
INTRODUCTION

In such diverse environments as air traffic
control and nuclear power plant operation, re-
searchers in human factors have accumulated
extensive empirical knowledge of human per-
formance in complex and dynamic tasks. How-
ever, the development of detailed computational
models that can explain how people are able to
perform and learn such tasks has lagged be-
hind. One reason for this disparity is that theo-
retical investigations of skill acquisition and
empirical investigations of complex and dynam-
ic task performance have existed largely as sep-
arate and independent areas of research, with
theoretical development of skill acquisition pri-
marily focusing on models of learning simple
tasks. Although valuable insights have been
gained from studying simple tasks, in order to
move toward a more complete theory of skill
acquisition, researchers need to develop and test
their models against complex and dynamic tasks

that are more typical of human learning in the
real world.

The goal of this article is to show how the
theoretical gap between learning simple tasks
and performing complex tasks can be bridged.
Our approach offers a new way to conceptual-
ize and validate task analyses and provides
insights into the nature of human skill acquisi-
tion. We believe our approach can help human
factors researchers in developing applications
in which learning is an integral aspect of the
task. Our approach is to use the ACT-Rational
(ACT-R) cognitive architecture, which is ground-
ed in psychological theory, to model learning
and performance in complex tasks. The key
aspect of the architecture is production compi-
lation, a computational account of skill acquisi-
tion that combines aspects of theories proposed
by Anderson (1982, 1987) and Newell and Ro-
senbloom (1981). We use production compila-
tion to develop a detailed model of learning in
a simulated air traffic control task.

SPECIAL SECTION

Production Compilation: A Simple Mechanism to Model
Complex Skill Acquisition

Niels A. Taatgen, University of Groningen, Groningen, Netherlands, and Frank J. Lee,
Rensselaer Polytechnic Institute, Troy, New York

In this article we describe production compilation, a mechanism for modeling
skill acquisition. Production compilation has been developed within the ACT-
Rational (ACT-R; J. R. Anderson, D. Bothell, M. D. Byrne, & C. Lebiere, 2002)
cognitive architecture and consists of combining and specializing task-independent
procedures into task-specific procedures. The benefit of production compilation
for researchers in human factors is that it enables them to test the strengths and
weaknesses of their task analyses and user models by allowing them to model the
learning trajectory from the main task level and the unit task level down to the key-
stroke level. We provide an example of this process by developing and describing
a model learning a simulated air traffic controller task. Actual or potential appli-
cations of this research include the evaluation of user interfaces, the design of
systems that support learning, and the building of user models.

Address correspondence to Niels A. Taatgen, Artificial Intelligence, University of Groningen, Grote Kruisstraat 2/1, 9712 TS
Groningen, Netherlands; niels@ai.rug.nl. HUMAN FACTORS, Vol. 45, No. 1, Spring 2003, pp. 61–76. Copyright © 2003,
Human Factors and Ergonomics Society. All rights reserved.

62 Spring 2003 – Human Factors

Mechanisms for Skill Acquisition

Skill acquisition has traditionally been viewed
as going through three stages: the cognitive, the
associative, and the autonomous (Fitts, 1964).
In the cognitive stage performance is slow and
prone to errors, whereas in the autonomous
stage performance is fast and error free. Ander-
son (1982) posited that these three stages could
be understood as a shift from using declarative
knowledge to using procedural knowledge. For
the cognitive stage, he argued that the knowl-
edge to perform a task is mostly declarative and
needs to be interpreted. The process of interpret-
ing declarative knowledge is slow and can lead to
errors, especially if the relevant knowledge can-
not be retrieved from declarative memory when
needed. In the autonomous stage, the knowledge
to perform a task is mostly procedural. Proce-
dural knowledge is compiled and therefore fast
and free of errors. The associative stage reflects
a transitional period during which knowledge
is partly declarative and partly procedural.

To model this shift from using declarative
knowledge to procedural knowledge, Ander-
son proposed a learning mechanism he called
knowledge compilation, which became part
of the ACT* cognitive architecture (Ander-
son, 1983), a predecessor of ACT-R. Knowl-
edge compilation is a computational theory of
learning that consists of a two-step process:
proceduralization and composition. During pro-
ceduralization, domain-specific declarative
knowledge is inserted into the procedures, re-
placing general-purpose knowledge. During
composition, multiple-step procedures are col-
lapsed into a single procedure. To further refine
procedural knowledge, two more mechanisms
are used: generalization (dropping conditions
or replacing constants by variables) and spe-
cialization (adding conditions or replacing vari-
ables by constants). However, Anderson later
abandoned knowledge compilation (Anderson
& Lebiere, 1998) because of a lack of empiri-
cal evidence and problems with what he called
“computational misbehavior,” which is caused
by learned procedural knowledge that brings
the system to an endless loop or causes it to
abort prematurely. Specifically, there were too
many opportunities to learn faulty procedural
knowledge.

Newell and Rosenbloom (1981) proposed
an alternate theory of skill acquisition called
chunking, which became an important compo-
nent of the Soar (Newell, 1990) cognitive ar-
chitecture. Within Soar, learning is a result of
impasses and subsequent subgoaling. Whenever
Soar reaches an impasse (i.e., there is no applic-
able procedure or no way to resolve the choice
between multiple procedures), it automatically
creates a subgoal to resolve the impasse. When
a subgoal succeeds and the impasse is resolved,
new procedural knowledge is created that sum-
marizes all the processing required to achieve
that subgoal. If Soar encounters a similar im-
passe in the future, it can simply apply the newly
learned procedure to solve it in a single step.

The strength (and perhaps also weakness) of
chunking in Soar is that it constrains the mod-
eler to achieve all learning through a single
unified learning mechanism. Although this is
highly desirable, it is not without problems.
Because of the unpredictable nature of the gen-
eralization process of chunking, it sometimes
produced procedures that were too general. In
addition, both Soar and ACT* suffered from
their respective learning mechanisms, produc-
ing increasingly larger macroprocedures, which
become computationally intractable to match
(Tambe, Newell, & Rosenbloom, 1990) as well
as too powerful and unconstrained.

Production Compilation

Production compilation was developed by
Taatgen and Anderson (2002), and is currently
incorporated in the latest version of the ACT-R
theory (Anderson, Bothell, Byrne, & Lebiere,
2002). It relies on the same theoretical com-
mitments as ACT-R, such as the distinction
between two types of memory (declarative and
procedural) and the view that declarative
knowledge is represented as semantic net-
works and procedural knowledge as produc-
tion rules (which we will refer to as rules
henceforth for the sake of brevity). Production
compilation combines two mechanisms from
ACT* – proceduralization and composition –
into a single mechanism. In production compo-
sition, the composition of two rules into a new
single rule is accompanied by a proceduraliza-
tion step in which a condition is eliminated.
Given that ACT-R’s rules can have, at most,

SKILL ACQUISITION 63

only one retrieval from declarative memory, pro-
duction compilation guarantees that the new
rule also has, at most, one retrieval from declar-
ative memory. The following example illus-
trates production compilation.

Consider the following three production rules
to find the sum of three numbers:

Rule 1: IF the goal is to add three
numbers,

THEN send a retrieval request to
declarative memory for the
sum of the first two num-
bers.

Rule 2: IF the goal is to add three
numbers AND
the sum of the first two
numbers is retrieved,

THEN send a retrieval request to
declarative memory for
the sum that has just been
retrieved and the third
number.

Rule 3: IF the goal is to add three
numbers AND
the sum of the first two
and the third number is
retrieved,

THEN the answer is the retrieved
sum.

In the ACT* and Soar learning mechanisms,
one general rule could be learned from these
three rules that could do any three-number
addition in a single cognitive step. From a psy-
chological perspective this is not a desirable
learning outcome, given that people generally
cannot do these types of additions in one step,
even with extensive experience doing them.

In production compilation, however, new
rules are learned by specializing and combin-
ing rules that fire in sequence while rigorously
maintaining the hard constraint of performing
only one retrieval from declarative memory.
This is accomplished by eliminating the retrieval
request in the first rule and the retrieval condi-
tion in the second rule. Suppose in the exam-
ple just given that the three numbers that are
being added are 1, 2, and 3. This would pro-
duce two new rules: a combination of Rules 1
and 2 and a combination of Rules 2 and 3.

Rule 1&2: IF the goal is to add 1, 2,
and a third number,

THEN send a retrieval request to
declarative memory for

the sum of 3 and the third
number.

Rule 2&3: IF the goal is to add three
numbers and the third
number is 3, AND
the sum of the first two
numbers is retrieved and
is equal to 3,

THEN the answer is 6.

Each of these two rules can be combined
with one of the original three rules to form a
new rule that combines all three rules:

Rule 1&2&3: IF the goal is to add 1, 2,
and 3,

THEN the answer is 6.

Compared with the original three rules, this rule
is very specialized: It works only for the speci-
fied numbers 1, 2, and 3. One implication of
production compilation is that people learn new
rules only if they are more specific than the rules
they already know, and therefore they learn
rules only for situations that occur often. For
example, people probably learn the sum of 1,
2, and 3 but not that of 9, 3, and 4.

Production compilation is very suitable to
model skill acquisition. Consistent with the as-
sumptions in the ACT-R theory, it also assumes
that a skill is originally represented declarative-
ly, which may be incomplete and may require
some additional experience (episodic declara-
tive knowledge). Retrieving from declarative
memory is a very slow process because only
one memory can be retrieved at a time. Produc-
tion compilation speeds up this process by pro-
ducing task-specific procedural knowledge
(i.e., production rules). The following example
is from the air traffic controller task that we
will discuss in detail later; briefly, one aspect of
this task is that planes have to be landed, and
in order to do this one’s visual attention has to
be directed to the part of the screen that lists
the planes that can be landed. Initially this
knowledge is declarative: There are instructions
in declarative memory that in order to land a
plane, one has to attend to Hold Level 1 (a spe-
cific area on the screen) and that the location of
Hold Level 1 is on the bottom left of the screen.
In order to interpret these facts one needs the
following three rules:

Retrieve instruction:
IF you have to do a certain task,
THEN send a retrieval request to declar-

ative memory for the next instruc-
tion for this task.

Move attention:
IF you have to do a task AND

an instruction has been retrieved
to move attention to a certain
place,

THEN send a retrieval request to declar-
ative memory for the location of
this place.

Move to location:
IF you have to do a task AND

a location has been retrieved from
declarative memory,

THEN issue a motor command to the
visual system to move the eyes to
that location.

These three rules are general procedures and
may be used in any task, but when production
compilation combines them with the declarative
instruction specific to the air traffic controller
task, it produces three task-specific rules. The
first two rules are again combinations of pairs
of the original rules:

Instruction & attention:
IF you have to land a plane,
THEN send a retrieval request to declar-

ative memory for the location of
Hold Level 1.

Attention & location:
IF you have to do a task AND

an instruction has been retrieved
to move attention to Hold Level 1,

THEN issue a motor command to the
visual system to move the eyes to
the bottom left of the screen.

Combining either of these two rules with the
rule from the original set (i.e., combining “in-
struction & attention” with “move to location”
or “retrieve instruction” with “attention & loca-
tion”) produces the following task-specific rule
for landing a plane:

All three:
IF you have to land a plane,
THEN issue a motor command to the

visual system to move the eyes to
the bottom left of the screen.

This example shows how new procedural
knowledge of a task can be learned in such a

way that it considerably speeds up perfor-
mance. Another important aspect of skill acqui-
sition is that experience has to be incorporated
into performance. In the air traffic controller
task, for example, only certain types of planes
may be landed on certain runways. Suppose
you had a successful experience of landing a
DC-10 on the short runway. This experience is
then stored in declarative memory and can
later be retrieved when you are faced with a
similar situation:

Look for experience:
IF you do a task, and you have to de-

cide upon some action,
THEN send a retrieval request to declar-

ative memory for a successful ex-
perience similar to the current
situation.

Decide upon experience:
IF you do a task, and you have to de-

cide upon some action, AND
a successful experience has been
retrieved similar to the current
situation,

THEN take the same action as taken in
the retrieved experience.

Learned rule:
IF you have to land a DC-10,
THEN land it on the short runway.

The two original rules (“look for experience”
and “decide upon experience”) can be used in
any context, but when combined with the prior
experience of landing a DC-10 they produce a
task-specific rule. Note that this may lead to
generalization and also to overly generalized
rules. Indeed, in the real task, DC-10s can be
landed on the short runway only sometimes,
depending on the current weather and runway
conditions. However, the error of overgeneral-
ization results from following the strategy of
using old experiences and does not reflect an
inherent weakness in production compilation.

Although production compilation is similar
to the older mechanisms on which it builds, it
does not suffer from the problems of those
mechanisms. First, it produces only compact
production rules using a single mechanism,
making it very constrained. Second, it will not
produce production rules that lead to “compu-
tational misbehavior,” making it very robust.
Additionally, because it is embedded in the
ACT-R cognitive architecture, it is also open to
empirical testing.

64 Spring 2003 – Human Factors

SKILL ACQUISITION 65

By using production compilation to develop
computational models of complex tasks, human
factors researchers can better conceptualize
learning in complex tasks and thereby offer
better insight into the processes underlying skill
acquisition in those tasks. Production compila-
tion has already been successfully used to model
inflection of the English past tense (Taatgen &
Anderson, 2002), the German plural (Taatgen,
2001), and strategy development in the bal-
anced-beam task (van Rijn, van Someren, & van
der Maas, in press). In the remainder of this
article we will explore how production compila-
tion can be used to model a complex task.

THE AIR TRAFFIC CONTROLLER TASK

The Kanfer-Ackerman air traffic controller
(KA-ATC) task (Ackerman, 1988; Ackerman
& Kanfer, 1994) is a simplified simulation of
an air traffic controller task. It captures certain
dynamic aspects of real air traffic control, such
as planes losing fuel in real time and random
changes in the weather, but it is simple enough

to be tractable to study. Figure 1 displays a
prototypical layout of the KA-ATC task.

In the KA-ATC task, participants can accept
a plane from the queue into an open hold posi-
tion, move a plane among the three hold levels,
and land a plane on a runway by using four
keys: up arrow, down arrow, F1, and Enter.
They can move the cursor up and down the hold
positions and the runways using the up- and
down-arrow keys; accept a plane from the queue
into an open hold position using the F1 key;
and select a plane in the hold, place a selected
plane in an open hold position (either from the
queue or from another hold position), or land
a plane on a runway using the Enter key.

Strict rules govern landing planes in this
task. Planes can land only from Hold Level 1
onto an unoccupied runway consistent with the
current wind direction, and ground conditions
and wind speed determine the runway length
required by different plane types. Participants
receive 50 points for landing a plane, are penal-
ized 100 points for allowing a plane’s fuel level
to fall to 0 min in the hold, and are penalized

Figure 1. The KA-ATC task. The display is composed of the following items: (a) 12 hold positions (spaces
that can hold airplanes), either empty or containing a plane; (b) four runways, two of each length (short and
long) and two of each direction (north-south and west-east); (c) current score; (d) current runway and
weather conditions; (e) the queue of planes waiting to be entered into hold positions, each dot representing a
plane; and (f) three message windows. The 12 hold positions are divided into three levels roughly corre-
sponding to altitude.

10 points for violating a rule. Planes are added
to the queue approximately every 7 s, and it
takes 15 s for a plane to clear a runway. Once
planes enter the hold position from the queue,
they have 4 to 6 min of fuel and begin to lose
fuel in real time.

Previous Efforts to Model the KA-ATC Task

Lee and Anderson (2000) developed a model
of expert performance in the KA-ATC task
using ACT-R perceptual motor (ACT-R/PM;
Byrne & Anderson, 1998) cognitive architec-
ture. In their model, Lee and Anderson showed
that expert performance in the KA-ATC task
required a substantial degree of parallelism
among cognition, perception, and action. In-
deed, as people became skilled in the KA-ATC
task, their performance was largely limited by
the constraints on the motor system. Lee and
Anderson (2000) modeled only expert perfor-
mance in the KA-ATC task and did not model
learning, which is the focus of the present model.

In addition, Taatgen (2002) developed an
ACT-R model of the impact of individual differ-
ences on performance and learning speed. By
manipulating ACT-R parameters corresponding
to working memory capacity, speed of produc-
tion compilation, and psychomotor speed, he
found the same pattern of correlations between
individual differences and performance as Ac-
kerman (1988) found in his empirical analysis.
However, the model only approximated the
interaction between the participant and the task,
could not achieve the same levels of perfor-
mance as the human participants, and was un-
able able to model human performance at the
level of unit tasks and keystrokes. The model
we present in this paper is an extension and re-
vision of this model. In the current model, we
account for perceptual and motor interaction
with the interface of the air traffic controller task
and the learning and performance exhibited by
human participants.

THE MODEL

The model consists of two parts. The first
part is a declarative representation of what the
participant has to do in the experiment. This rep-
resentation is based on the instructions that the
participants receive for the task and on the task

analysis made by Lee and Anderson (2001).
The second part is a set of domain-general pro-
duction rules, among which are rules to attend
to regions on the screen, to press sequences of
keys, to change between goals, and to repeat
certain actions until a criterion is satisfied. The
declarative representation we use is just one of
many possible interpretations of the instruc-
tions; other interpretations are possible. That
is, because our interpretation of the instruc-
tions stems from our specific task analysis, dif-
ferent analyses of the task may lead to different
interpretations. However, our analysis of the
task enables our model to learn the task as well
as people do, which is one way to evaluate the
sufficiency of a task analysis.

Our model of the KA-ATC task is based on
the ACT-R cognitive architecture (Anderson et
al., 2002). In particular, we use Version 5 of
ACT-R, which incorporates many new theoret-
ical elements, including a perceptual-motor ex-
tension. We will first give an overview of the
ACT-R cognitive architecture followed by a
description of our model. We then proceed to
discuss in more detail those aspects of ACT-R
that are particularly important for the present
model.

Overview of the ACT-R Architecture

The theoretical foundation of the ACT-R ar-
chitecture is the rational analysis of human cog-
nition (Anderson, 1990). According to rational
analysis, each component of the cognitive sys-
tem is optimized with respect to the demands
from the environment, given its computational
limitations. The main components of ACT-R are
the two memory systems: the declarative (fact)
memory and the procedural (skill) memory.
ACT-R is a hybrid architecture in that it has both
symbolic and subsymbolic layers. Items in de-
clarative memory, called chunks, have different
levels of activation to reflect their use: chunks
that have been used recently or chunks that are
used frequently have high levels of activation.
Activation of a chunk decays over time if it is not
used. In addition, chunks are by themselves inert;
they require production rules for their applica-
tion. In order to use a chunk, a production rule
has to retrieve it from declarative memory and
another production rule has to do something
with it.

66 Spring 2003 – Human Factors

SKILL ACQUISITION 67

Because ACT-R is a goal-driven theory, chunks
are always retrieved to achieve some goal. In
the context of the KA-ATC task, there are sev-
eral goals. Although only one goal can be active
at any one time, a model may use elaborate
strategies to switch between goals. One goal
may be to land a plane, for which it may be nec-
essary to hand control over to a lower-level goal
(e.g., a goal to move the arrow on the screen to
the desired plane).

The behavior of production rules is also gov-
erned by the principle of rational analysis. Each
production rule maintains a set of parameters
that is used to calculate its expected outcome.
The expected outcome of a rule is derived from
the estimated cost (in time) and probability of
reaching the goal if that rule is chosen. ACT-R’s
learning mechanisms constantly update these
estimates based on experience. If multiple pro-
duction rules are applicable for a goal, the rule
with the highest expected outcome is selected.

In both declarative and procedural memory,
a selection is made on the basis of some evalu-
ation, either activation or expected outcome.
However, this process is noisy, so although the
item with the highest value has the greatest
probability of being selected, other items do
occasionally get opportunities to be selected.
Although having noise may produce errors or
suboptimal behavior, it also allows the system
to explore knowledge and strategies that are still
evolving. In addition to learning through fine-
tuning the activations of chunks and expected
outcomes of production rules, ACT-R can also
learn new chunks and production rules. New
chunks are learned automatically: Each time a
goal is completed, it is added to declarative
memory. If an identical chunk is already present
in memory, both chunks are merged and their
activation values are combined. Chunks are also
acquired through perception, such as when in-
formation on the screen is encoded into declar-
ative memory. New production rules are learned
through production compilation.

The current ACT-R theory also offers a
perceptual-motor interface to the architecture
that allows for accurate predictions of attention-
al shifts and motor actions. It enables the model
to interact directly with the experimental soft-
ware, ensuring that the model uses the same
methods that the participants use to interact

with the external task. Although the central
core of ACT-R is serial, the different subsys-
tems (the visual system, declarative memory,
the motor system) can act asynchronously. For
example, when declarative memory is busy
with a retrieval, a production rule not acting
on declarative memory may issue a command
to move visual attention to a new location.

Task Analysis

Figure 2 illustrates Lee and Anderson’s (2001)
decompositional task-analysis of the KA-ATC
task. The task analysis is based on Card, Moran,
and Newell’s (1983) method of unit-task analy-
sis, in which a task is decomposed into increas-
ingly specific goals, all the way down to the
keystroke level. Lee and Anderson’s (2001)
analysis of the keystroke level includes not only
keystrokes but also changes in visual attention,
which were then compared with eye movement
data. As can be seen in Figure 2, the KA-ATC
task can be decomposed into three unit tasks:
(a) moving a plane between hold levels, (b) land-
ing a plane on a runway, and (c) getting a plane
from the queue into a hold position. As Figure 2
further illustrates, each unit task can be decom-
posed into a number of functional-level goals.
For instance, the unit task of landing a plane in-
volves (a) finding a plane to land, (b) moving to
the plane, (c) selecting the plane, (d) finding
a runway to land on, (e) moving to the desired
runway, and (f) landing the plane. Each of
these functional-level goals involves a number
of keystroke-level goals, including a sequence of
shifts of attention across the screen, encoding
of information on the screen, and a keystroke to
effect the desired action. We illustrate only the
land unit task because both the move and queue
unit tasks are nearly identical in structure to the
land unit task but are less complicated.

Description of the Model

As indicated in the Introduction, the basis for
the model is the idea that instructions are repre-
sented in declarative memory and need to be
retrieved and interpreted. The production rules
that interpret the declarative instructions are
not task specific and can be used for other tasks
as well. The declarative representation that is
used in our model is a mixture of ideas expres-
sed by Taatgen (1999) and by Anderson (2000).

68 Spring 2003 – Human Factors

It is organized in two levels: The top level con-
sists of goals, and the bottom level consists of
individual steps that have to be taken to com-
plete a goal. The individual steps of a goal are
organized sequentially. For example, to land a
plane, one must first look at Hold Level 1 to see
if it contains any planes, then look at the wind
direction to determine which runways are cur-
rently usable, and finally look at the two usable
runways to determine their availability (i.e.,
occupancy). At that point a decision has to be
made about what to do next, so a switch is made
to one of four possible goals: If both runways
are occupied or there is nothing in Hold Level 1,
a goal is selected to move a plane from Hold
Level 2 to Hold Level 1. If only the short run-
way is free, a goal that searches for a non-747 in
Hold Level 1 is selected.

In addition to declarative knowledge repre-
senting the instructions, there is also declarative
knowledge that controls the switching between
goals. In general, there is declarative knowledge
that specifies what to do when a goal is com-
pleted successfully, what to do when a goal fails,
and what to do at explicit choice points in a
goal. For example, there is a chunk specifying
that if the land goal fails (which happens when
no plane is to be found in Hold Level 1), the
model should switch to the move goal. Another

chunk specifies that once the land goal has
arrived at the do-landing action, and its argu-
ment is that both runways are free, the model
should switch to the goal depicted in Figure 3
as “land long free short free.” Figure 3 shows
the full goal structure of the model. The loca-
tions of objects on the screen (e.g., the fact
that Hold Level 3 is in the top-left corner of the
screen) are also represented and stored in de-
clarative memory.

The procedural knowledge contains no task-
specific rules. It has rules to implement the goal-
switching scheme that we described previously
and can perform the operations in Table 1.
Table 2 is an example of the detailed instruc-
tions for implementing “land any plane on long
rw” from Figure 3. This goal is executed when
planes are available to land and the long run-
way is free. Each instruction has an action slot
(action), two argument slots (arg1 and arg2),
and a slot that refers to the previous instruction
(prev). The content of the action slot refers to
one of the actions that are implemented by the
rules in Table 1. The argument slots are used
to pass on arguments to the action, sometimes
with literal values, sometimes with references
to other declarative knowledge (for example,
screen locations), and sometimes with refer-
ences to information stored in the goal (loc1

Figure 2. A hierarchical task decomposition of the KA-ATC task. Only the “land plane on runway” unit task
is expanded to the functional level. Adapted from Cognitive Psychology, Vol. 42, No. 2, Lee & Anderson,
“Does learning a complex task have to be complex? A study in learning decomposition,” pp. 267–316, copy-
right 2001, with permission from Elsevier.

SKILL ACQUISITION 69

TABLE 1: Operations That Can Be Performed by Task-Independent Procedural Knowledge

Operation Description

Scan The scan operations move visual attention to a certain region on the screen,
Scan seek focus on an object in that region, and perceive that object. Scan seek will focus
Scan empty only on objects that have not been recently attended, and scan empty will focus

on empty space instead of text (necessary to find empty slots in the hold levels).

Remember loc The remember operations store information from the current visual location
Remember string or object in the goal. Remember loc stores the current visual location. Remember
Remember status string parses the currently attended word and stores it in the goal. Remember

status parses a runway string and stores its status (free or occupied) in the goal.

Press enter Operations to press the enter and F1 keys, respectively.
Press F1

Move to loc Operation to move the cursor to a specified position on the screen by repeated
pressing of the arrow keys.

Compare restart Compare whether the two arguments of the action are equal. If this is the case,
restart the present goal; if not, continue. This operation is used in combination
with scan-seek to find a non-747 in Hold Level 1.

Figure 3. Structure of the goals used by the model. Each circle represents a goal used by the model; the
arrows show conditions on which a change of goal is made. “Long = free” means “long runway in the current
wind direction is free,” “plane = 747” means “currently attended plane is a 747,” and so forth; rw = runway.

70 Spring 2003 – Human Factors

means information is stored in the goal; var1
means this information is retrieved again).
Table 2 also shows an example of a chunk that
specifies a goal switch. It states that once the
example goal is completed, the model should
proceed with the land goal.

As the model begins, the instructions are re-
trieved one by one and carried out by the appro-
priate production rules. Once the model gains
sufficient experience, production compilation
produces new rules that create shortcuts through
these instructions, similar to the examples de-
scribed in the Introduction. For example, a rule
that is learned from the example in Table 2 sum-
marizes the action in the two steps, land-fo-4
and land-fo-5:

IF the task is land-fo and step land-fo-3 is
completed,

THEN issue a motor command to the manual
system to press enter AND
issue a motor command to the visual sys-
tem to move the eyes to (200,50) AND
note that step land-fo-5 is completed.

This production issues a command to press a
key and to attend to a location on the screen at

the same time, without any intervening declar-
ative memory retrieval. In doing so, it saves time
by parallelizing perceptual and motor actions
and by eliminating slow declarative memory
access.

It has to be noted that the particular strategy
that we use in our model is not the only possible
strategy. For example, whereas the strategy that
we implemented gets only one plane from the
queue before checking whether it is possible
to land it or move it, an alternate strategy is to
bring many planes from the queue in sequence,
speeding up the queuing process but potential-
ly missing landing opportunities. These and
other strategies may be modeled by extending
the definition of what constitutes a unit task
and the priorities between them. For instance,
the queue unit task could be changed to getting
a set of planes from the queue instead of one. In
addition, some participants may still be learning
the exact nature of the unit tasks and their pri-
orities and will switch strategies later on (John
& Lallement, 1997).

One important feature of the model is that
it interacts with the experimental software (the

TABLE 2: Example of Declarative Instructions for Landing an Arbitrary Plane on the Long Runway

Note: Land-fo refers to “long runway free and short runway occupied” and corresponds to “land any plane on long rw” in Figure 3.
First an arbitrary plane in Hold Level 1 is attended (Instructions 1 and 2). Then the arrow is moved to that plane and enter is pressed
(Instructions 3 and 4). In the next steps, the wind direction is checked because it determines which of the two long runways has to be
used (Instructions 5 and 6). Finally, the appropriate runway can be attended (Instructions 7 and 8) and the arrow can be moved to it,
after which the final enter is pushed (Instructions 9 and 10). The gc53 instruction specifies that after the goal do-landing-fo has suc-
cessfully been completed, the new goal will be land.

Land-fo-1
action scan
arg1 hold-level-1
arg2 plane-type
prev start

Land-fo-2
action remember-loc
arg1 loc 1
arg2 none
prev land-fo-1

Land-fo-3
action move-to-loc
arg1 var 1
arg2 left-column
prev land-fo-2

Land-fo-4
action press-enter
arg1 none
arg2 none
prev land-fo-3

Land-fo-5
action scan
arg1 wind-direction
arg2 none
prev land-fo-4

Land-fo-6
action remember-string
arg1 loc 1
arg2 none
prev land-fo-5

Land-fo-7
action scan
arg1 runway-long
arg2 var1
prev land-fo-6

Land-fo-8
action remember-loc
arg1 loc 1
arg2 none
prev land-fo-7

Land-fo-9
action move-to-loc
arg1 var1
arg2 right-column
prev land-fo-8

Land-fo-10
action press-enter
arg1 none
arg2 none
prev land-fo-9

Land-fo-11
action done
arg1 none
arg2 none
prev land-fo-10

Gc53
task do-landing-fo
type done
newtask land

SKILL ACQUISITION 71

version used by Lee & Anderson, 2001, for their
experiments) by issuing perceptual and motor
commands. Another important feature of the
model is that it runs with all the parameters in
ACT-R set to their default values. ACT-R has
been criticized in the past for having too many
free parameters, limiting the scientific value of
its predictions. As a consequence, more care is
taken within the ACT-R community to be con-
sistent and principled in setting the parameters.
By using the recommended default values for
the parameters that have been established in
other studies, our model exemplifies this effort.

COMPARISON

To judge the accuracy of the model, we com-
pared the model predictions with data made
available in Ackerman and Kanfer (1994,
Study 2), as reported in Ackerman (1988). The
data from Study 2 were from 65 college under-
graduates who completed 18 trials of the KA-
ATC task, with each trial lasting 10 min. For
our model comparison, we used only Trials 1
through 10. We compared the model’s predic-
tions and the data at three levels of detail: (a)
overall performance, (b) unit task level per-
formance, and finally (c) keystroke level perfor-
mance. In order to get the model’s predictions,

we ran the model five times for 10 trials and
averaged the results. All ACT-R parameters
were set to their default values.

Overall Performance

As a measure of overall performance, we
took the number of planes that were landed
within a 10-min trial. Figure 4 shows the par-
ticipant data and the predictions of the model.
Initially the model outperformed the partici-
pants, but after a few trials the correspondence
between the model and the data was quite good
(r2 = .97 over all 10 trials). The initial advan-
tage of the model is probably attributable to
the fact that it has all the declarative knowledge
it needs to do the task, whereas participants
must learn some of this information while they
are learning to do the task initially. For exam-
ple, Lee and Anderson (2001) attributed their
participants’ initial speedup mostly to the fact
that they started to learn where all the visual
information on the screen was located and thus
could avoid unnecessary eye movements. The
present model initially has all the visual loca-
tions in declarative memory and does not need
to search for them. Also, the model starts out
with a reasonably efficient strategy in declara-
tive memory, which may be true for some par-
ticipants but certainly not for all of them.

Figure 4. Number of planes landed by the participants (data) and the model for each 10-min trial.

72 Spring 2003 – Human Factors

Performance at the Unit Task Level

As has been indicated in the task analysis,
three unit tasks can be identified: landing a
plane, moving a plane between hold levels, and
getting a plane from the queue. Figure 5 shows
the empirical results along with the model’s
predictions for the time it takes to complete
each of the three unit tasks. As can be seen,
although the fit between the model and the
data for the land unit task is good (r2 = .98),
the model is generally slower than the partici-
pants in the experiment for the remaining two
unit tasks. This is especially true for the move
unit task, for which the model is much slower,
except in the first trial. An explanation for this
can be found in our choice of strategy for the
model. The strategy is to check whether a land-
ing is possible before attempting a move unit
task, and hence the model will never do con-
secutive move unit tasks without first checking
the wind direction and the occupancy of the
runways. For the queue unit task, apart from
the initial trial, the participants are also faster
than the model (r2 = .91). This may again be
attributable to the model doing a queue unit
only task after checking the unavailability of
other options (i.e., land and move unit tasks).
Nevertheless, the match is quite reasonable,
especially considering that we are using the
default ACT-R parameters.

Performance at the Functional
and Keystroke Levels

With respect to analyzing performance at
the functional and keystroke levels, we limit our
discussion to the land unit task because it is
the most complicated of the unit tasks. In the
land unit task, the decision about which plane
to land on what runway has to be made while
taking into account the weather conditions.
The move and queue unit tasks are much more
straightforward in that they involve no critical
decisions. As discussed previously, there are six
functional-level goals for the land unit task: find
plane, move to plane, select plane, find runway,
move to runway, and select runway. Because of
the absence of eye-movement data in the Acker-
man study (Ackerman, 1988; Ackerman & Kan-
fer, 1994, Study 2), the comparison between
model and data will involve keystrokes only.
Most of the functional-level goals are associated

with only one keystroke, except for the move-
to-plane and move-to-runway goals. We will
therefore analyze the functional level and the
keystroke level together.

Find plane time is the time between the end
of the previous unit task and the first keystroke.
Move to plane time is the average time for each
arrow key press moving to the target plane.
Select plane time is the time between the final
arrow key press used to arrive at the plane and
the enter key press to select the plane. Find run-
way time is the average time between the enter
key press that selected the plane and the first
arrow key press toward the runway. Move to
runway time is again the average time for each
arrow key press moving to the runway. Finally,
select runway time is the time between the final
arrow key press used to arrive at the runway and
the enter key press to land on the runway.

Figure 6 shows the time to complete these
keystroke-level goals for both the data and the
model (r2 = .87). If we compare the predictions
of the model and the performance of the partic-
ipants, the qualitative pattern is the same. That
is, the keystroke times are in the right order,
with the slowest keystrokes for the model also
being the slowest keystrokes for the partici-
pants. In addition, the learning patterns are
very similar. The main discrepancy between the
model and the data is that the model is slower
for the more “cognitive” keystrokes, such as
finding and selecting a plane, and is slightly
faster for the move to plane and move to run-
way keystrokes. The predictions for finding and
selecting the runway are accurate. One expla-
nation for the discrepancy is that the model
rarely makes unnecessary keystrokes, whereas
participants do. For example, if a participant
moves the arrow a couple of keystrokes toward
a certain plane and then decides to select anoth-
er plane, the finding of the second plane is
counted as being part of “move to plane.” In
this sense, the “find a plane” latencies are dilut-
ed into other categories of keystrokes, mainly
“move to plane” keystrokes, for which the model
is actually faster than the participants. We again
believe that this simply reflects the fact that the
model starts out with an accurate, complete
declarative representation of what to do in the
task, whereas participants must sometimes learn
while they are doing the task.

SKILL ACQUISITION 73

Figure 5. Unit task performance by the participants (data) and the model for (a) land unit task, (b) move unit
task, and (c) queue unit task.

(c) Queue unit task

(b) Move unit task

(a) Land unit task

74 Spring 2003 – Human Factors

Limitations of the Model

Production compilation can incorporate ex-
periences gained during task performance, al-
though this issue has not been explored in the
present model. Taatgen (2002) showed some
examples of this in an earlier ACT-R model in
which illegal weather-plane-runway combina-
tions were remembered by the model and later
compiled into rules that tried to avoid these
combinations.

Another aspect of learning in the KA-ATC
task that is not fully explored by the present
model is the tight interleaving of perceptual, mo-

tor, and declarative processes. The model has no
strategies to use cognitive “slack time” (i.e., peri-
ods of time when it is waiting for one of the ex-
ternal actions to finish, such as moving the eyes,
pushing a key, and retrieving something from
memory). Such integration is necessary (Lee &
Anderson, 2000) if the model is to reach the
participants’ level of performance after the full
18 trials.

In addition, the model starts out with too
much knowledge and strategy for doing the
task. Although participants presumably pick up
some of this knowledge during presentation of
the instructions, they still must discover and

Figure 6. Keystroke-level performance on the land unit task by the participants (data, top) and the model
(bottom).

SKILL ACQUISITION 75

learn much of the task knowledge, such as find-
ing locations on the screen (Lee & Anderson,
2001), while doing the task. The fact that this
strategy-discovery phase is not modeled also
prevents the model from capturing the individ-
ual differences in strategy use as reported by
John and Lallement (1997). Despite the lack of
strategy evolution in our model, it does show
one strategic transition: In the first few trials, the
model uses what John and Lallement called
the sequential strategy – that is, getting one plane
from the queue, landing it, and then repeating
those steps. After practice, however, this changes
into the opportunistic strategy, in which people
try to keep Hold Level 1 filled with planes but
give priority to landing planes.The model’s expla-
nation is simple: At first, the model is too slow
to keep the runways occupied, so when it gets a
plane from the queue there is a runway available
that it can use to land the plane. With practice,
however, the model becomes faster and so is able
to get more planes from the queue than it can
actually land, thereby filling up Hold Level 1.

Despite the fact that the model currently
does not capture individual differences in strat-
egy use and tight perceptual and motor integra-
tion as a result of learning, it can be extended
to incorporate them. For example, the use of
slack time can potentially be modeled by incor-
porating production rules that act in periods of
slack time (Lee & Taatgen, 2002). In addition,
other strategic knowledge can be added to the
model to search for certain information on the
screen instead of incorporating it in the initial
declarative knowledge. Finally, knowledge can
be added to memorize experience and retrieve
it at the appropriate moment. However, to im-
prove on individual differences in strategy learn-
ing and use, a more in-depth investigation into
how people use general procedural knowledge
(e.g., analogy or other weak methods) to develop
task-specific strategies is needed.

The fit of the model may also be improved by
changing parameters of the model. For example,
slowing down declarative retrieval may alleviate
the initial discrepancy between the model and the
data with respect to the number of planes land-
ed. However, this would simply act to conceal
the fact that the model is too good initially be-
cause it has more declarative knowledge than
participants have.

CONCLUSIONS

In this article we have taken a task analysis
for a fairly complex task, the KA-ATC task, and
have combined it with the task instructions to
produce a declarative representation of how
this task is initially performed. This declarative
representation, together with task-independent
production rules and the production compila-
tion mechanism, produced detailed predictions
of learning in this task. Discrepancies between
the model’s predictions and the experimental
outcomes can largely be attributed to our use of
a single strategy for performing this task, where-
as participants use a variety of different strate-
gies and even change strategies during task
execution.

Although the KA-ATC is a laboratory task,
it is comparable in complexity to other tasks
that have been used in human factors research
(e.g., Ehret, Gray, & Kirschenbaum, 2000; Pri-
etula, Feltovich, & Marchak, 2000). Therefore
it is likely that the results of this study and the
methods used in it can be generalized to other
tasks and domains. The limitation of most meth-
ods of task analysis is that they describe the
knowledge needed for expert behavior. As such,
the main prediction about learning is limited to
the view that as more knowledge is needed for a
task, it takes longer to learn it all (e.g., Kieras,
1997). This prediction, however, does not take
into account the fact that some knowledge may
be harder to learn than other knowledge, nor
does it take into account the way the knowl-
edge is learned based on how instructions are
formulated. The method used in this article
gives a detailed prediction of the entire learning
process, from the initial representation of the
instruction to final asymptotic performance.
Hence, using our approach, different types of
instruction can be tested for their efficacy and
different task analyses can be examined for
their accuracy.

The main vehicle for our approach is produc-
tion compilation. Production compilation is a
powerful mechanism that combines task-specific
declarative knowledge and domain-general pro-
cedural knowledge into task-specific production
rules. Although it is based on earlier mecha-
nisms from ACT* and Soar, its main advantage
is that it is a single mechanism (a property it

76 Spring 2003 – Human Factors

shares with Soar) that produces small, con-
strained rules. It is implemented in the current
ACT-R architecture. Because the model present-
ed in this article used only default values for
parameters, this led to a single prediction about
behavior that we then compared with human
data. This imposes a strong constraint to our
model and our approach as a whole, but such
constraint is useful and ultimately necessary if
cognitive modeling is to be used to make a pri-
ori predictions that can be used in practice.

In order to develop the current example into
a testing platform, additional work has to be
done with respect to the general strategies that
the model can learn and to how production
compilation can be used to account for paral-
lelizing perceptual and motor actions (see Lee
& Taatgen, 2002, for some preliminary work on
this). Analogy has already proved to be a strate-
gy that works very well with production compi-
lation (Taatgen & Anderson, 2002), and other
weak methods such as means-ends analysis are
probably good candidates as well (Anderson,
1987).

REFERENCES
Ackerman, P. L. (1988). Determinants of individual differences

during skill acquisition: Cognitive abilities and information
processing. Journal of Experimental Psychology: General, 117,
288–318.

Ackerman, P. L., & Kanfer, R. (1994). Kanfer-Ackerman air traffic
controller task© CD-ROM database, data collection program,
and playback program. Arlington, VA: Office of Naval Research,
Cognitive Science Program.

Anderson, J. R. (1982). Acquisition of cognitive skill. Psychological
Review, 89, 369–406.

Anderson, J. R. (1983). The architecture of cognition. Cambridge,
MA: Harvard University Press.

Anderson, J. R. (1987). Skill acquisition: Compilation of weak-
method problem situations. Psychological Review, 94, 192–210.

Anderson, J. R. (1990). The adaptive character of thought. Hills-
dale, NJ: Erlbaum.

Anderson, J. R. (2000). Learning from instructions. In Proceedings
of the 7th Annual ACT-R Workshop (n.p.). Pittsburgh, PA:
Carnegie Mellon University.

Anderson, J. R., Bothell, D., Byrne, M. D., & Lebiere, C. (2002).
An integrated theory of the mind. Retrieved October 17, 2002,
from http://act-r.psy.cmu.edu/papers/403/IntegratedTheory.pdf

Anderson, J. R. & Lebiere, C. (Eds.). (1998). The atomic compo-
nents of thought. Mahwah, NJ: Erlbaum.

Byrne, M. D., & Anderson, J. R. (1998). Perception and action. In
J. R. Anderson & C. Lebiere (Eds.), The atomic components of
thought (pp. 167–200). Mahwah, NJ: Erlbaum.

Card, S. K., Moran, T. P., & Newell, A. (1983). The psychology of
human-computer interaction. Hillsdale, NJ: Erlbaum.

Ehret, B. D., Gray, W. D., & Kirschenbaum, S. S. (2000). Contend-
ing with complexity: Developing and using a scaled world in
applied cognitive research. Human Factors, 42, 8–23.

Fitts, P. M. (1964). Perceptual-motor skill learning. In A. W.
Melton (Ed.), Categories of human learning (pp. 243–285).
New York: Academic.

John, B. E., & Lallement, Y. (1997). Strategy use while learning to
perform the Kanfer-Ackerman air traffic controller task. In M.
G. Shafto & P. Langley (Eds.), Proceedings of the 19th Annual
Conference of the Cognitive Science Society (pp. 337–342).
Mahwah, NJ: Erlbaum.

Kieras, D. E. (1997). A guide to GOMS model usability evaluation
using NGOMSL. In M. Helander, T. K. Landauer, & P. Prabhu
(Eds.), Handbook of human-computer interaction (2nd ed.,
pp. 733–766). New York: Elsevier.

Lee, F. J., & Anderson, J. R. (2000). Modeling eye-movements of
skilled performance in a dynamic task. In N. A. Taatgen & J.
Aasman (Eds.), Proceedings of the 3rd International Con-
ference on Cognitive Modeling (pp. 194–201). Veenendaal,
Netherlands: Universal.

Lee, F. J., & Anderson, J. R. (2001). Does learning a complex task
have to be complex? A study in learning decomposition. Cogni-
tive Psychology, 42, 267–316.

Lee, F. J., & Taatgen, N. A. (2002). Multitasking as skill acquisi-
tion. In W. D. Gray & C. D. Schunn (Eds.), Proceedings of the
24th Annual Conference of the Cognitive Science Society (pp.
572–577). Mahwah, NJ: Erlbaum.

Newell, A. (1990). Unified theories of cognition. Cambridge, MA:
Harvard University Press.

Newell, A., & Rosenbloom, P. S. (1981). Mechanisms of skill
acquisition and the law of practice. In J. R. Anderson (Ed.),
Cognitive skills and their acquisition (pp. 1–55). Hillsdale, NJ:
Erlbaum.

Prietula, M. J., Feltovich, P. J., & Marchak, F. (2000). Factors influ-
encing analysis of complex cognitive tasks: A framework and
example from industrial process control. Human Factors, 42,
56–74.

Taatgen, N. A. (1999). Learning without limits. Unpublished Ph.D.
thesis, University of Groningen, Netherlands.

Taatgen, N. A. (2001). Extending the past tense debate: A model
of the German plural. In K. Stenning & J. Moore (Eds.),
Proceedings of the 23rd Annual Meeting of the Cognitive
Science Society (pp. 1018–1023). Mahwah, NJ: Erlbaum.

Taatgen, N. A. (2002). A model of individual differences in skill
acquisition in the Kanfer-Ackerman air traffic control task.
Cognitive Systems Research, 3, 103–112.

Taatgen, N. A., & Anderson, J. R. (2002). Why do children learn
to say “broke”? A model of the past tense without feedback.
Cognition, 86, 123–155.

Tambe, M., Newell, A., & Rosenbloom, P. S. (1990). The problem
of expensive chunks and its solution by restricting expressive-
ness. Machine Learning, 5, 299–348.

van Rijn, H., van Someren, M., & van der Maas, H. (in press).
Modeling developmental transitions on the balance scale task.
Cognitive Science.

Niels A. Taatgen received his Ph.D. in psychology in
1999 from the University of Groningen, Netherlands.
He is Universitair Hoofddocent (roughly equivalent
to associate professor) in the Department of Arti-
ficial Intelligence at the University of Groningen.

Frank J. Lee received a Ph.D. in cognitive psycholo-
gy from Carnegie Mellon University in 2000. He is
an assistant professor in the Department of Cogni-
tive Science at Rensselaer Polytechnic Institute.

Date received: October 4, 2001
Date accepted: November 11, 2002

