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Abstract 

Most multitasking models make use of executive processes to 
assign resources to tasks (Kieras et al., 2000). An alternative 
is to have no executive, but constrain individual processes so 
that they share resources in a plausible way. Salvucci and 
Taatgen (under revision) in their theory of threaded cognition 
have shown how peripheral resources and declarative memory 
are shared between processes without an executive. In this 
paper we will extend this work by showing how two tasks 
share a resource to store the problem representation in a dual-
task paradigm where either task sometimes needs a problem 
representation and sometimes not. Threaded cognition 
predicts extra interference when both tasks need a problem 
representation, which is what we found in the experiment. 

Introduction 
Human beings are amazingly adept at performing multiple 
tasks concurrently, and at combining previously unrelated 
tasks. This stands in sharp contrast to the current situation in 
cognitive modeling, where most models of multitasking 
make use of a so-called Customized Executive (Kieras et al., 
2000). This is an, often complicated, control process 
specialized for the tasks at hand. It determines how the tasks 
will be interleaved, and at which point one of the tasks takes 
precedence. A consequence of this is that for every two 
tasks a different control structure is required, which, in turn, 
implies that we would have to learn a new control structure 
for every new combination of tasks. A more plausible 
solution would be to have a General Executive that could 
interleave any two tasks (Kieras et al., 2000; Salvucci, 
2005). There have been several proposals for such a General 
Executive in cognitive architectures (e.g., Kieras et al., 2000 
(EPIC); Salvucci, 2005 (ACT-R)). However, these 
proposals have not been equally successful in accounting for 
multitasking data as customized executive approaches. 

 Yet another possibility is to have no executive at all 
(e.g., Liu, Feyen, & Tsimhoni, 2006), which is the 
underlying idea of the new multitasking theory ‘Threaded 
Cognition’ of Salvucci and Taatgen (under revision). The 
essence of threaded cognition is that it has no central 
executive, but instead makes sure individual tasks in a 
multitasking situation interleave without top-down control. 
This interleaving of individual tasks sometimes leads to 
additional costs. Salvucci and Taatgen have already shown 
how declarative memory can be a contended resource, and 
that competition for this resource can explain differences 
between novices and experts on a task. In the current paper 

we will show evidence for a second shared central resource: 
the problem representation. We will use a dual-task situation 
with two relatively complex tasks: driving and operating a 
navigation device. The experimental manipulation is to have 
two variations of each of the two tasks, one that does require 
a problem representation, and one that does not. 

First, we will outline threaded cognition, and show what 
kind of multitasking costs the theory predicts. Second, we 
will test in an experiment whether this prediction is correct, 
and finally compare the results of the experiment to a model 
designed with threaded cognition. 

Threaded Cognition 
Threaded cognition posits that each task (in a multitasking 
context) is represented by a cognitive thread (Salvucci & 
Taatgen, under revision). Each of these threads has its own 
control structure: there is no central executive; threads are 
independent and can be run in isolation. Threaded cognition 
can therefore account for the flexible way humans combine 
previously unrelated tasks, and for the fact that many tasks 
can be learned in isolation first and performed together later. 

All threads are processed together on a single processor, 
which can only execute one rule at a time, and will therefore 
present a bottleneck (this in contrast to the approach of 
Kieras et al., 2000). At any given time, production rules of 
all threads can be selected, when multiple rules (of different 
threads) match, the rule belonging to the thread that has 
least recently been processed will be executed. This makes 
sure none of the threads will starve as long as it has 
matching production rules.   

While the central processor presents a first bottleneck, it 
is not the only one. The threads have to share resources like 
memory and vision, which creates additional interference. 
For instance, if two threads need to retrieve a fact from 
declarative memory, the one that comes first can request 
retrieval, and the second thread will have to wait. A second 
consequence of resource sharing is that threads have to be 
polite, in that they should not ‘steal’ resources from another 
thread, as this could result in an infinite loop. 

Costs of multitasking 
As explained above, possible bottlenecks in the model are 
the central processor and resource sharing. In the current 
paper we investigate interference of sharing the problem 
representation resource. If a thread has to keep a problem 
state in mind, for instance a partial solution to a problem, 
and another thread has to keep track of its own problem 
state, both threads will have to restructure their problem 
state every time they take control (assuming only one 



problem state can be maintained at a time). Thus, threaded 
cognition predicts additional interference in case two 
threads both have to keep track of their own problem state. 
Additional in the sense that the problem representation has 
to be restored on every task switch, in contrast to the use of 
the visual or memory resource where threads only have to 
wait sometimes, but can carry on afterwards. 

The current paper tests this prediction by comparing two 
tasks in two conditions, an easy condition in which no 
problem state is necessary, and a hard condition in which it 
is. Thus, suppose performance is 100% if both tasks are 
easy, and 90% when one of the two tasks is hard (because of 
perceptual / motor / memory resource sharing), threaded 
cognition predicts a task performance lower than 80% in the 
condition when both tasks are hard. 

Threaded Cognition & ACT-R 
Because threaded cognition strives to be an “integrated” 
theory, it is implemented in the cognitive architecture ACT-
R (Anderson et al., 2004). ACT-R is a cognitive architecture 
consisting of specialized modules functioning around a 
central production rule system. This production system 
works on a single goal at a time, for which it sequentially 
executes production rules. In order to achieve multitasking, 
a control structure is needed that switches between the 
multiple goals at the appropriate moments, essentially 
requiring a customized executive for each combination of 
tasks.  

A possible solution for this problem could be, as stated 
above, threaded cognition. This is implemented in ACT-R 
in the following way. Instead of only one goal, ACT-R is 
now allowed to have multiple goals. Each goal represents a 
thread, and will have a number of dependent production 
rules. However, as in standard ACT-R, only one rule can 
fire at any given time. If production rules related to different 
goals match at the same time, threaded cognition will select 
the rule belonging to the least recently processed goal.  

In ACT-R, the problem representation has to be stored in 
the imaginal buffer, which has to be shared by multiple 
tasks. In combination with threaded cognition this clearly 
predicts strong interference if two tasks have to keep track 
of a problem represenation.  

The Experiment 
To test our hypothesis we modified the discrete driving task 
of Salvucci, Taatgen and Kushleyeva (2006). This is a task 
in which participants have to steer a car down a road on the 
left side of the screen, while entering information into a 
navigation device on the right. As explained above, for our 
current purposes we needed two tasks, both with a hard 
condition in which participants have to keep track of a 
problem state, and an easy condition in which this is not the 
case. To this end we modified both parts of the discrete 
driving task. We will describe both tasks in detail below. 

Driving  
In the driving part of the experiment the participants’ main 
task is to keep the car in the middle of the road. Every few 
moments (0.5, 0.75, or 1.0 seconds, with equal probability) 
the car is perturbed 10 pixels to the right or to the left. It can 
be steered back to the middle of the road by pressing ‘a’ or 
‘d’ (left or right, respectively), which also resets the 
perturbation timer. When the car is in the middle of the 
road, it will move to the left or to the right with equal 
probability. When it is already on one of the sides, it will 
move in 2/3 of the cases further to that side. 

Every 15 seconds the car reaches an intersection, where 
it can either go left, straight, or right (keys ‘q’, ‘w’, ‘e’). In 
the easy condition, participants are shown where to go by an 
arrow above the intersection, as in Figure 1. They only have 
to press the corresponding key on the keyboard, and do not 
have to keep track of past or upcoming intersections. In the 
hard condition, four arrows are shown at the first 
intersection of a set of four, and none on the other three. 
This means that participants have to (1) remember where to 
go on a series of three intersections, and (2) keep track of 
how many intersections they have already passed in the 
current set. The four arrows are shown for a maximum of 3 
seconds. 

Navigation  
Navigating is done using the mouse, and while it has to be 
performed concurrently with steering the car, participants 
use their left hand to steer the car with the keyboard and use 
their right hand for navigation with the mouse.  

The navigation task starts with an initial screen with five 
buttons: street number, street name, city, state, and done. 
These buttons are used to choose the category to be entered, 
but as only one of them is active (and highlighted) at a time, 
this part of the task is trivial. When one of the buttons is 
clicked a keyboard appears, as in Figure 2 (in case of street 
name, city, or state the keyboard is completely alphabetic).  

Figure 2 shows an example of the easy task. In this case 
the to-be-entered character is present in the display, the only 
thing a participant has to do is to click the corresponding 
key on the keyboard. As soon as the click is registered a 
new stimulus appears; this continues until the whole 
number/name is entered (the participant has no access to the 
full name, and can therefore not plan ahead). After all Figure 1. Example of an ‘easy’ intersection. 

 



characters of a name have been entered ‘OK’ is shown in 
the input field, when the participant clicks the OK-button 
the task returns to the initial display and the next category is 
highlighted. When all four parts of the address have been 
entered the Done-button is highlighted, when that is clicked 
the display disappears for 10 seconds, after which a new 
display appears. When the car reaches an intersection, the 
buttons of the navigation device become inactive, to become 
active again as soon as the participant steered. 

In the hard condition a whole number/name is shown in 
the input field at once, however, it disappears as soon as the 
participant starts typing. Also, no feedback is offered to the 
participant as to what they have entered; only a ‘click’ can 
be heard every time a button is clicked. This means that the 
participant has to keep in mind what word they are typing 
and which character of the word has to be entered next.  

In both conditions the numbers were three digits long, 
the street names six letters, the city names contained nine 
letters and the states were the normal two-letter 
abbreviations. In the hard condition, real street / city / state 
combinations of well-known cities were used. In the easy 
condition the characters of these names were scrambled to 
prevent participants from guessing the word. 

Eye-tracking  
To investigate which of the two tasks the participants were 
focused on at a particular moment, we used an Eyelink II 
head-mounted eye-tracker (SR Research) to record eye 
movements. 

Participants 
27 people agreed to participate in the experiment for 
monetary compensation. As one of them left halfway 
through the experiment because of a fierce headache, there 
are 26 complete datasets (11 female, age range 18-34, mean 
age 23.4). All of the participants had normal or corrected-to-
normal visual acuity. Informed consent was obtained before 
testing. Due to technical difficulties the eye-tracking data of 
6 participants could not be analyzed. 

Experimental set-up  
The experiment started with five practice blocks: easy 
driving: 2 blocks of 4 intersections; hard driving 2x4 

intersections; easy navigation: 2 complete addresses; hard 
navigation: 2 addresses; combination: one set of each 
condition combined: 4 sets of 4 intersections and a complete 
address. This might sound a bit overdone as the single tasks 
are quite easy, but as the response of many participants 
indicated at the combination practice (“this is impossible!”), 
it was necessary. 

After the practice block the participants were asked to do 
the single tasks in isolation, to measure their base level 
performance (3 sets of 4 intersections in the two driving 
conditions, 3 addresses in the two navigation conditions). 
The main part of the experiment existed of two blocks of 12 
4-intersection sets and addresses each, thus 24 sets in total. 
At the end of the experiment the single tasks were once 
again administered, to control for learning effects. Between 
the different blocks participants could take a break, which 
they usually only did halfway the main phase. The complete 
experiment lasted approximately 1.5 hours. 

The Model 
To model this task we used threaded cognition and ACT-R. 
The experiment consists of two tasks that can be performed 
in isolation: driving and navigation. Thus the model will 
have two threads, which we describe in turn below. 

Driving thread 
As long as the driving thread is the only active thread, it can 
constantly attend the road, and act promptly to every 
perturbation. However, most of the time a navigation thread 
is also present which needs to attend the navigation device. 
To know when it has to focus attention back on the road the 
driving thread needs a sense of time, which we implemented 
using the previously validated temporal module (Taatgen, 
Van Rijn, & Anderson, in press).  

 As long as the car is not on the center of the road, the 
driving thread will use the visual resource. It will give it up 
as soon as the car is on the middle of the road. As soon as it 
notices that the visual module is used by another thread and 
attends something else than the road (in this case the 
navigation device), the driving thread will start the timer of 
the temporal module. While the navigation thread is busy 
entering information into the navigation device, the driving 
thread tries to decide whether it is time to look at the road 
by retrieving past timing experiences, stored at the current 
timer value. If it retrieves an experience that says it is time 
to drive again, the driving thread attends the road, and steers 
the car back to the middle. It can also retrieve an experience 
saying it is still safe to continue navigation, in which case 
that is exactly what it does. If it fails to retrieve a past 
experience it will continue navigating half of the time, and 
go back to driving in the other half of the cases.  

Where do these timing experiences come from? Every 
time the driving thread starts steering the car, it first stores 
whether this was already necessary or not (i.e., whether the 
car was far out of the middle of the road, or whether it was 
still driving safely in the middle) together with the timer 
value on which it looked back to the road; this forms a 

Figure 2. Navigation display in the easy variant. 



timing experience. It should be noted that while the driving 
thread is combined with a navigation thread in this 
particular example, this is by no means necessary. Without 
making any changes to the driving thread, it can be 
combined with any other behavior performed while driving, 
like using a cell phone.  

The driving thread steers the car back to the middle of 
the road by looking whether the car is to the left or to the 
right of the center, and pressing the corresponding key. 
When the car stops at an intersection, the model tries to find 
an arrow. If there is only one arrow, it presses the 
corresponding key. If there are four arrows, the model starts 
memorizing them by attending them in left to right order, 
until the arrows disappear after 3 seconds. It also changes its 
problem state to represent where it is in the current set of 
intersections. If it now arrives on an intersection with no 
arrows it retrieves the arrow corresponding to the current 
problem state from memory, and steers into that direction. 
Every time the driving threads steers the car back to the 
middle of the road it will also retrieve the arrow for the 
upcoming intersection, and, if necessary the problem state. 

Navigation thread 
Navigation starts with selecting a category: finding an active 
button and clicking it. If the task is easy, the model now 
perceives the stimulus and clicks the corresponding key. 
However, if the task is hard the model puts the to-be-entered 
information in its problem state and starts typing the first 
character. As soon as it clicks a button it starts searching for 
the next character of the word, and so on until the whole 
word has been entered.  

It should be noted that both tasks are polite in the sense 
that they will only take over control when all resources are 
free, except for the problem state. There is one exception to 
this general rule: the driving task can request visual 
attention back immediately. This mimics real driving in the 
sense that when someone is paying attention for some time 
to entering information in a navigation device, at some point 

they will look back to check the state of the road, 
independent of whether they had finished entering all the 
information. 

Whenever the model switches to the navigation task and 
notes that it is in a hard condition and does not have the 
right problem state, it will first request this from declarative 
memory, effectively pushing the problem state of the 
driving thread into declarative memory. Similarly, whenever 
the model switches to driving in the hard condition, it will 
restore the driving problem state. 

Results 
A visual inspection of the data showed that all learning took 
place before the main phase of the experiment: there was no 
noticeable difference between the base level measurements 
before and after the experiment. Therefore the rest of this 
paper will only be concerned with the main two blocks of 
the experiment. All reported F- and p-values are from 
ANOVAs, all error bars depict standard errors. 

Task durations 
The average duration of periods spent on one of the two 
subtasks can be seen in Figure 3 (driving sequence) and 
Figure 4 (navigation sequence). These durations are 
approximations, calculated in the following manner: the 
length of a driving sequence is defined as the time between 
two navigation actions (button clicks), with at least one 
driving action in between. Similarly, the length of a 
navigation period is the time between two driving actions 
with a navigation action in between. 
 
Driving Figure 3 shows that the length of driving periods 
decreases when the navigation task becomes hard, but only 
when driving is easy. When navigation is hard, people know 
what they are going to type next (“philadel…”), which 
means that they do not have to find the stimulus first, but 
can start right away with entering navigation information. 

Figure 3. Duration of driving periods. Figure 4. Duration of navigation periods. 



Because of the fact that the length of a driving sequence is 
measured as the time between two navigation actions with a 
driving action in between, the length of the driving sequence 
decreases when navigation becomes hard. However, this 
effect disappears when both navigation and driving are hard 
– it seems as if people have to reconstruct their problem 
state before they can start navigating, which increases the 
length of the driving periods. Overall can be seen that the 
length of driving periods increases with driving difficulty. 
An ANOVA showed indeed a main effect of driving 
(F(1,25) = 65.414, p < .001) and an interaction effect of 
driving x navigation (F(1,25) = 13.906, p < .001).  
 
Navigation In Figure 4 can be seen that the duration of the 
navigation periods increases with task difficulty of 
navigation (F(1,25) = 16.755, p < .001). Driving has no 
significant effect on the length of the navigation periods, 
neither is there an interaction. 
 
Model The model shows the same pattern as the 
experimental data: in the driving task (Figure 3, right panel) 
there is a significant interaction, while in the navigation task 
(Figure 4, right panel) there is no significant interaction. 
This is what threaded cognition predicted: there will be 
interference as soon as people have to keep track of a 
problem state in both tasks. 

Task durations measured with eye-tracking 
Figure 5 again shows the duration of periods spent on the 
driving task, but now as measured by the eye-tracker. The 
length of a period is now determined by where a participant 
was looking: as long as participants were looking at the 
right side of the screen it was recorded as navigation, as 
long as they were looking at the left side as driving. These 
measurements are arguably more accurate than the ones 
before: periods without any key-presses or mouse clicks are 
taken into account as well. This explains why the average 

length of the periods is about a second shorter than what we 
saw earlier. 
 
Driving Interestingly, instead of decreasing, the length of 
driving periods now increases with navigation difficulty 
(F(1,19) = 9.1367, p < .01). This can be explained by the 
fact that finding and reading the stimulus in the easy 
condition no longer contributes to the driving periods. The 
reason for the increase is probably that participants tried to 
finish parts of a word (“phi…”), before going back to 
driving, an effect that will not occur in the easy driving 
condition and will make for longer navigation periods. The 
longer participants spend on navigation, the longer they 
need to steer the car back to the middle of the road. There is 
also a significant effect of driving difficulty (F(1,19) = 
14.455, p < .01). Besides these two main effects, we found 
an interaction effect of driving x navigation as well (F(1,19) 
= 14.931, p < .01). This could be explained by the fact that 
people have to reconstruct their problem state before 
entering navigation information, and this preparation is done 
while looking at the driving display, as people can still 
control the car in that case. 
 
Navigation No significant effects were observed in the 
duration of the periods spent on navigation (no graph is 
shown). 
 
Model The model showed the same patterns, it only 
predicted the duration of the driving periods to be about 250 
ms shorter (Figure 5, right panel). On the other hand, the 
duration of the navigation periods is predicted correctly 
(2.25 sec), without effects of condition.  

Deviation 
Due to space limitations we cannot show graphs of the 
average deviation of the middle of the road, but will 
describe it shortly. Deviation increases with task difficulty, 
this is both significant for driving, F(1,25) = 21.010, p < 
.001 and for navigation, F(1,25) = 18.967, p < .001. No 
interaction effect was found. The values range between 10 
and 12 pixels. 

However, the model shows an interaction effect. There 
is too much deviation in the easy driving/easy navigation 
condition. The duration of the navigation periods in the 
easy/easy condition is overestimated as well (Figure 4), and 
these two phenomena are connected. Because the model 
spends a little too much time in the easy/easy condition on 
navigation, it will also deviate further from the middle of 
the road. Furthermore, the model performed better than the 
participants, with deviation ranging between 6 and 8 pixels. 
However, about one third of our participants actually 
performed on that level, while some others were far worse 
than average. The model must be seen as a ‘perfect’ 
participant, in that it always manages to steer the car back to 
the middle of the road in exactly the right number of key-
presses. 

Figure 5. Duration of eye-tracking driving periods. 



Number of clicks / key-presses per period 
In Figure 7 and Figure 8 is respectively shown how many 
times participants pressed a key during a driving period, and 
how many times they clicked a button during a navigation 
period. There is only one significant effect on the number of 
key-presses, which is driving (F(1,25) = 13.475, p < .01). 
The opposite is true for the number of clicks during a 
navigation period, this gives a highly significant effect of 
navigation (F(1,25) = 229.54, p < .001), and only a marginal 
effect of driving (F(1,25) = 6.070, p = .02). 

The model shows the same effects, as can be seen in the 
right panels of both figures. 

Discussion & Conclusion 
As explained above, threaded cognition predicts an extra 
drop in performance when it is necessary to keep track of a 
problem state for two tasks. The results of the experiment 
clearly showed that this is in fact the case: we found a 
significant interaction effect in the length of driving periods. 
By modeling this task in ACT-R with threaded cognition, 
we showed exactly why these costs are connected to the 
driving task: the preparation of a problem state for both the 
driving and the navigation task is done while driving, and 
the need to reconstruct a problem state therefore increases 
the duration of driving periods. Eye-tracking measurements 
confirmed those results. 

Threaded cognition is one of the first theories of 
multitasking without a control structure to interleave the 
subtasks. Salvucci & Taatgen (under revision) showed the 
value of this theory in a multitude of task combinations, 
they validated the theory on tasks ranging from simple 
laboratory tasks to real-world tasks, and showed the effects 
of sharing perceptual and memory. In the current paper we 
investigated whether threaded cognition can account for the 
costs of sharing another internal resource: the problem state. 
As we have made clear, threaded cognition predicted 
correctly in which conditions we had to expect extra costs of 
sharing a problem state. 
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