STP loops to find
the optimal preference level. In both cases the agent communicates to others the
updated dp′(X,Y ) = dp′(X,Y )⊕ I ′

p(X,Y ) and will initiate the distributed 4STP
algorithm with QT ← all triangles containing (X,Y ).

Let us illustrate a preference constraint contraction of the second type with
an example. Agent A changes his preference function for the interval between
XA

1
and XA

2
to the following: f([8, 12) ∪ [19, 22)) = 1, f([12, 15) ∪ [16, 19)) =

2, f([15, 16)) = 3. This poses a threat for the plan quality, since the constraint
that assures a p = 2 solution is XA

2
− XA

1
∈ [10, 17] –this can be deduced via

triangulation– and agent A’s new preference interval can no longer contain (and
satisfy) it: [10, 17] * [12, 19]. The agent will update the edge (XA

1
, XA

2
) to the

value [10, 17]⊕ [12, 19] = [12, 17] and restart the 4STP algorithm with QT ← all
triangles containing (XA

1
, XA

2
).

6 Conclusion

We have discussed the adaptation of an efficient algorithm for computing solutions
for an STN to distributed cases and the use of preference functions. We have shown
that the use of preference information can be easily used to accommodate for small
changes in the network, e.g., if some agents change their constraints. In such cases,
often it suffices to re-use previous computations for obtaining preference levels for
solutions of the original network.

References

[1] R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. Artificial
Intelligence, 49:61–95, 1991.

[2] L. Khatib, P. Morris, R. Morris, and F. Rossi. Temporal constraint reasoning
with preferences. In 17th International Joint Conference on AI, pages 322–327,
2001.

[3] B. Peintner and M. E. Pollack. Low-cost addition of preferences to dtps and
tcsps. In the 19th National Conference on Artificial Intelligence, July 2004.

[4] F. Rossi, K. Venable, L. Khatib, P. Morris, and R. Morris. Two solvers for
tractable temporal constraints with preferences. In Proc. AAAI 2002 workshop
on preference in AI and CP, Edmonton, Canada, July 2002.

[5] L. Xu and B. Y. Choueiry. A new efficient algorithm for solving the simple tem-
poral problem. In TIME-ICTL, pages 212–222, Cairns, Queensland, Australia,
2003. IEEE Computer Society Press.


