
The Costs of Multitasking in Threaded Cognition

Jelmer Borst (jpborst@ai.rug.nl)1,2,3

Niels Taatgen (taatgen@cmu.edu)1,2

1Department of Psychology, Carnegie Mellon University, USA
2Artificial Intelligence, University of Groningen, The Netherlands

3School of Behavioral and Cognitive Neurosciences, University of Groningen, The Netherlands

Abstract

Most multitasking models make use of executive processes to
assign resources to tasks (Kieras et al., 2000). An alternative
is to have no executive, but constrain individual processes so
that they share resources in a plausible way. Salvucci and
Taatgen (under revision) in their theory of threaded cognition
have shown how peripheral resources and declarative memory
are shared between processes without an executive. In this
paper we will extend this work by showing how two tasks
share a resource to store the problem representation in a dual-
task paradigm where either task sometimes needs a problem
representation and sometimes not. Threaded cognition
predicts extra interference when both tasks need a problem
representation, which is what we found in the experiment.

Introduction
Human beings are amazingly adept at performing multiple
tasks concurrently, and at combining previously unrelated
tasks. This stands in sharp contrast to the current situation in
cognitive modeling, where most models of multitasking
make use of a so-called Customized Executive (Kieras et al.,
2000). This is an, often complicated, control process
specialized for the tasks at hand. It determines how the tasks
will be interleaved, and at which point one of the tasks takes
precedence. A consequence of this is that for every two
tasks a different control structure is required, which, in turn,
implies that we would have to learn a new control structure
for every new combination of tasks. A more plausible
solution would be to have a General Executive that could
interleave any two tasks (Kieras et al., 2000; Salvucci,
2005). There have been several proposals for such a General
Executive in cognitive architectures (e.g., Kieras et al., 2000
(EPIC); Salvucci, 2005 (ACT-R)). However, these
proposals have not been equally successful in accounting for
multitasking data as customized executive approaches.

 Yet another possibility is to have no executive at all
(e.g., Liu, Feyen, & Tsimhoni, 2006), which is the
underlying idea of the new multitasking theory ‘Threaded
Cognition’ of Salvucci and Taatgen (under revision). The
essence of threaded cognition is that it has no central
executive, but instead makes sure individual tasks in a
multitasking situation interleave without top-down control.
This interleaving of individual tasks sometimes leads to
additional costs. Salvucci and Taatgen have already shown
how declarative memory can be a contended resource, and
that competition for this resource can explain differences
between novices and experts on a task. In the current paper

we will show evidence for a second shared central resource:
the problem representation. We will use a dual-task situation
with two relatively complex tasks: driving and operating a
navigation device. The experimental manipulation is to have
two variations of each of the two tasks, one that does require
a problem representation, and one that does not.

First, we will outline threaded cognition, and show what
kind of multitasking costs the theory predicts. Second, we
will test in an experiment whether this prediction is correct,
and finally compare the results of the experiment to a model
designed with threaded cognition.

Threaded Cognition
Threaded cognition posits that each task (in a multitasking
context) is represented by a cognitive thread (Salvucci &
Taatgen, under revision). Each of these threads has its own
control structure: there is no central executive; threads are
independent and can be run in isolation. Threaded cognition
can therefore account for the flexible way humans combine
previously unrelated tasks, and for the fact that many tasks
can be learned in isolation first and performed together later.

All threads are processed together on a single processor,
which can only execute one rule at a time, and will therefore
present a bottleneck (this in contrast to the approach of
Kieras et al., 2000). At any given time, production rules of
all threads can be selected, when multiple rules (of different
threads) match, the rule belonging to the thread that has
least recently been processed will be executed. This makes
sure none of the threads will starve as long as it has
matching production rules.

While the central processor presents a first bottleneck, it
is not the only one. The threads have to share resources like
memory and vision, which creates additional interference.
For instance, if two threads need to retrieve a fact from
declarative memory, the one that comes first can request
retrieval, and the second thread will have to wait. A second
consequence of resource sharing is that threads have to be
polite, in that they should not ‘steal’ resources from another
thread, as this could result in an infinite loop.

Costs of multitasking
As explained above, possible bottlenecks in the model are
the central processor and resource sharing. In the current
paper we investigate interference of sharing the problem
representation resource. If a thread has to keep a problem
state in mind, for instance a partial solution to a problem,
and another thread has to keep track of its own problem
state, both threads will have to restructure their problem
state every time they take control (assuming only one

problem state can be maintained at a time). Thus, threaded
cognition predicts additional interference in case two
threads both have to keep track of their own problem state.
Additional in the sense that the problem representation has
to be restored on every task switch, in contrast to the use of
the visual or memory resource where threads only have to
wait sometimes, but can carry on afterwards.

The current paper tests this prediction by comparing two
tasks in two conditions, an easy condition in which no
problem state is necessary, and a hard condition in which it
is. Thus, suppose performance is 100% if both tasks are
easy, and 90% when one of the two tasks is hard (because of
perceptual / motor / memory resource sharing), threaded
cognition predicts a task performance lower than 80% in the
condition when both tasks are hard.

Threaded Cognition & ACT-R
Because threaded cognition strives to be an “integrated”
theory, it is implemented in the cognitive architecture ACT-
R (Anderson et al., 2004). ACT-R is a cognitive architecture
consisting of specialized modules functioning around a
central production rule system. This production system
works on a single goal at a time, for which it sequentially
executes production rules. In order to achieve multitasking,
a control structure is needed that switches between the
multiple goals at the appropriate moments, essentially
requiring a customized executive for each combination of
tasks.

A possible solution for this problem could be, as stated
above, threaded cognition. This is implemented in ACT-R
in the following way. Instead of only one goal, ACT-R is
now allowed to have multiple goals. Each goal represents a
thread, and will have a number of dependent production
rules. However, as in standard ACT-R, only one rule can
fire at any given time. If production rules related to different
goals match at the same time, threaded cognition will select
the rule belonging to the least recently processed goal.

In ACT-R, the problem representation has to be stored in
the imaginal buffer, which has to be shared by multiple
tasks. In combination with threaded cognition this clearly
predicts strong interference if two tasks have to keep track
of a problem represenation.

The Experiment
To test our hypothesis we modified the discrete driving task
of Salvucci, Taatgen and Kushleyeva (2006). This is a task
in which participants have to steer a car down a road on the
left side of the screen, while entering information into a
navigation device on the right. As explained above, for our
current purposes we needed two tasks, both with a hard
condition in which participants have to keep track of a
problem state, and an easy condition in which this is not the
case. To this end we modified both parts of the discrete
driving task. We will describe both tasks in detail below.

Driving
In the driving part of the experiment the participants’ main
task is to keep the car in the middle of the road. Every few
moments (0.5, 0.75, or 1.0 seconds, with equal probability)
the car is perturbed 10 pixels to the right or to the left. It can
be steered back to the middle of the road by pressing ‘a’ or
‘d’ (left or right, respectively), which also resets the
perturbation timer. When the car is in the middle of the
road, it will move to the left or to the right with equal
probability. When it is already on one of the sides, it will
move in 2/3 of the cases further to that side.

Every 15 seconds the car reaches an intersection, where
it can either go left, straight, or right (keys ‘q’, ‘w’, ‘e’). In
the easy condition, participants are shown where to go by an
arrow above the intersection, as in Figure 1. They only have
to press the corresponding key on the keyboard, and do not
have to keep track of past or upcoming intersections. In the
hard condition, four arrows are shown at the first
intersection of a set of four, and none on the other three.
This means that participants have to (1) remember where to
go on a series of three intersections, and (2) keep track of
how many intersections they have already passed in the
current set. The four arrows are shown for a maximum of 3
seconds.

Navigation
Navigating is done using the mouse, and while it has to be
performed concurrently with steering the car, participants
use their left hand to steer the car with the keyboard and use
their right hand for navigation with the mouse.

The navigation task starts with an initial screen with five
buttons: street number, street name, city, state, and done.
These buttons are used to choose the category to be entered,
but as only one of them is active (and highlighted) at a time,
this part of the task is trivial. When one of the buttons is
clicked a keyboard appears, as in Figure 2 (in case of street
name, city, or state the keyboard is completely alphabetic).

Figure 2 shows an example of the easy task. In this case
the to-be-entered character is present in the display, the only
thing a participant has to do is to click the corresponding
key on the keyboard. As soon as the click is registered a
new stimulus appears; this continues until the whole
number/name is entered (the participant has no access to the
full name, and can therefore not plan ahead). After all Figure 1. Example of an ‘easy’ intersection.

characters of a name have been entered ‘OK’ is shown in
the input field, when the participant clicks the OK-button
the task returns to the initial display and the next category is
highlighted. When all four parts of the address have been
entered the Done-button is highlighted, when that is clicked
the display disappears for 10 seconds, after which a new
display appears. When the car reaches an intersection, the
buttons of the navigation device become inactive, to become
active again as soon as the participant steered.

In the hard condition a whole number/name is shown in
the input field at once, however, it disappears as soon as the
participant starts typing. Also, no feedback is offered to the
participant as to what they have entered; only a ‘click’ can
be heard every time a button is clicked. This means that the
participant has to keep in mind what word they are typing
and which character of the word has to be entered next.

In both conditions the numbers were three digits long,
the street names six letters, the city names contained nine
letters and the states were the normal two-letter
abbreviations. In the hard condition, real street / city / state
combinations of well-known cities were used. In the easy
condition the characters of these names were scrambled to
prevent participants from guessing the word.

Eye-tracking
To investigate which of the two tasks the participants were
focused on at a particular moment, we used an Eyelink II
head-mounted eye-tracker (SR Research) to record eye
movements.

Participants
27 people agreed to participate in the experiment for
monetary compensation. As one of them left halfway
through the experiment because of a fierce headache, there
are 26 complete datasets (11 female, age range 18-34, mean
age 23.4). All of the participants had normal or corrected-to-
normal visual acuity. Informed consent was obtained before
testing. Due to technical difficulties the eye-tracking data of
6 participants could not be analyzed.

Experimental set-up
The experiment started with five practice blocks: easy
driving: 2 blocks of 4 intersections; hard driving 2x4

intersections; easy navigation: 2 complete addresses; hard
navigation: 2 addresses; combination: one set of each
condition combined: 4 sets of 4 intersections and a complete
address. This might sound a bit overdone as the single tasks
are quite easy, but as the response of many participants
indicated at the combination practice (“this is impossible!”),
it was necessary.

After the practice block the participants were asked to do
the single tasks in isolation, to measure their base level
performance (3 sets of 4 intersections in the two driving
conditions, 3 addresses in the two navigation conditions).
The main part of the experiment existed of two blocks of 12
4-intersection sets and addresses each, thus 24 sets in total.
At the end of the experiment the single tasks were once
again administered, to control for learning effects. Between
the different blocks participants could take a break, which
they usually only did halfway the main phase. The complete
experiment lasted approximately 1.5 hours.

The Model
To model this task we used threaded cognition and ACT-R.
The experiment consists of two tasks that can be performed
in isolation: driving and navigation. Thus the model will
have two threads, which we describe in turn below.

Driving thread
As long as the driving thread is the only active thread, it can
constantly attend the road, and act promptly to every
perturbation. However, most of the time a navigation thread
is also present which needs to attend the navigation device.
To know when it has to focus attention back on the road the
driving thread needs a sense of time, which we implemented
using the previously validated temporal module (Taatgen,
Van Rijn, & Anderson, in press).

 As long as the car is not on the center of the road, the
driving thread will use the visual resource. It will give it up
as soon as the car is on the middle of the road. As soon as it
notices that the visual module is used by another thread and
attends something else than the road (in this case the
navigation device), the driving thread will start the timer of
the temporal module. While the navigation thread is busy
entering information into the navigation device, the driving
thread tries to decide whether it is time to look at the road
by retrieving past timing experiences, stored at the current
timer value. If it retrieves an experience that says it is time
to drive again, the driving thread attends the road, and steers
the car back to the middle. It can also retrieve an experience
saying it is still safe to continue navigation, in which case
that is exactly what it does. If it fails to retrieve a past
experience it will continue navigating half of the time, and
go back to driving in the other half of the cases.

Where do these timing experiences come from? Every
time the driving thread starts steering the car, it first stores
whether this was already necessary or not (i.e., whether the
car was far out of the middle of the road, or whether it was
still driving safely in the middle) together with the timer
value on which it looked back to the road; this forms a

Figure 2. Navigation display in the easy variant.

timing experience. It should be noted that while the driving
thread is combined with a navigation thread in this
particular example, this is by no means necessary. Without
making any changes to the driving thread, it can be
combined with any other behavior performed while driving,
like using a cell phone.

The driving thread steers the car back to the middle of
the road by looking whether the car is to the left or to the
right of the center, and pressing the corresponding key.
When the car stops at an intersection, the model tries to find
an arrow. If there is only one arrow, it presses the
corresponding key. If there are four arrows, the model starts
memorizing them by attending them in left to right order,
until the arrows disappear after 3 seconds. It also changes its
problem state to represent where it is in the current set of
intersections. If it now arrives on an intersection with no
arrows it retrieves the arrow corresponding to the current
problem state from memory, and steers into that direction.
Every time the driving threads steers the car back to the
middle of the road it will also retrieve the arrow for the
upcoming intersection, and, if necessary the problem state.

Navigation thread
Navigation starts with selecting a category: finding an active
button and clicking it. If the task is easy, the model now
perceives the stimulus and clicks the corresponding key.
However, if the task is hard the model puts the to-be-entered
information in its problem state and starts typing the first
character. As soon as it clicks a button it starts searching for
the next character of the word, and so on until the whole
word has been entered.

It should be noted that both tasks are polite in the sense
that they will only take over control when all resources are
free, except for the problem state. There is one exception to
this general rule: the driving task can request visual
attention back immediately. This mimics real driving in the
sense that when someone is paying attention for some time
to entering information in a navigation device, at some point

they will look back to check the state of the road,
independent of whether they had finished entering all the
information.

Whenever the model switches to the navigation task and
notes that it is in a hard condition and does not have the
right problem state, it will first request this from declarative
memory, effectively pushing the problem state of the
driving thread into declarative memory. Similarly, whenever
the model switches to driving in the hard condition, it will
restore the driving problem state.

Results
A visual inspection of the data showed that all learning took
place before the main phase of the experiment: there was no
noticeable difference between the base level measurements
before and after the experiment. Therefore the rest of this
paper will only be concerned with the main two blocks of
the experiment. All reported F- and p-values are from
ANOVAs, all error bars depict standard errors.

Task durations
The average duration of periods spent on one of the two
subtasks can be seen in Figure 3 (driving sequence) and
Figure 4 (navigation sequence). These durations are
approximations, calculated in the following manner: the
length of a driving sequence is defined as the time between
two navigation actions (button clicks), with at least one
driving action in between. Similarly, the length of a
navigation period is the time between two driving actions
with a navigation action in between.

Driving Figure 3 shows that the length of driving periods
decreases when the navigation task becomes hard, but only
when driving is easy. When navigation is hard, people know
what they are going to type next (“philadel…”), which
means that they do not have to find the stimulus first, but
can start right away with entering navigation information.

Figure 3. Duration of driving periods. Figure 4. Duration of navigation periods.

Because of the fact that the length of a driving sequence is
measured as the time between two navigation actions with a
driving action in between, the length of the driving sequence
decreases when navigation becomes hard. However, this
effect disappears when both navigation and driving are hard
– it seems as if people have to reconstruct their problem
state before they can start navigating, which increases the
length of the driving periods. Overall can be seen that the
length of driving periods increases with driving difficulty.
An ANOVA showed indeed a main effect of driving
(F(1,25) = 65.414, p < .001) and an interaction effect of
driving x navigation (F(1,25) = 13.906, p < .001).

Navigation In Figure 4 can be seen that the duration of the
navigation periods increases with task difficulty of
navigation (F(1,25) = 16.755, p < .001). Driving has no
significant effect on the length of the navigation periods,
neither is there an interaction.

Model The model shows the same pattern as the
experimental data: in the driving task (Figure 3, right panel)
there is a significant interaction, while in the navigation task
(Figure 4, right panel) there is no significant interaction.
This is what threaded cognition predicted: there will be
interference as soon as people have to keep track of a
problem state in both tasks.

Task durations measured with eye-tracking
Figure 5 again shows the duration of periods spent on the
driving task, but now as measured by the eye-tracker. The
length of a period is now determined by where a participant
was looking: as long as participants were looking at the
right side of the screen it was recorded as navigation, as
long as they were looking at the left side as driving. These
measurements are arguably more accurate than the ones
before: periods without any key-presses or mouse clicks are
taken into account as well. This explains why the average

length of the periods is about a second shorter than what we
saw earlier.

Driving Interestingly, instead of decreasing, the length of
driving periods now increases with navigation difficulty
(F(1,19) = 9.1367, p < .01). This can be explained by the
fact that finding and reading the stimulus in the easy
condition no longer contributes to the driving periods. The
reason for the increase is probably that participants tried to
finish parts of a word (“phi…”), before going back to
driving, an effect that will not occur in the easy driving
condition and will make for longer navigation periods. The
longer participants spend on navigation, the longer they
need to steer the car back to the middle of the road. There is
also a significant effect of driving difficulty (F(1,19) =
14.455, p < .01). Besides these two main effects, we found
an interaction effect of driving x navigation as well (F(1,19)
= 14.931, p < .01). This could be explained by the fact that
people have to reconstruct their problem state before
entering navigation information, and this preparation is done
while looking at the driving display, as people can still
control the car in that case.

Navigation No significant effects were observed in the
duration of the periods spent on navigation (no graph is
shown).

Model The model showed the same patterns, it only
predicted the duration of the driving periods to be about 250
ms shorter (Figure 5, right panel). On the other hand, the
duration of the navigation periods is predicted correctly
(2.25 sec), without effects of condition.

Deviation
Due to space limitations we cannot show graphs of the
average deviation of the middle of the road, but will
describe it shortly. Deviation increases with task difficulty,
this is both significant for driving, F(1,25) = 21.010, p <
.001 and for navigation, F(1,25) = 18.967, p < .001. No
interaction effect was found. The values range between 10
and 12 pixels.

However, the model shows an interaction effect. There
is too much deviation in the easy driving/easy navigation
condition. The duration of the navigation periods in the
easy/easy condition is overestimated as well (Figure 4), and
these two phenomena are connected. Because the model
spends a little too much time in the easy/easy condition on
navigation, it will also deviate further from the middle of
the road. Furthermore, the model performed better than the
participants, with deviation ranging between 6 and 8 pixels.
However, about one third of our participants actually
performed on that level, while some others were far worse
than average. The model must be seen as a ‘perfect’
participant, in that it always manages to steer the car back to
the middle of the road in exactly the right number of key-
presses.

Figure 5. Duration of eye-tracking driving periods.

Number of clicks / key-presses per period
In Figure 7 and Figure 8 is respectively shown how many
times participants pressed a key during a driving period, and
how many times they clicked a button during a navigation
period. There is only one significant effect on the number of
key-presses, which is driving (F(1,25) = 13.475, p < .01).
The opposite is true for the number of clicks during a
navigation period, this gives a highly significant effect of
navigation (F(1,25) = 229.54, p < .001), and only a marginal
effect of driving (F(1,25) = 6.070, p = .02).

The model shows the same effects, as can be seen in the
right panels of both figures.

Discussion & Conclusion
As explained above, threaded cognition predicts an extra
drop in performance when it is necessary to keep track of a
problem state for two tasks. The results of the experiment
clearly showed that this is in fact the case: we found a
significant interaction effect in the length of driving periods.
By modeling this task in ACT-R with threaded cognition,
we showed exactly why these costs are connected to the
driving task: the preparation of a problem state for both the
driving and the navigation task is done while driving, and
the need to reconstruct a problem state therefore increases
the duration of driving periods. Eye-tracking measurements
confirmed those results.

Threaded cognition is one of the first theories of
multitasking without a control structure to interleave the
subtasks. Salvucci & Taatgen (under revision) showed the
value of this theory in a multitude of task combinations,
they validated the theory on tasks ranging from simple
laboratory tasks to real-world tasks, and showed the effects
of sharing perceptual and memory. In the current paper we
investigated whether threaded cognition can account for the
costs of sharing another internal resource: the problem state.
As we have made clear, threaded cognition predicted
correctly in which conditions we had to expect extra costs of
sharing a problem state.

Acknowledgments
This work was supported by Office of Naval Research grant
N00014-06-1-005. We would like to thank Dario Salvucci
for comments on an early version of the experiment.

References
Anderson, J.R., Bothell, D., Byrne, M.D., Douglass, S.,

Lebiere, C., & Qin, Y. (2004). An integrated theory of
the mind. Psychological Review, 111(4), 1036-1060.

Kieras, D.E., Meyer, D.E., Ballas, J.A., & Lauber, E.J.
(2000). Modern computational perspectives on
executive mental processes and cognitive control:
Where to from here? In S. Monsell & J. Driver (Eds.),
Control of cognitive processes (pp. 681-712).
Cambridge, MA: MIT Press.

Liu, Y., Feyen, R., & Tsimhoni, O. (2006). Queueing
network-model human processor (qn-mhp): A
computational architecture for multitask performance in
human-machine systems. ACM Transactions on
Computer-Human Interaction (TOCHI), 13(1), 37-70.

Salvucci, D.D. (2005). A multitasking general executive for
compound continuous tasks. Cognitive Science, 29,
457-492.

Salvucci, D.D., & Taatgen, N.A. (under revision). Threaded
cognition: An integrated theory of concurrent
multitasking. Psychological Review.

Salvucci, D.D., Taatgen, N.A., & Kushleyeva, Y. (2006).
Learning when to switch tasks in a dynamic
multitasking environment. In D. Fum, F. D. Missier &
A. Stocco (Eds.), Proceedings of the seventh
international conference on cognitive modeling (pp.
268-273). Trieste, Italy: Edizioni Goliardiche.

Taatgen, N.A., Van Rijn, D.H., & Anderson, J.R. (in press).
An integrated theory of prospective time interval
estimation: The role of cognition, attention and
learning. Psychological Review.

Figure 6. Mean number of key-presses per driving period. Figure 7. Mean number of clicks per navigation period.

