
Knowledge-based Algorithm for Multi-Agent
Communication

{extended abstract}

E. van Baars & R. Verbrugge

Department of Artificial Intelligence, University of Groningen, Grote Kruisstraat 2/1,
9712 TS Groningen, The Netherlands, egon@vanbaars.com,rineke@ai.rug.nl

Abstract. Using a knowledge-based approach, we derive a protocol for the
sequence transmission problem from one agent to a group of agents. The
knowledge-based protocol is correct for communication media where deletion
and reordering errors may occur. Furthermore, it is shown that after k rounds
the agents in the group attain depth k general knowledge about the mem-
bers of the group and the values of the messages. Thus, the knowledge-based
protocol may be used in cooperative problem solving in order to attain an
approximation of common belief among agents in a team.

1 Introduction

For cooperative problem solving (CPS) within multi-agent systems, Wooldridge and
Jennings give a model of four consecutive stages [16], covering the entire process that
starts with one initiating agent that sees a goal and ends with a group of agents co-
operating in achieving this goal. Dignum, Dunin-Kȩplicz and Verbrugge give a more
in-depth analysis of the communication and dialogues that play a role during these
four stages [1, 3]. Most writings about communication for CPS make a strong assump-
tion: whatever is communicated between agents will arrive, and will arrive correctly
at the desired agents; in particular, it is often silently assumed that public announce-
ments lead to common knowledge or common belief [15]. This is based on idealization:
in uncertain communication media, messages may for example be lost or they may
arrive in the wrong order.

One of the great advantages of epistemic logic is that it can be used to model
communication in distributed systems [6, 11]. For example, in their classical paper [9],
Halpern and Zuck showed that epistemic logic enables perspicuous specification and
verification for a number of protocols (like the alternating-bit protocol) that had been
introduced for error-free transmission of sequences of messages over a distributed net-
work. Let two processors be given, called the sender S and the receiver R. The sender
has an input tape with an infinite sequence X of data elements. S reads these ele-
ments and tries to send them to R, which writes the elements on an output tape.
The protocols are required to guarantee that (a) at any moment the sequence of data
elements received by R is a prefix of X (safety) and (b) if the communication medium
satisfies certain so-called fairness conditions, every data element of X will eventually
be written by R (liveness). Fairness here means that infinitely many message instan-
tiations from S to R and from R to S are delivered, guaranteeing that every message
arrives eventually.

In [14] Stulp and Verbrugge extend the knowledge-based approach to the Trans-
mission Control Protocol (TCP), which is indispensable for the Internet today. The
main contribution there is the modelling of a sliding window, allowing agents to make

use of available bandwidth, and an epistemic analysis in which exact lower and up-
per bounds on the attained knowledge of the participants at every moment in the
communication process are proved.

All above-mentioned algorithms are meant for one-on-one communication. For
announcements from one agent to a (finite) group, however, using TCP or a sim-
ilar protocol with all agents separately often does not create sufficient knowledge.
For example, during the stage of team formation in CPS, the goal is to create a
collective intention among a team. For this to happen communication between the
initiating agent and a group of potential agents is needed. The algorithms for one-
on-one communication from [14, 9] are not sufficient for this communication. What
is needed is a knowledge-based algorithm that guarantees a reliable communication
for one-on-group communication. In this article a knowledge-based protocol that can
handle one-on-group communication will be presented, in which at every round the
agents in the group attain a higher level of general knowledge of the make-up of the
group as well as the contents of the announced message. The reader can run through
a simulation of the protocol at http://www.ai.rug.nl/alice/mas/macom.

The analysis of this algorithm yields some interesting results. We will show that
the depth of knowledge the sender and receiver can accumulate about messages sent
is dependent upon the length of the tape and the position of information on the tape.
If an infinite tape models the transmitted data, the following can be shown. For any
k and any piece of data on the tape, at some point k-fold depth of general knowledge
(‘everyone knows’) arises about the message, although common knowledge can never
be achieved.

The rest of the paper is structured as follows. In section 2 we give an overview
of knowledge and knowledge creation within a group as can be found in cooperative
problem solving in multi-agent systems. In section 3, our knowledge-based algorithm
for multi-agent communication is presented. An epistemic analysis of the algorithm
follows in section 4. The paper ends with a discussion of related research.

2 Communication and knowledge

Communication between two or more agents consists of transmitting messages be-
tween these agents. This communication requires a communication system which
consists of a connection in a communication medium between agents, together with
a protocol by which the agents send and receive data over this connection. For a
communication system to be reliable it has to satisfy the three properties mentioned
in section 1: fairness, liveness, and safety [9]. During the transmission of packages
over a connection, errors can occur which jeopardize these properties. To guarantee
reliability in a communication system, the protocol has to handle the errors that can
occur at a connection. Regardless which errors occur in a system, the connection has
to satisfy the fairness condition for reliable communication to be possible. If this is
not the case it could happen that none of the messages sent by S arrive at R which
means that there is no communication at all. This leaves the protocol responsible for
assuring the liveness and safety properties where they are jeopardized by the errors
that occur at a connection. The goal of this article is to prove the gaining of group
knowledge that emerges during the use of our protocol by a group of agents. For this
reason we are not going to discuss all the possible errors that can occur and how
our algorithm handles them. We just present a summarized protocol that deals with
the knowledge-based part of group communication and only handles reordering and
deletion errors.

In the communication system our protocol works in, every agent is connected to
every other agent through one or more connections. These connections are faultless

except that messages can get lost, causing deletion errors. Also, the agents and the
communication system are asynchronous, which means that they don’t have access
to a shared clock. Thus the sending and receiving part of the algorithm work inde-
pendently. The transmission speed of the connections can differ so that a message
that was sent after another message can arrive before this other message, causing
reordering errors.

2.1 Logical background: knowledge and time

When proving properties of knowledge-based protocols, it is usual to use semantics
of interpreted systems I representing the behaviour of processors over time (see [6,
11]). We give a short review. At each point in time, each of the processors is in
some local state. All of these local states, together with the environment’s state,
form the system’s global state at that point in time. These global states form the
possible worlds in a Kripke model. The accessibility relations are defined according
to the following informal description. The processor R “knows” ϕ if in every other
global state which has the same local state as processor R, the formula ϕ holds. In
particular each processor knows its own local state; for the environment, there is
no accessibility relation. The knowledge relations are equivalence relations, obeying
the well-known epistemic logic S5C

n (see [6]), including e.g. the knowledge axiom
Kiϕ ⇒ ϕ, i = 1, ..., n, as well as axioms governing general and common knowledge
such as EGϕ ⇔

∧
i∈G Kiϕ and CGϕ ⇒ EG (ϕ ∧ CGϕ). We also use abbreviations for

referring to general knowledge at any finite depth. Inductively, E1
Gϕ stands for EGϕ

and Ek+1
G ϕ is EGϕ

(
Ek

Gϕ
)
.

A run is a (finite or infinite) sequence of global states, which may be viewed as
running through time. Time here is taken as isomorphic to the natural numbers. There
need not be any accessibility relation between two global states for them to appear
in succession in a run. Time clearly obeys the axioms of the basic temporal logic Kt

(see [7]), in which the following principle (A) is derivable:
(A) P (2ϕ) → 2ϕ
To further model time, we extend S5C

n with the following axiom:
KT1. Ki2ϕ → 2Kiϕ, i = 1, ..., n
This axiom holds for systems with perfect recall [8]. Halpern et al. [8] present a com-
plete axiomatization for knowledge and time, however in this article we only need the
axiom KT1.
As for notation, global states are represented as (r, m) (m-th time-point in run r)
in the interpreted system I. In particular for the temporal operators, we have the
following truth definitions:
(I, r,m) |= 2ϕ iff (I, r,m′) |= ϕ for all m′ ≥ m
(I, r,m) |= Pϕ iff (I, r,m′) |= ϕ for some m′ < m
In the next table some formulas are given, together with their informal meanings that
will be used in the rest of the article.

Formulas Descriptions
KSϕ Sender S knows ϕ
KRiϕ Receiver Ri knows ϕ
EGϕ Every agent in group G knows ϕ (general knowledge)
Ek

Gϕ Group G has depth k general knowledge of ϕ
RG G is the current group of receivers
Pϕ At some moment in the past on this run, ϕ was true
2ϕ ϕ is now and will always be true on this run

2.2 Knowledge creation within a group

The goal of one-on-group communication is that all the members of the group gain
a certain level of knowledge about a fact ϕ sent by the sender, and that all the
members gain a certain level of knowledge about the knowledge of the group of this
fact ϕ. This implies that the members have to gain a certain level of knowledge about
which members the group consists of. When the group consists of only a sender and
one receiver we speak of one-on-one communication and the gaining of knowledge is
quite straightforward as described in [14, 9]. When the group consists of a sender and
two or more receivers, it becomes a bit more complicated. The receivers of a certain
fact now also have to know to whom the sender is sending this fact for gaining the
above mentioned knowledge. The solution for this is to send the information about
the extension of the group together with the fact ϕ. Considering the general form of a
message this can be achieved in two ways. Analogously to the TCP [13], we will refer
to the general form of a message as a package. A package consists of a data part which
contains the fact to be sent and of a header which contains meta-information about
the data part. Thus, the sender can put the group information in the data part of the
message or in the header. The group to whom the sender is sending a certain fact ϕ is
meta-information about this fact ϕ, so it is preferred to store this group information
in the header of a package instead of in the data part.

When the group of receiving agents is stored in the header, then as soon as any of
the receiving agents Ri receives this package it knows the j-th fact ϕj stored in this
package, KRiϕj , and it knows to which other receivers this message is sent, KRiRG.
How does Ri know whether the other receivers received this package? The sender
has to wait with sending a package with the next fact ϕj+1 until it has received
acknowledgements about the package with the previous fact ϕj from all the receivers.
The sender then knows that all the receivers know the fact ϕj , and thus KSEGϕj .
Every receiver knows that the sender works this way, so when a receiver Ri receives
a package with the next fact ϕj+1, it knows that the sender knows that all other
receivers did receive the previous package and thus know the previous fact ϕj , so
KRiKSEGϕj . With every repeating step of this cycle the knowledge of the sender
and receivers of each others’ knowledge of the facts grows for previously sent facts
and the knowledge about each others’ knowledge of the group they are in grows as
well, KSEk

Gϕj respectively KRiKSEk
Gϕj . The depth k of knowledge gained by the

members of a certain fact is equal to the amount of consecutive facts sent successfully
after this fact. The depth of knowledge within the group about the members of the
group is equal to the depth of knowledge within the group about the first fact sent
by the sender.

If one of the one-on-one algorithms from [14, 9] had been used, the receiving agents
would not have known that the facts ϕj they received were sent to other receivers as
well. Each of the receivers would have known not more than that the group consist of
just the sender and itself G = {S, Ri} instead of G = {S, R1, ..., Rn}. The gaining of
knowledge works in this case the same as mentioned above. However, the knowledge
that is gained differs. The knowledge a receiver Ri now has gained after having received
two packages with the consecutive facts ϕj and ϕj+i, is KRiKSE{S,Ri}ϕj , and not the
much stronger KRiKSEGϕj . So when the goal is to attain a certain depth of group
knowledge, the algorithms from [14, 9] are not sufficient.

3 The Algorithm

The packages from our algorithm have the following form:
Ksource(destination,−, group, position,−, data)

source = source port where this package is sent from [S, Ri];
Ksource = the source who sends this package knows this package;
destination = destination port of package [S, Ri];
group = group receivers to which the message is sent [RG,−] (“−” means that the
sender communicates only to the destination (one-on-one communication));
position = position of data from the input tape;
data = data that has to be transmitted.

The fields filled with “−” are the checksum and window size fields which deal with
package mutation errors and congestion control [2]. Because they are not of interest
for the the knowledge-based part of our algorithm they are left out in this summarized
protocol version. The algorithm for the sender as well as for the receiver consists of two
parts, because the algorithm works in an asynchronous system as mentioned in section
2. One part handles the sending of the packages and the other part handles the re-
ceived packages. The reception of messages is independent and works asynchronously
to the sending process. These two processes affect the same local knowledge state of
an agent. Though being independent the sending and receiving algorithm influence
each other’s behaviour through the local knowledge state of an agent.

Sender (incoming packages)
1 for (i = 1 to n)

{For all agents who sender is sending to, ... }
2 ack Ri = 0

{... initialize the acknowledgement number.}
3 end

{ack Ri’s initialized}
4 while true do

{Get ready for receiving acknowledgements from the receivers, ... [12]}
5 when received KRi(S,−,−, seq,−,−) do

{You have received a package. Prepare for processing, ... [11]}
6 if (seq = ack Ri+1) do

{If this acknowledgement from Ri is equal to the next ack Ri, ... [10]}
7 ack Ri = seq

{... this is the new current acknowledgement from Ri, ...}
8 store KSKRi(−,−,−, seq,−,−)

{... store the fact that you know that Ri knows it.}
9 ack RG = min(ack Ri (for i = 1 to n)

{The highest acknowledgement by the group is equal to the lowest ack Ri.}
10 end

{[6] ... acknowledgement from Ri, and highest group acknowledgement updated.}
11 end

{[5] ... finished processing of incoming package.}
12 end

{... [4].}

Sender (outgoing packages)
1 seq = 0

{Reading of a tape starts at position 0.}
2 while true do

{Start reading and sending an infinite tape, ... [13]}
3 read(seq,alpha)

{... read the value from the tape, ...}
4 store KS(−,−,−, seq,−, alpha)

{... and store this information in your knowledge base.}
5 while (ack RG 6= seq) do

{While not al receivers have acknowledged the package with sequence seq ...[11]}
6 for (i = 1 to n) do

{For all receiving agents, ...}
7 if not KSKRi(−,−,−, seq,−,−) do

{... check if package ‘seq’ has been acknowledged yet by Ri, ...}
8 send KS(Ri,−, RG, seq,−, alpha)

{... (re)send the package to Ri.}
9 end

{A package that was unacknowledged by Ri, has been (re)sent.}
10 end

{A package has been (re)sent to all agents that didn’t acknowledge it.}
11 end

{[5] ... all agents Ri have acknowledged the package with sequence number seq.}
12 seq = seq +1

{Move the sequence number to the next position.}
13 end

{... [2].}

Receiver (incoming packages)
1 while true do

{Get ready for receiving an infinite tape, ... [5]}
2 when received KS(Ri,−, RG, seq,−, alpha) do

{You have received a package (from S). Prepare for processing, ... [4]}
3 store KRiKS(−,−, RG, seq,−, alpha)

{Store the received package.}
4 end

{[2] ... finished processing incoming package.}
5 end

{... [1].}

Receiver (outgoing packages)
1 when KRiKS(−,−,−, 0,−,−)

{Wait until the first message is received.}
2 seq = 0

{Initiate the sequence at 0.}
3 while true do

{Get ready to acknowledge incoming packages, ... [8]}
4 while not KRiKS(−,−,−, seq + 1,−,−) do

{Still not received package with sequence number ’seq+1’, ...}
5 send KRi(S,−,−, seq,−,−)

{... (re)send acknowledgement.}
6 end

{You’ve received message seq+1.}
7 seq = seq +1

{You now the sequence number of the next message. Increment seq.}
8 end

{... [3].}

4 Epistemic analysis and proof

In this section a proof is given for the gaining of knowledge as described in sec-
tion 2.2. For the readability of the proof the form of the package is shortened to
Ksource(position, data). We assume that the group stays unchanged and for the des-
tination we assume that the sender S sends to a receiver Ri and vice versa, so the
destination field and the group field are left out.

Definition 1. The following abbreviations are used in the proof:

KRi
(p, α): “Receiver i knows that the p-th data segment is α”; similar for KS (p, α);

KRi (p,−): “Receiver i knows the value of the p-th data segment”; similar for KS (p,−);
EG (p, α): “Every receiver of group G knows that the p-th data segment is α”;
EG (p,−): “Every receiver of group G knows the value of the p-th data segment”.

Theorem 1. Let R be any set of runs consistent with the knowledge-based algorithm
from section 3 where:

– the environment allows for deletion and reordering errors, but no other kinds;
– The safety property holds (so that at any moment the sequence Y of data elements

received by each Ri is a prefix of the infinite sequence X of data elements on S’s
input tape).

Then for all runs in R and all k ≥ 0, j ≥ 0 the following hold:

[Forth]: Ri stores KRiKS (j + k, α) → 2KRiKS (EGKS)k (j, α) .

[Back i]: S stores KSKRi (j + k,−) → 2KSKRiKS (EGKS)k (j,−) .

[Back G]: S stores KSEG (j + k,−) → 2KS (EGKS)k+1 (j,−) .

In the proof below we use the following general principle from temporal logic, see
subsection 2.1:

A P (2ϕ) → 2ϕ

From the assumptions of the theorem, we can derive some consequences that we
will regularly use in the proof:

B Because R is consistent with the knowledge-based algorithm, S and Ri store all
relevant information from the packages that they receive. Moreover, packages that
are sent have the following form: KRiϕ or KSϕ, from which the following can be
concluded. If Ri receives KSϕ, then Ri stores KRi

KSϕ, thus al.1so 2KRi
KSϕ.

Similarly for S.
C Under the same assumption of R being consistent with the knowledge-based al-

gorithm, system R can be viewed as a system of perfect recall. Now we have in
general that KS2ϕ → 2KSϕ, see axiom KT1 from subsection 2.1.

Proof
We prove theorem 1 by induction on k.

First we look at the situation for k = 0.
From B follows the Forth-part for (k = 0) namely

Ri stores KRiKS (j, α) → 2KRiKS (j, α) . (1)

Ri sends an acknowledgement only if it received a package. Together with A and
B we have:

if Ri sends KRi (j,−) then P (Ri stores KS (j, α)) , (2)

so P2KRiKS (j, α) , and 2KRiKS (j, α) .

S only stores an acknowledgements if it also received it from Ri, thus it knows
that Ri has sent it in the past.

If S stores KSKRi (j,−) then KSP (Ri sends KRi (j,−)) ... (3)

With A, C and the fact proven at (2) it can now be derived that:

KSP (2KRiKS (j,−)) , and KS2KRiKS (j,−) , so 2KSKRiKS (j,−) . (4)

If (3) and (4) are put together, then we have the Back i-part of the theorem for
the j-th data segment (k = 0).
S receives acknowledgements from all the receivers and is able to retrieve infor-
mation out of this. We go back two steps and look at another knowledge level of
S instead of the knowledge level between S and just one receiver.
S only stores acknowledgements if it did receive those. If S has received acknowl-
edgements of a certain package from RG where G = {1, ..., n} then S knows that
Ri<i=1..n> have sent these acknowledgements in the past.

If S stores KSEG (j,−) then KSP (Ri<i=1..n> sends KRi (j,−)) ... (5)

With A, C and the fact proven at (2) it can now be deduced that:

KSP (2EGKS (j,−)) , and KS2EGKS (j,−) , so 2KSEGKS (j,−) . (6)

If (5) and (6) are put together, then we have the Back G-part of the theorem for
the j-th data segment (k = 0).

What knowledge about the j-th data segment will emerge for k 6= 0? This will be
shown in the induction step.

induction step Suppose as induction hypothesis that Back i, Back G and Forth
are valid for k − 1, with k ≥ 1. Now a proof follows that Back i, Back G and
Forth are also valid for k.
S only starts sending packages with position mark (j + k) if it has received from all
the receivers Ri an acknowledgement for package with position mark (j + (k − 1)).

S sends KS (j + k, α) → P (S stores KSEG (j + (k − 1) ,−)) . (7)

With the Back G-part of the theorem for k − 1 and A, the following can be
deduced:

S sends KS (j + k, α) → 2KS (EGKS)k (j,−) . (8)

Ri knows this fact. So if Ri receives a package from S with position mark j + k,
then Ri knows that S has sent this package somewhere in the past. From the fact
given at (8) together with A and B, the following can be derived:

Ri stores KRiKS (j + k, α) → 2KRiKS (EGKS)k (j,−) . (9)

This is exactly what the Forth-part of the theorem says.
Ri only sends an acknowledgement for the (j + k)-th data element if he did store
KRiKS (j + k,−) in the past. With A, now the following can be derived:

Ri sends KRi (j + k,−) → 2KRiKS (EGKS)k (j,−) . (10)

S knows this fact. So if S receives an acknowledgement from Ri for the (j + k)-th
data segment, then S knows that Ri has sent this acknowledgement in the past.
Using A and B it can now be concluded that:

S stores KSKRi (j + k,−) → 2KSKRiKS (EGKS)k (j,−) . (11)

and this is exactly the Back i-part of the theorem.
S receives acknowledgements from all Ri. At a certain time S will have received
an acknowledgement for the (j + k)-th data segment from all Ri. Thus,

S stores KSEG (j + k,−) .

With A and B it can now be concluded that:

S stores KSEG (j + k,−) → 2KS (EGKS)k+1 (j,−) . (12)

and this is exactly the back G-part of the theorem.

5 Discussion and conclusion

This paper extends the knowledge-based protocol TCP presented in [14] in order to
allow true one-on-group communication, creating general knowledge up to any desired
level about the identity of the group and the announcement sent to the group by an
initiating sender. This is very useful for creating collective motivational attitudes such
as collective intentions in CPS [1, 3].

In [12], a procedure is given for establishing shared beliefs (of the form
E-BELGE-BELG(ϕ)) between two or more agents, and it is argued that, by reason-
ing, these shared beliefs lead to a common belief between the agents. We believe
that their protocol is correct, but there is unfortunately a gap in their proof that
E-BELGE-BELG(ϕ) implies C-BELG(ϕ), which they use to prove correctness. Our
protocol, instead, establishes very precise levels of knowledge within a group of agents
using a knowledge-based one-on-group protocol.

Another related paper is [5] where a procedure is presented that, under some strong
assumptions about the communication channels, trust among group members and
temporary persistence of some relevant beliefs (e.g. the group should be aware of the
procedure), establishes a common belief C-BELG(ϕ). The idea is essentially that one
initiator first broadcasts the message ϕ to all agents in the group, based on a standard
low-level communication protocol such as TCP, ensuring that it knows at a certain
point that E-BELG(ϕ); then the initiator broadcasts the message that C-BELG(ϕ) to
all of them. Typically, such strong assumptions are only true in very fixed multi-agent
systems, such as participants in a rescue operation who work in a fixed team according

to a commonly known fixed procedure [5]. The one-on-group procedure presented in
the current paper does not establish common beliefs but only fixed levels of group
knowledge, but can work in open environments because the prerequisites are much
weaker than those in [5]. This is in line with the argument in [4] that developers of
multi-agent systems can decide beforehand, according to organization structure, goal
and environment, which level of team-awareness of relevant propositions is appropriate
for a given application.

As future work, it would be interesting to design a logic exactly suited to com-
munication protocols such as TCP and the one-to-many protocol given here, in a
similar fashion as the sound and complete system TDL developed by Lomuscio and
Woźna in [10] for authentication protocols. For such a system with a computationally
grounded semantics of interpreted systems, it may even be possible to develop model
checking techniques in order to check relevant properties automatically.

References

1. F. Dignum, B. Dunin-Kȩplicz, and R. Verbrugge. Creating collective intention through
dialogue. Logic Journal of the IGPL, 9(2):289–303, 2003.

2. D. E. Douglas. Internetworking with TCP/IP, Volume 1: Principles, Protocols and
Architectures. Prentice Hall, Upper Saddle River, NJ, USA, 2000.

3. B. Dunin-Kȩplicz and R. Verbrugge. Dialogue in teamwork. In J. M. Fonseca et al., edi-
tor, Proceedings of The 10th ISPE International Conference on Concurrent Engineering:
Research and Applications, pages 121–128, Rotterdam, 2003. A.A. Balkema Publishers.

4. B. Dunin-Kȩplicz and R. Verbrugge. A tuning machine for cooperative problem solving.
Fundamenta Informaticae, 63:283–307, 2004.

5. B. Dunin-Kȩplicz and R. Verbrugge. Creating common beliefs in rescue situations. In
B. Dunin-Keplicz, A. Jankowski, A. Skowron, and M. Szczuka, editors, Proceedings of
Monitoring, Security and Rescue Techniques in Multiagent Systems (MSRAS), Advances
in Soft Computing, pages 69–84, Berlin, 2005. Springer.

6. R. Fagin, J. Y. Halpern, Y. Moses, and M. Vardi. Reasoning About Knowledge. MIT
Press, Cambridge (MA), 1995.

7. R. Goldblatt. Logics of Time and Computation. Number 7 in CSLI Lecture Notes.
Center for Studies in Language and Information, Palo Alto (CA), 1992.

8. J. Halpern, R. van der Meyden, and M. Vardi. Complete axiomatizations for reasoning
about knowledge and time. SIAM Journal on Computing, 33(4):591–612, 2000.

9. J. Y. Halpern and L. D. Zuck. A little knowledge goes a long way: Simple knowledge-
based derivations and correctness proofs for a family of protocols. Journal of the ACM,
39(3):449–478, 1992.

10. A. Lomuscio and B. Woźna. A complete and decidable security-specialised logic and its
application to the TESLA protocol. In P. Stone and G. Weiss, editors, Proceedings of the
Fifth International Joint Conference on Autonomous Agents and Multiagent Systems,
pages 145–152. ACM Press, 2006.

11. J.-J. Ch. Meyer and W. van der Hoek. Epistemic Logic for AI and Computer Schience.
Cambridge University Press, 1995.

12. S. Paurobally, J. Cunningham, and N. R. Jennings. Ensuring consistency in the joint
beliefs of interacting agents. In Proceedings of the Second International Joint Conference
on Autonomous Agents and Multiagent Systems, pages 662–669. ACM Press, 2003.

13. J. Postel. Transmission control protocol (TCP). Technical Report RFC 793, Internet
Society, September 1981. ftp://ftp.rfc-editor.org/in-notes/rfc793.txt.

14. F. Stulp and R. Verbrugge. A knowledge-based algorithm for the internet protocol TCP.
Bulletin of Economic Research, 54(1):69–94, 2002.

15. H.P. van Ditmarsch and B.P. Kooi. Unsuccessful updates. In E. Álvarez, R. Bosch, and
L. Villamil, editors, Proceedings of the 12th International Congress of Logic, Methodol-
ogy, and Philosophy of Science (LMPS), pages 139–140. Oviedo University Press, 2003.

16. M. Wooldridge and N. R. Jennings. The cooperative problem-solving process. Journal
of Logic and Computation, 9(4):563–592, 1999.

