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Humans perceive and reproduce short intervals of time (e.g. 1-60 s) relatively accurately, and are capable
of timing multiple overlapping intervals if these intervals are presented in different modalities [e.g.,
Rousseau, L., & Rousseau, R. (1996). Stop-reaction time and the internal clock. Perception and Psychophys-
ics, 58(3), 434-448]. Tracking multiple intervals can be explained either by assuming multiple internal
clocks or by strategic arithmetic using a single clock. The underlying timescale (linear or nonlinear) qual-
itatively influences the predictions derived from these accounts, as assuming a nonlinear timescale intro-
duces systematic errors in added or subtracted intervals. Here, we present two experiments that provide
support for a single clock combined with a nonlinear underlying timescale. When two equal but partly
overlapping time intervals had to be estimated, the second estimate was positively correlated with the
stimulus onset asynchrony. This effect was also found in a second experiment with unequal intervals that
showed evidence of subtraction of intervals. The findings were supported by computational models
implemented in a previously validated account of interval timing [Taatgen, N. A., Van Rijn, H., & Anderson,
J. R.(2007). An integrated theory of prospective time interval estimation: The role of cognition, attention
and learning. Psychological Review, 114(3), 577-598].
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1. Introduction

Timing is an essential aspect of human behavior. Is the current
pause in the verbal stream long enough to indicate a turn-taking
opportunity? How long before the traffic light turns red? And
how do we account for time when multiple time intervals - a lull
in your passenger’s monologue and a light turning yellow - over-
lap? This question has partly been answered in the context of par-
allel timing in different modalities (Rousseau & Rousseau, 1996,
and see for an overview of modality effects on timing, Penney,
2003). This paper is concerned with a related question: can hu-
mans accurately estimate multiple overlapping time intervals ex-
pressed in the same modality?

In Taatgen, Van Rijn, and Anderson (2007), we have presented a
complete and integrated account of time estimation. We proposed
a “temporal module” that is part of a larger cognitive architecture
(ACT-R, Anderson, 2007; Anderson et al., 2004). This module is a
computational implementation of ideas that have been present
for more than forty years (e.g., Gibbon, 1977; Matell & Meck,
2000; Michon, 1967; Treisman, 1963). Its core assumptions are
that a pacemaker sends steady streams of pulses to an accumula-
tor, and that the number of pulses collected in the accumulator
indicates the amount of time that has passed. In this setup, the cur-
rent value of the accumulator serves as the “clock”, indicating the
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amount of time passed since the beginning of accumulation. The
goals of the ACT-R temporal module are mainly functional (to give
the cognitive architecture means to reason with time), and behav-
ioral (the ability to produce the same behavior as humans). Other
approaches focus on the neuroscience of time estimation (Buhusi
& Meck, 2005).

An extensive literature exists on the nature of the above-men-
tioned clock. Work derived from the scalar expectancy theory
(SET) postulates that a Poisson process generates the stream of
pulses from the pacemaker, resulting in a linearly increasing accu-
mulator value (Allan & Gibbon, 1991; Gibbon, 1977, 1992; Gibbon
& Church, 1981). To account for the Weber-law-related properties
of temporal perception (e.g., the positive correlation between the
estimate and its variance, referred to as the scalar property), Gib-
bon (1992) showed that using a Poisson distribution for the accu-
mulator requires variance as a function of time in the “decision and
memory factors as well as in the internal clock. These additional
sources will be seen to dominate overall variance in performance”
(p. 191), emphasizing the important role of cognitive systems in
time judgments. Other researchers (e.g., Church & Deluty, 1977,
Staddon & Higa, 1999; Stubbs, 1968) located the source of the sca-
lar variance in the “clock” itself. For example, in Staddon and Higa’s
(1999) proposal, the clock is driven by processes related to the de-
cay of memory traces, which have some logarithmic properties.
However, Staddon and Higa (2006) also emphasized the role of
memory and decision processes in temporal estimation (cf. Fortin,
Champagne, & Poirier, 2007).
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Although the distinction between linear and nonlinear time
representations has generated much debate, it is important to real-
ize that it is often difficult to disentangle a linear vs. a nonlinear
internal representation on the basis of externally observed behav-
ior, as the empirical predictions of the linear and nonlinear repre-
sentations are essentially equivalent (see Dehaene, 2001, 2003 for
a discussion of number (line) representation).

To quantitatively account for temporal phenomena in complex
tasks, and especially to quantitatively account for the memory and
decision processes, we embedded our temporal module in an exist-
ing architecture for modeling human behavior, ACT-R (Anderson,
2007; Anderson et al., 2004). This architecture contains extensively
validated systems for decision (procedural memory) and memory
processes (declarative memory). According to ACT-R, facts enter
declarative memory when the system encodes information from
the environment, or when internal processing generates knowl-
edge (e.g., the fact that “C+ 13 = P” by executing production rules
that sequentially count through the alphabet). The contents of facts
that have entered the declarative memory store cannot be altered;
new information has to gain sufficient activation to overrule the
existing knowledge. The activation of a fact determines if the fact
can be retrieved from declarative memory (i.e., it has to be above
a retrieval threshold) and how long retrieval will take, but activa-
tion cannot be accessed by the system explicitly.

For the implementation of the temporal module we followed
Staddon and Higa’s (1999) approach, where the locus of the scalar
property is in the clock instead of being in the interaction between
memory and decision processes (cf. Gibbon, 1992). However, as the
activations or “decay values” are not accessible outside the realm
of the declarative system in the ACT-R architecture, Staddon and
Higa’s decay-based account is not consistent with the ACT-R the-
ory. Instead, we combined the nonlinear aspects of Staddon and
Higa’s (1999) approach with the more traditional information-pro-
cessing approach proposing a pacemaker-accumulator combina-
tion. To this end, we opted for a pacemaker that generates pulses
spaced apart with increasing intervals instead of having a constant
interpulse interval. The first pulse is set to a fixed start value, to.
Each subsequent pulse is separated from the previous pulse by
an interval that is a times the interval between two previous
pulses. Noise from a logistic distribution with a mean of 0 and a
standard deviation of b times the current interval is added to the
interval: t,.; =at, +noise (M=0, SD=b at,). The pacemaker and
accumulator operate in parallel to the central cognitive processes.
When these processes pay attention to the time, the current value
of the accumulator can be read out, and stored in memory or com-
pared to earlier stored values. Note that the increasing pulse
lengths result in a nonlinear representation of time that becomes
less sensitive when time intervals increase. This nonlinear repre-
sentation, in combination with the added noise, is the basis for
the scalar property (Taatgen et al., 2007).!

This temporal module can account for phenomena ranging from
a bisection experiment (fitting data from Penney, Gibbon, & Meck,
2000) to experiments assessing the influence of attention on tim-
ing (Zakay, 1993). In addition, this model has been tested against
empirical data from a new complex task in which temporal infor-
mation was only one of the aspects participants had to take into ac-
count. Third, and most notably, the system accurately predicts the

1 As in all theories of temporal perception, a specific onset event is necessary to
start the estimation of an interval. In our account, the onset of an interval has to
trigger a reset of the pacemaker (resetting the duration of generated pulses) and of
the accumulator. SET requires a similar reset (setting the accumulator to 0) and
assumes an onset-related refractory period, and the Staddon and Higa (1999) account
needs to create a new memory trace (or store the activation of an existing memory
trace) to keep track of the amount of decayed activation.

effects of manipulations within this complex task (Experiment 2,
Taatgen et al., 2007).

Note that this describes a system with a single pacemaker and a
single accumulator, explaining how single or sequential temporal
estimations can be conducted within the framework of a cognitive
architecture. However, it has been argued that multiple estima-
tions can be conducted in parallel, in both animals and humans
(e.g., Ambré & Czigler, 1998; Brown & West, 1990; Gibbon &
Church, 1981; Ivry & Richardson, 2002; Meck & Church, 1984; Pen-
ney et al., 2000; Rousseau & Rousseau, 1996; Rule & Curtis, 1985).
For example, Rule and Curtis (1985) presented human participants
with two different intervals in parallel, and asked them to produce
the average of both durations. The relatively high accuracy in this
task indicates that the human temporal system is capable of pro-
cessing multiple time intervals if all intervals start at the same
time. In addition, Brown and West (1990, Experiment 1) showed
that human participants can perceive a set of multiple overlapping
intervals, even in the case of unequal onsets, and reproduce an
interval randomly selected from this set with a reasonable
accuracy.

At first sight, these results seem to indicate that the presented
temporal system in Taatgen et al. (2007) is too simple, as parallel
timing is not accounted for (single accumulator, SA, Fig. 1, Panel
A). To account for parallel timing, one could argue that a system
should contain multiple accumulators, driven either by a single
pacemaker (multiple dependent accumulators, MDA, Fig. 1, Panel
B, cf. Rousseau & Rousseau, 1996) or by multiple pacemakers
resulting in independent accumulators (multiple independent
accumulators, MIA, Fig. 1, Panel C, cf. Crystal, 2003, for a similar ac-
count linking circadian and interval timing). When multiple pace-
makers are present, each pacemaker can be tuned to a separate
interval, making parallel timing relatively straightforward (cf.
Meck & Church, 1984; Rousseau & Rousseau, 1996). However, a
single pacemaker/accumulator combination, such as in our model,
could be used to estimate multiple intervals. For example, in the
Rule and Curtis (1985) study, both intervals started in parallel, en-
abling participants to time both intervals sequentially using a mul-
tiple readout strategy (i.e., read out the accumulator at the end of
interval one and at the end of interval two). By comparing the two
readouts, an estimate of the average can be made. The unequal on-
sets in Brown and West (1990, Experiment 1) prohibit the use of a
simple multiple readout strategy for the offset, but it might still be
the case that both offsets and onsets are read out from a single
timer, and that some form of temporal arithmetic is applied to ar-
rive at the to be estimated interval.

The temporal arithmetic assumption is not uncommon: The
influential time-left experiments with human participants (Wear-
den, 2002) are based on the rationale that participants assess the
time that is left of an interval by discounting for the time that
has already passed (but see Dehaene, 2001, for discussions of other
strategies that might apply).

In this paper, we will present two experiments that test how
humans produce overlapping intervals in parallel that have been
learned previously. Our explanation is that a single clock is used
intelligently by the cognitive system (Fig. 1, Panel A). This would
entail dividing the overlapping intervals in smaller parts, estimat-
ing them separately, and then adding up these estimates to achieve
the desired intervals. Note that these smaller temporal parts can be
accurately discounted for by simple additions or subtractions only
if the accumulator increases linearly with real time. A nonlinear scale
should introduce systematic biases in the temporal estimations.

To test this hypothesis, we designed two experiments. In these
experiments, participants had to produce two pre-learned intervals
that partially overlap. A schematic overview of an experimental
trial is presented in Fig. 2. Participants received a start signal for
one of the intervals, and after a certain delay (the stimulus onset
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Fig. 1. Three possible systems to account of parallel timing. Panel A depicts a single pacemaker, single accumulator (SA) system, Panel B a multiple dependent accumulators
(MDA) system, and Panel C a multiple independent accumulators (MIA) system. The entities with the dashed lines denote the elements of the system that enable parallel time

perception.

asynchrony, SOA, here 1.5 s) the start signal for the second interval.
For both intervals, participants had to indicate when the presented
interval was equal to the previously learned interval. The random
SOA between the two start signals prevented fixed timing strate-
gies, and produces a variable overlap between the two intervals.
In Experiment 1, Session 1, both intervals were 2 s, while in Exper-
iment 1, Session 2 and Experiment 2 one interval was 2 s and the
other interval was 3 s.

Before turning to the discussion of the experiments, we ask:
what mechanism could explain performance? We will discuss
the three possible mechanisms presented in Fig. 1, and derive pre-
dictions (see Table 1) for these mechanisms given either a linear or
a nonlinear timescale.

The straightforward explanation for timing both intervals is
presented in Fig. 1, Panel C. According to this account, each interval
is assigned its own pacemaker-accumulator combination. As both
intervals can be reproduced on the basis of the previous learning
session (e.g., 2 s equals 17 pulses, regardless of the underlying dis-
tribution), there is no scale-based reason why these combinations
should produce any decrease in timing accuracy when multiple
parallel intervals have to be estimated. A decrease in accuracy,
however, can be due to other factors, for example, attention that
has to be shared across intervals or dual-tasking costs (e.g., Brown

& West, 1990; Rousseau & Rousseau, 1996). For both a linear and a
nonlinear scale, increasing overlap increases the estimates, as the
sharing of resources results in slower updating of the accumulators
(see, for example, Block & Zakay, 1997). In other words, an increase
in SOA results in less overlap, and should therefore result in shorter
estimates when compared with shorter SOAs.

The strategy presented in Panel B, multiple dependent accumu-
lators (MDA), predicts exactly the same effects as multiple inde-
pendent accumulators (MIA) when linear timescales are
assumed. Whenever a linear timescale is assumed, the SOA does
not affect the rate of accumulation. Only the attentional and
dual-tasking costs apply, predicting an increase in SOAs to be asso-
ciated with shorter estimates.

An effect in the opposite direction is expected if we assume a
nonlinear timescale: The longer the SOA, the longer the time be-
tween the pulses, and the longer it will take before the second
pacemaker has reached its critical value. This effect could, of
course, partly be cancelled out by the attentional and dual-tasking
costs discussed above. As these costs apply to both accumulators,
the prediction for the first estimate is similar to the predictions
of the multiple independent accumulators account: shorter SOAs
result in longer estimates. Because of the single pacemaker, a slow
first estimate will affect the second estimate, as slow or fast pulses
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Fig. 2. Experimental paradigm used in the experiments.
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Table 1
Effects of increased SOA on first and second estimates
Timescale A: SA B: MDA C: MIA

Linear Nonlinear Linear Nonlinear Linear Nonlinear
First interval None None Decrease Decrease Decrease Decrease
Second interval None Increase Decrease Increase + decrease Decrease Decrease

in the overlapping periods influence the estimates of both first and
second intervals. To summarize, MDA combined with a nonlinear
timescale predicts shorter estimates when the SOA increases for
the first interval, and a combination of effects (both increasing
and decreasing) for the second interval (Table 1).

The last account, Panel A: single pacemaker, single accumulator
(SA) is based on the idea of a single source of time information that
can be used strategically by general cognition. To produce the two
intervals in Fig. 2, the SOA between the two start signals has to be
stored during the production of the first interval. After the re-
sponse on the first interval has been made, one has to wait for
the stored SOA before making the second response. The conse-
quence of this method is that, similarly to MDA, estimates are no
longer independent. For example, if the first estimate is too long
we also expect the second estimate to be too long. A second conse-
quence of serialization is that a nonlinear timescale will bias the
second estimate. The SOA between the onset of interval one and
two is internally represented on a pseudo-logarithmic scale, result-
ing in an internal length of, for example, five pulses. When this
internal representation is added to the first interval to estimate
the second interval, this length of five pulses represents a longer
time than what was perceived originally because the pulses are
spaced wider apart. This results in an overestimation of the second
interval, which becomes larger as the SOA increases. If a linear
timescale is assumed, temporal arithmetic does not induce system-
atic biases, resulting in the absence of any effects of SOA on the
estimates. As this account assumes only a single pacemaker and
a single accumulator, there is no reason to assume any attention
or dual-tasking costs apart from possible dual-tasking penalties
in the memory and decision processes (although, according to
ACT-R, these should be absent as long as they do not coincide,
see Salvucci & Taatgen, 2008). However, as this task is extremely
simple from a memory and decision process stance (cf. Anderson,
Taatgen, & Byrne, 2005; Van Maanen & Van Rijn, 2007), no SOA-re-
lated effects are to be expected.

Table 1 summarizes the predictions derived from the three
accounts.

To test the predictions described above, we ran two experi-
ments. Experiment 1 consisted of two consecutively run sessions.
In Session 1, both intervals are 2 s, while in Session 2 one interval
equals 2 s and the other interval equals 3 s. For presentation pur-
poses, we will present these two sessions as Experiments 1a and
1b. Given that both sessions were run as a single experiment,
learning and transfer effects might have influenced the partici-
pants’ behavior in Experiment 1b. Therefore, a replication study
of Experiment 1b was run, Experiment 2, using a similar setup to
Experiment 1b but with naive participants.

We will first discuss Experiment 1a and the cognitive model we
constructed to account for the data of Experiment 1a, and then
Experiments 1b and 2.

2. Experiment 1a
2.1. Method
2.1.1. Participants

Twenty-six students (12 females, average age 23.6, range 18-
33) from Carnegie Mellon University participated and were paid

$8 compensation. Five participants were excluded from analysis
because they did not adhere to the instructions.

2.1.2. Design, stimuli and procedure

The purpose of the first block (46 trials) was to learn a stable
and correct representation of the interval they would be asked to
estimate later. Participants were told that the task was to estimate
an interval of an unspecified length, and, at the start of each block,
were instructed not to count or use any other strategies to measure
the passing of time (cf. Penney et al., 2000; Rakitin et al., 1998,
Experiment 2). Each trial started with two open circles on both
sides of a “!” that served as fixation point. After an interval that
was randomly selected from [750, 1250] ms, one of both circles
was filled in either blue (left) or green (right). Each circle was se-
lected equally often. The selected circle remained colored for
2000 ms (see Ulbrich, Churan, Fink, & Wittman, 2007, for a discus-
sion on the range of durations where cognitive processes are in-
volved). As soon as the color disappeared, the “!” was replaced
by a “x” to indicate that the reproduction phase started. In the
reproduction phase, the circle filled with color again until the par-
ticipant pressed a key, indicating that they thought the circle had
been filled the same amount of time as before. For the left circle
the “z” had to be pressed, for the right circle the “/”.

Participants received feedback in terms of “too fast”, “correct”
or “too slow” which remained on the screen for 1500 ms. A re-
sponse was categorized as correct when it was in the interval
1750-2250 ms, making a response of 2000 ms optimal. This
500 ms range was chosen to achieve a correctness of approxi-
mately 50%. In addition, to the feedback, participants were also gi-
ven 10 points per correct answer. The points awarded for this trial
and their total score were presented with the correctness feedback.

After the first block, participants received instructions for the
second block. In this second experimental block of 120 trials, par-
ticipants had to respond to both left and right stimuli in each trial,
as illustrated in Fig. 2. Either stimulus appeared first in half of the
trials. The stimulus onset asynchrony (SOA) was randomly sam-
pled from the intervals a =[500, 900] ms or b=[1100, 1500] ms.
Feedback was given as “correct”, “too fast” or “too slow” for both
stimuli independently, and 10 points were assigned for each cor-
rect response. All other aspects of the task were kept constant.

2.2. Results and discussion

Before further analyses, all responses faster than 500 ms and
slower than 5000 ms were removed from the dataset (1.2% re-
jected cases in Experiments 1a and b combined). At the end of
the training block, the average estimate over the last 10 trials
was 1930ms (SD=383, left first, 1920 ms, vs. right first,
1952 ms, t(20) = 0.59, p > .05). The observed 58% correct responses
are close to the expected 50%, and no accuracy difference was
found for left vs. right intervals (P(C)eft=.61, P(C)rignt=.55,
t(20) = —.50).

Performance in the experimental block was 45% and 44% correct
for the first interval and second interval, respectively (the differ-
ence is not significant: t(20) =.59), but the average accuracy for
the first estimate is significantly lower in the experimental block
than the accuracy during training (45% vs. 58%, t(20)=2.46,
p=0.023). The average estimates were 1933 ms (SD =453) and
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Table 2
Estimations for the fixed effects of the parameters entered in the linear mixed effect
models predicting the second estimate in Experiment 1a

Model Intercept  Trial number  Starting side SOA First estimate
1 402" —0.944 —22" 0499  0.671°"

2 1728 -1.341 —24"" 0.496"""

B 903" —-0.991 —21"" 0.670""

"' p<0.001.

2128 ms (SD=478). These estimates differ significantly

(t(20) = —5.4, p < 0.001).

The simplest test related to parallel timing involves the depen-
dency of the two estimates. To test whether the first estimate has
an influence on the second estimate, we compared two linear
mixed effect (LME, Bates, 2005, and see for a nontechnical intro-
duction, Baayen, Davidson, & Bates, 2008) models shown as Models
1 and 2 in Table 2. The first model entails the second estimate as a
function of the fixed effects of trial number, starting side, SOA and
first estimate, and a random effect for subjects. The second model
has the first estimate removed, but is otherwise identical. The fit of
the reduced Model 2 is significantly worse (3%(1)=1741,
p <0.001), indicating a significant contribution of the first estimate
in the prediction of the second estimate.

Longer first estimates yield longer second estimates (f =.671,
t(2503) = 50.15, p < 0.001). This is in line with the single accumula-
tor (SA) account, as with a single pacemaker, the second estimate is
by definition dependent on the first. However, arguments in favor
of dependency can be made in the context of the other two ac-
counts when additional assumptions regarding dual tasking are
made.

To assess the contribution of SOA on the second estimate, the
stronger test associated with the predictions, we constructed a
similar model to the best fitting model described above, but in
which SOA was removed (see Table 2, Model 3). The fit of the re-
duced model is significantly worse (y*(1) = 664, p < 0.001) com-
pared with the more complex model (Table 2, Model 1),
indicating a significant contribution of SOA in the prediction of
the second estimate. The estimated effect of SOA in the complex
model (f=.499, t(2503)=27.57, p<0.001) indicates that longer
SOAs yield longer second estimates. It is important to note the only
account that univocally predicts this effect on the second estimate
is the single accumulator account with a nonlinear timescale. At
the same time, according to a SA account, SOA should have no
influence on the first estimate, whereas according to the hypothe-
ses derived from MDA and MIA, SOA length should influence the
first estimate. We compared two models, one with trial number,
starting side and SOA as fixed effects and subject as random effect
as predictors for the first estimate, and the other model with SOA
removed. Model comparisons indicate that the simpler model
without SOA is preferred over the complex model (x?(1)=0.034,
p = 0.85), also arguing in favor of the single accumulator account.

The experiment provides evidence in favor of one pacemaker
with a nonlinear scale of temporal estimation for three reasons.
First, the first estimate contributes significantly to the second esti-
mate. Second, the estimated SOA effects on the second estimate are
significant and have a positive value. Third, no effect is observed
for SOA on the first estimate.

3. Cognitive model
3.1. Time estimation
The temporal module in ACT-R (Taatgen et al., 2007) measures

time in pulses that start at 100 ms, but become gradually longer,
creating a nonlinear representation of time, as illustrated in

Fig. 3. This means that in the run shown in Fig. 3 and 2 s corre-
sponds to a total of 17 pulses in the accumulator as the 17th pulse
entered the accumulator at about 1.95 s, but 4 s only to 29 pulses
instead of 34 (note that because of moment-to-moment noise, dif-
ferent runs can have different associated accumulator values.) The
model is presented the same number of training trials as the par-
ticipants and has, at the start of the experimental block, a reason-
ably stable internal representation of 2 s (17 pulses). When the
start signal for the first interval is given, the timer is started. At
some point, the start signal for the second interval is given,
prompting the model to store the value of the timer at that mo-
ment (in the examples illustrated in Fig. 3, Panel A: 5 and 13 pulses
for the upper 0.6 and lower 1.5 SOAs, respectively). When the timer
reaches the 17 pulses, corresponding to 2 s, the model will make
the first response. It then adds the stored pulse number at the mo-
ment of SOA to 17, and waits until the timer reaches that value to
make the second response. As Fig. 3, Panel A illustrates, the nonlin-
ear scale introduces a bias in the second response that becomes
larger with longer SOAs: The bias for the 0.6s SOA trial is
272 -2 —-.6=.12s, compared to 4.15—-2—1.5 = .65s for the
longer, 1.5 s SOA trial.

3.2. Representation of the time interval

The model maintains a representation of the time interval in its
declarative memory. This representation is based on instance the-
ory (Logan, 1988), which assumes that each experience creates an
example in memory. Whenever the model makes a correct esti-
mate, it stores the number of pulses in declarative memory as a
successful experience. If the model receives feedback that it is
too late, it will subtract one pulse from its estimate on the next
trial. If the model is too early, on the other hand, it will add one
pulse to its next estimate. Initially, successful examples will be
17 pulses on average. However, once the model has to estimate
two overlapping intervals, the nonlinear effect causes the model
to be systematically late on the second interval. Based on the aver-
age feedback, these experiences cause the model to shorten its rep-
resentation of 2 s somewhat (to approx. 16 pulses), maximizing the
proportion of correct responses.

3.3. Model parameters

In the simulations reported here, the parameters are set to start
pulse (to)=100ms, pulse multiplier (a)=1.02 and noise
(b) = 0.015. Note that both the ty and a parameters have been chan-
ged from the values reported earlier (Taatgen et al., 2007). The
2007 parameters (tp =11 ms, a = 1.1) were fit using a least-square
optimalization routine on a simple temporal estimation experi-
ment (Rakitin et al., 1998) for which wide ranges of parameters
would have fitted well. However, as the experiments described in
Taatgen et al. were not concerned with quantitative aspects of
the nonlinear scale, the selected parameters sufficed. However, in
the current experiment, the absolute values of the nonlinear scale
are important, resulting in the parameters presented here. Cross-
validation of these parameters on the data reported in Taatgen
et al. (2007) shows that none of the fits is negatively affected by
these changes. Moreover, the new values are also more in line with
a pulse length of 200 ms proposed by Meck, Church, and Gibbon
(1985), especially since the length of the pulses in our account in-
creases with the estimate.

3.4. Model results
Fig. 4 shows the distributions of time estimates for the first

block in which only a single estimate had to be made (labeled
“single”), and the first and second responses in the second block
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Fig. 3. Panel A shows a visual representation of the estimates as provided by the cognitive model for Experiment 1. Note that the Ticks-axis illustrates the nonlinear increase
in between pulse intervals. Panel B depicts the mechanisms underlying the estimates in Experiments 1b and 2: The response for the second interval is produced by adding the
SOA (11 pulses) to the 3 s response, and then subtracting the difference between the 2 and 3 s (6 pulses). In this example, the representation for 2 s is 17 pulses and for 3 s is

23 pulses, both learned previously.

(labeled “first” and “second”). It shows that the second responses
are generally later than the first responses, which is due to the bias
in the scale. It also makes evident that the distribution of the first
response is pushed somewhat to the left, corresponding to the
above-mentioned 16 pulses, compared to the single task case, to
compensate for the second response. This explains the decrease
in accuracy on the first interval. Fig. 5 shows the effect of the
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SOA on the second response, and illustrates the effect of the non-
linear scale.

4. Experiment 1b

The empirical results and the model of Experiment 1a support
an account of simple temporal arithmetic: after waiting for the
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Fig. 4. Distributions of time estimates in Experiment 1a for human participants and the cognitive model for estimates made in the single estimate per trial block and for the

first and second estimates made in the dual estimation block.

Acta Psychologica (2008), doi:10.1016/j.actpsy.2008.09.002

Please cite this article in press as: van Rijn, H. & Taatgen, N.A. Timing of multiple overlapping intervals: How many clocks do we have?




H. van Rijn, N.A. Taatgen/Acta Psychologica xxx (2008) XxX—Xxxx 7

<
R
- P
o -
. 0
N o v O/
] -7 o
- i
// O/
QO ’
5 o , /
E % .
0 T
w o P
a7 /‘// :
i
o | &L
- -7 - Model
4 Data
@© |
~
T T T T T T
0.6 0.8 1.0 1.2 14

SOA (in seconds)

Fig. 5. The effect of the SOA on the second response for both human participants
and the cognitive model in Experiment 1a.

duration associated with the first interval, participants wait for an-
other duration similar to the SOA that has just been perceived. In
the model, this is accounted for by adding the number of pulses
associated with the SOA to the number of pulses associated with
the interval duration. However, this does not require actual addi-
tion of intervals. A similar effect can be achieved by just putting
one interval after the other (“wait for A and then wait for B”), in-
stead of constructing a new temporal representation (“A plus B
equals C, so wait for C").

To show that actual temporal arithmetic is used to handle mul-
tiple intervals, Experiment 1b involves both addition and subtrac-
tion of intervals. Subtraction of time intervals cannot be achieved
by the simple strategy of putting one interval after the other, and
must involve actual temporal arithmetic. This experiment is the
same as Experiment 1a, except that one of the two intervals is in-
creased to 3 s. In the case where a trial starts with a 2 s interval, the
3 s interval has to be constructed by adding the SOA and the differ-
ence between the 2 s and the 3 s intervals (i.e., 1's, or 9 pulses in
the model) to the first response. When the trial starts with a 3 s
interval, the 2 s interval has to be constructed by adding the SOA,
and then subtracting the 1s interval (Fig. 3, Panel B illustrates
the latter case).

4.1. Method

4.1.1. Participants
The same students participated in Experiment 1b as in Experi-
ment 1a.

4.1.2. Design, stimuli and procedure

The same stimuli were used as in Experiment 1a, except the
right, blue stimulus was now associated with a 3 s interval. The re-
gion marked as correct ranged from 2625 to 3375 ms for this inter-
val. The experiment consisted of two blocks. In the first block the
participants learned the 3 s interval. Each trial consisted of just a
single interval. The first 10 trials were 3 s intervals, followed by
40 trials randomly selected from 2 and 3 s intervals. In the second
block, consisting of 160 experimental trials, participants had to re-
spond to two simultaneous intervals, one of 2 s and the other of 3 s
with a stimulus onset asynchrony sampled from [500, 900] ms or

[1100, 1500] ms. Half the trials started with the 2 s interval and
the other half with the 3 s interval. Note that apart from the in-
crease of the right stimulus from 2 to 3 s, all other aspects were
kept constant between Experiments 1a and 1b.

4.2. Results and discussion

The same outlier rejection criteria were applied as in Experi-
ment 1a. The average estimates at the end (last 10 trials) of the
training block for the 3 s duration were significantly different from
the average estimates for the short, 2 s duration (2894 ms vs.
2131 ms, £(20) = 12.1, p < 0.0001). It should be noted that although
participants had to learn two intervals (2 s vs. 3 s) instead of a sin-
gle interval, performance as measured by the proportion correct
responses did not decrease. At the end of the training block, partic-
ipants responded correctly to 52% of the short trials and 63% to the
long trials. When comparing the short trials with performance on
Experiment 1a, no effect was found (t(20) = —1.18, p=0.25).

Table 3 shows the average estimates and the proportion correct
responses for both the short and long durations per condition. Sim-
ilar to Experiment 1a, the average accuracy for the first short esti-
mate is significantly lower in the experimental block than the
accuracy during training (39% vs. 52%, t(20) = 3.53, p =0.002). To
test whether both estimates influenced each other, we compared
a full LME model (Table 4, Model 1) that expressed the second esti-
mate as a function of condition, trial number, first estimate and
SOA as fixed effects and participants as random effect against a
model with the first estimate removed (Table 4, Model 2). The full
model fits significantly better (}*(1)=316.6, p < 0.001).

To test whether increased SOAs influenced the performance on
the second estimate, we compared a full LME to one without the
effect of SOA (Table 4, Model 3). The full LME model (Table 4, Mod-
el 1) fit the data significantly better than a simpler model
(x*(1)=347.1, p< 0.001). The positive effect of SOA on the second
estimate is of most consistent with the one pacemaker, one accu-
mulator account.

At the same time, the first estimate is not influenced by SOA,
neither when the trial started with the short estimate
(x*(1)=0.514, p = .47), nor when the first response had to be made
to the first appearing stimulus (i.e., trials that started with the long
estimate combined with a long SOA, x*(1)=1.169, p = .28).

Still, participants performed relatively accurately regardless of
the interval that had to be estimated first. (Accuracy does not differ
for 2 or 3 s intervals, first responses: P(C, left) = .39, P(C, right) = .39,
t(20)=0.20, second responses: P(C, left)=.49, P(C, right)=.43,
t(20)=1.24, p=.23).

Table 3
Average estimates and proportion correct responses (in parentheses) per condition in
Experiment 1b

Observed duration and proportion correct for

Short interval

2193 ms (.39)
2236 ms (.43)

Long interval

2877 ms (.49)
2571 ms (.39)

Short interval first
Long interval first

Table 4
Estimations for the fixed effects of the parameters entered in the linear mixed effect
models predicting the second estimate in Experiment 1b

Model Intercept  Trial number  Starting side SOA First estimate
1 1764 —0.042 —-751"" 0494 0284

2 2424 0.038 —644""" 0.456™""

3 2306 —-0.038 —740""" 0.260"""

™ p<0.001.
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The similar response pattern in both conditions and the combi-
nation of no effect of SOA on the first estimate and a positive cor-
relation between SOA and second estimate suggests that a single
procedure is utilized for the estimation of the durations. As the
condition in which the long interval is presented first cannot be ac-
counted for by a pure reset-based mechanism, temporal arithmetic
seems the most likely candidate for explaining the observed
behavior.

4.3. Model results

The model for Experiment 1b is similar in setup to the model for
Experiment 1a with a few extensions to account for the different
intervals. In fact, before going through Experiment 1b, the model
runs through Experiment 1a to create the same starting point that
the participants were in. The model handles the trials that start
with the shorter 2 s interval as in Fig. 3a, except that the model will
add the difference between the two intervals to the second re-
sponse. In the 600 ms SOA example, this would mean that the sec-
ond response is made at 17 (estimate of 2 s)+5 (estimate of the

Short interval first

1.0

— Model
-- Data

Density
0.6
!

0.4

0.2

0 1 2 3 4 5
Estimaton (in seconds)

SOA) + 6 (difference between 3 and 2s=23 — 17 =6) = 28 pulses,
or after 3.77 s. When the trial starts with the long, 3 s, interval,
the difference between the two intervals is subtracted to obtain
the right estimate for the 2 s interval (see Fig. 3b for an example).
As in the first model, the successes and failures of the model will
push most of the estimates downwards because of the systematic
overestimations of the second interval. However, the 3 s interval is
more susceptible to this, because the 2 s interval has been prac-
ticed throughout Experiment 1a, and therefore has a firmer repre-
sentation in memory. Fig. 6 shows the distributions of the
responses for the trials that start with the short interval and the
trials that start with the long interval. The downward adjustment
is visible when Fig. 6 is compared with Fig. 4: the peak of the first
estimates is earlier in Fig. 6 than in Fig. 4.

In both cases, the nonlinear timescale creates a bias to overes-
timate the second interval. As a consequence, if the short interval
is presented first it pushes both estimates further apart (because
it extends the long interval), but when the long interval is pre-
sented first both estimates are closer together (because the short
interval is extended). Note that this effect is additive to the earlier
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Fig. 6. Distributions of time estimates in Experiment 1b for human participants and the cognitive model for the short and long durations (the left and right distributions in
each panel), separated for trials that started with the short interval vs. the long interval. Vertical dashed lines indicate the intervals in which the estimate was considered

“Correct”.
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Fig. 7. The effect of the SOA on the response associated with the second interval for both human participants and the cognitive model in Experiment 1b, separated for trials

that started with the short interval vs. the long interval.
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Table 5
Average estimates and proportion correct responses (in parentheses) per condition in
Experiment 2

Table 6
Estimations for the fixed effects of the parameters entered in the linear mixed effect
models predicting the second estimate in Experiment 2

Short interval first
Long interval first

Observed duration and correctness for Model Intercept  Trial number  Starting side SOA First estimate
Short interval Long interval 1 2358 —0.499 -12717"" 0223 0.384™"
2039 ms (.50) 3332 ms (.39) ; ;éi;‘ 782;(1) 7?321 Rl 0356
2343 ms (.50) 2773 ms (.49) e _ )

" p<0.005.

" p<0.001.

mentioned downward adjustment of the intervals. This also be-
comes evident in the effects of SOA on the second estimate as a
function of the duration of the first estimate, an effect that is nicely
captured by the model (Fig. 7).

However, as the participants in Experiment 1b also participated
in Experiment 1a, the results might be influenced by the training
the participants had in Experiment 1a. Therefore, we ran Experi-
ment 2 to answer the question whether participants are able to
estimate parallel but unequal time intervals without prior training.
It also enables assessing how robust the model is when the exper-
iment is run in a new setting with naive participants.

5. Experiment 2
5.1. Method

5.1.1. Participants

Fourteen students of the University of Groningen (three fe-
males, average age 21.2, range 19-25) participated in this experi-
ment in exchange for course credits. Data of two students were
removed because they did not adhere to the instructions.

5.1.2. Design, stimuli and procedure

The same stimuli were used as in Experiment 1b. Participants
were presented two blocks, one of 40 trials to learn the 2 and 3 s
intervals, and one block consisting of 120 experimental trials.
Apart from translating the instructions into Dutch, the procedure
of Experiment 2 was identical to Experiment 1b.

5.2. Results and discussion

Applying the same outlier criteria as for Experiment 1 resulted
in the removal of 0.5% of data points. The average estimate at the
end (last 10 trials) of the training block was 2648 ms (SD = 418)
for the 3 s duration, and 1980 ms (SD = 373) for the short, 2 s dura-
tion. Like in Experiment 1, performance measured in proportion
correct responses did not decrease when compared with the end
of the training block. At the end of the training block, participants
responded correctly to 60% of the short trials and 63% to the long
trials (in Experiment 1a, performance was 58% correct).

Table 5 shows the average estimates and the proportion of cor-
rect responses for both the short and long durations per condition.
The average accuracy for the first short estimate does not signifi-
cantly differ between the experimental block and training if tested
with a paired t-test (¢(11) = 1.56, p = 0.147). However, inspection of
the data showed that this was partly due to one participant still
needing the last trials in the training block to familiarize them-
selves with the experiment. This notion was supported by the
results of an exact binomial test (10/12, p = 0.0386), indicating that
the lack of effect is due to the extreme scores of a single
participant?.

As in the prior experiments, the full model (Table 6, Model 1) fit
the data better than simpler models with either first estimate

2 The performance of this participant is within normal ranges in the experimental
phase.

(Table 6, Model 2) or SOA (Table 6, Model 3) removed
(x3(1)=231, p<0.001, ¥*(1)=37.6, p<0.001, respectively). The
first estimate is not influenced by SOA, neither when the trial
started with the short estimate (2(1) = 0.061, p =.81), nor when
the first response had to be made to the first appearing stimulus
(x*(1)=0.243, p = .62). And again, accuracy does not differ for 2 s
or 3 s intervals, first responses: P(C, left)=.50, P(C, right)=.49,
t(12)=2.5, p=0.24, second responses: P(C, left)=.50, P(C,
right) =.39, t(12) = 0.57).

In sum, these results illustrate that the effects found for Exper-
iment 1b were not due to practice or spillover effects from Exper-
iment 1a. All analyses show the same patterns for Experiments 1b
and 2, often with very similar statistics.

5.3. Model results

Before analyzing the results of Experiment 2, we predicted the
outcomes of this Experiment using the model of Experiment 1b
(cf. Salvucci & Macuga, 2002; Taatgen & Anderson, 2008). The only
difference between the runs simulating Experiments 1b and 2 was
that the runs for Experiment 1b started out with experience gained
in Experiment 1a, whereas Experiment 2 commences without any
task relevant information. However, Experiment 1b contained a
specific training session to balance the experience between 2 and
3 s intervals, and as the analyses reported for Experiment 1b show,
there was no significant difference between both intervals. This re-
sults in a model prediction for Experiment 2, shown in Fig. 8 that is
very similar to the model fit for Experiment 1b. The main deviation
is that the human participants in Experiment 2 have a more dis-
tinct representation of the 3 s interval than the model. This is not
only a difference between the model runs simulating Experiment
2 and the human participants, but also between the human data
for Experiments 1b and 2 (Welch two sample t-test, short interval
first: 2571 ms vs. 2773 ms, t(29.7) = —2.35, p = 0.026, long interval
first: 2879 ms vs. 3332 ms, £(28.1) = —4.13, p = 0.0003). This might
indicate that participants in Experiment 1b were more likely to
confuse both intervals than participants in Experiment 2, which
might be due to the stronger representation of the 2 s interval in
Experiment 1b. Instead of adjusting the model to more precisely
account for the data found in Experiment 2, we present the model
predictions to illustrate the possibilities of the proposed system to
predict quantitative data.

6. General conclusions

Do multiple sources of temporal information drive parallel time
estimates, or do we strategically use the output of a single time
source for parallel timing? Here, we presented a study that pro-
vides evidence for the latter account. In the introduction, we dis-
cussed three different information-processing proposals that
could account for parallel timing. Although predictions can be de-
rived for different measures, the most interesting prediction is the
effect of the stimulus onset asynchrony on the estimates. As dis-
cussed earlier, the effect of SOA depends on the timescale underly-
ing temporal processing. If it is assumed that the underlying
timescale is linear, simple temporal arithmetic can be performed
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Fig. 8. Distributions of time estimates in Experiment 2 for human participants and the cognitive model for the short and long durations (the left and right distributions in
each panel), separated for trials that started with the short interval vs. the long interval. Vertical dashed lines indicate the intervals in which the estimate was considered

“Correct”.

without systematic biases. However, when time is internally repre-
sented on a nonlinear scale, effects of the nonlinear scale should be
visible in the estimates.

In all the three experiments reported in this paper, SOA does not
have an effect on the estimate of the first interval, as predicted by
all the accounts we have contrasted. The predicted effects of SOA
on the second estimate are more pronounced. According to the
multiple independent accumulators account, the second estimate
should decrease with increasing SOA, because a smaller overlap
(longer SOA) leads to shorter estimates. According to a multiple
dependent accumulators account, and assuming a nonlinear time-
scale, the effect of SOA depends on the effect associated with the
nonlinearity (which predicts an increase because of the wider
spaced pulses associated with longer SOAs) and the effect of shared
attention (which predicts a decrease because of less overlap). The
single accumulator proposal combined with a nonlinear timescale
predicts an increase in estimate because of the wider spaced
pulses. When a linear timescale would be assumed, the SA pro-
posal predicts no effect of SOA and the MDA and MIA proposals
would both predict a decrease in performance because of shared
attention. The results of all the three experiments show a signifi-
cant positive effect of SOA magnitude on estimated duration, being
in line with the prediction of the combination of a single accumu-
lator and a nonlinear timescale. Note that the multiple dependent
accumulators combined with a nonlinear timescale could theoret-
ically also predict an increase in estimated duration for the second
interval, but that would still leave the lack of fit between predic-
tion and found data for the first estimate. To sum up, the results
can be explained best by assuming a mechanism that strategically
uses the output of a single internal nonlinear time generator, con-
sistent with Taatgen et al. (2007) and Staddon and Higa (2006), but
contrary to Gibbon (1977).

The lower accuracy of the first estimate in the dual-timing
phase compared to the single-timing phase cannot be explained
by a theoretical analysis of the single accumulator account. Accord-
ing to the single accumulator account, performance of the first esti-
mate in dual-timing conditions should be equal to performance in
single-timing conditions, as both processes should be completely
equal (i.e., the processing of the second estimate takes place only
after the first estimate is given). The computational model gives
an elegant explanation of this effect. Each time a response is made,
the model is presented feedback on the correctness of the re-
sponse. The wider spaced pulses for the second estimate cause

the model to be late relatively often. Thus, because the nonlinear
scale biases responses towards late responses, the model will
shorten its estimate of both intervals, yielding a lower accuracy
for the first estimate in dual-time estimations than during single-
time estimation.

An issue that is often raised in timing literature is whether ex-
plicit timing strategies such as counting should be prevented. In
the experiments reported here, participants were instructed not
to count or use any other explicit strategies to measure the tempo-
ral intervals. This is in line with the previous work on human time
perception (e.g., Penney et al., 2000), and it has been shown that
although explicitly instructing participants to count decreases
the variance, it does not influence the accuracy of the estimations
(Rakitin et al., 1998, Experiment 2). Furthermore, counting is not
straightforward in the experimental conditions where at random
SOAs a second interval started. Assuming relative slow counting
(e.g., in the order of seconds or half-seconds), this would either
predict inaccurate second estimates or suggest parallel counting.

Nevertheless, even if participants could have accounted for par-
allel counting and did count because no secondary task was given,
this does not negate the results as a higher accuracy would have
made it less likely to have found the reported results.

Do the results of our experiment rule out parallel clocks? In the
experiments reported in this paper, we did not find any evidence of
parallel clocks. To the contrary, all evidence found points towards a
single source of temporal information that is used by the cognitive
system to account of the estimation of partly overlapping intervals.
However, it still might be the case that although humans can re-
cruit multiple time clocks, participants in these experiments
decided to only use a single time source for efficiency reasons. If
this is the case, the conclusion has to be that multiple clocks can
be recruited, but that even conditions where using a single clock
requires participants to subtract two intervals that are not complex
enough to warrant recruiting a second clock. In other words, the
cost of recruiting a secondary clock is such that most tasks should
be accounted for assuming the use of only a single clock.
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