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Abstract 

A previously developed ACT-R/threaded cognition model of 
dual-task interference (Borst, Taatgen & Van Rijn, 2009) was 
used to predict neuroimaging data in four brain areas. These 
predictions were tested in an fMRI experiment, which 
confirmed the predictions in three of the areas. The fourth 
area, the intraparietal sulcus, showed a different pattern than 
predicted. To account for this, a new mapping of an ACT-R 
module onto a brain area was introduced: It was assumed that 
activation in the intraparietal sulcus not only depends on the 
problem state module, as is customary, but also on the visual-
location module. The resulting model fit well to the human 
data, confirming the model’s assumptions of dual-task 
interference. 
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Introduction 
Some tasks can be performed together effortlessly, like 
drinking coffee and listening to a talk, while other tasks 
interfere with each other, like talking to a colleague while 
writing a paper. The challenge for theories of multitasking is 
to explain why some tasks interfere with each other and 
some do not. Intuitively this is easy to explain: if tasks use 
the same cognitive resources they will probably interfere. 
This idea was formally implemented in the threaded 
cognition theory (Salvucci & Taatgen, 2008). In threaded 
cognition, multiple tasks (called ‘threads’) are active at the 
same time. Tasks can use several cognitive resources, like 
declarative memory and the visual system. These resources 
function in parallel (i.e., the visual resource can be used to 
perceive an object, while at the same time a fact can be 
retrieved from memory), but the resources themselves can 
only proceed in a serial fashion (i.e. the visual resource can 
only perceive one object at a time). Thus, if multiple tasks 
need the same resource, one of the tasks will have to wait 
for the other tasks, resulting in interference. 

Salvucci and Taatgen (2008) have shown that, in addition 
to perceptual and motor resources, two central cognitive 
resources cause interference in multitasking: declarative and 
procedural memory. Additionally, we have shown that 
another central cognitive resource, the problem state, also 
causes interference in multitasking (Borst & Taatgen, 2007; 
Borst, Taatgen, & Van Rijn, 2009). The problem state is 
used to maintain mental representations necessary for 
performing a task. For instance, when solving ‘2x-7=6’ the 
problem state is used to store the intermediate solution 
‘2x=13’. In our previous research, we let participants 
perform a subtraction and text entry task concurrently. Both 

tasks were presented in two versions: an easy version in 
which no problem state was required to perform the task and 
a hard version in which it was. When both tasks required a 
problem state, significantly more interference was observed 
than in all other conditions: response times and error rate 
increased. To account for these results a cognitive model 
was developed using threaded cognition and ACT-R 
(Anderson, 2007). 

In the current paper we set out to validate this model 
using neuroimaging data. First, the previously developed 
model was used to predict brain activation patterns in four 
brain regions. Subsequently, these predictions were tested in 
an fMRI experiment. Before we discuss these points, we 
will first explain how ACT-R models can be used to predict 
neuroimaging data. 

Using ACT-R to predict the BOLD response 
ACT-R (Anderson, 2007) describes human cognition as a 
set of independent modules that interact through a central 
production system. For instance, it uses a visual module for 
perception and a motor module to interact with the world. 
Besides these peripheral modules, there are several central 
cognitive modules: the procedural module that implements 
the central production system, the declarative memory 
module, the goal module, and the problem state module 
(sometimes called ‘imaginal module’). All modules operate 
in parallel, but a module in itself can only proceed serially.  

ACT-R models are usually tested on a behavioral level: if 
for instance reaction times and error patterns match the 
human data, it is concluded that a model gives a plausible 
account of the observed behavior. However, to find direct 
evidence for non-observable specifics of models, ACT-R 
has been extended to predict neuroimaging data (Anderson, 
2005). To predict brain activation data, or to be more 
precise, the Blood Oxygenation Level-Dependent (BOLD) 
contrast, the modules of ACT-R have been mapped onto 
small regions in the brain (about 12x12x12mm). The most 
important modules and associated brain regions for this 
study are listed in Table 1. 

The different modules are not constantly in use during the 
execution of an ACT-R model, but operate for short periods 
of time (in the order of hundreds of ms). It is assumed that 
when a module is active, it will drive a BOLD response in 
the associated brain region. This response is modeled by a 
gamma function, as is customary in fMRI research: 
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where m determines the magnitude of the BOLD curve, s 
the time scale, and a the shape. If D(t) is a 0-1 demand 
function that indicates whether a module is active at time t, 
the BOLD function can be calculated by convolving D(t) 
with the gamma function: 
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It should be noted that we do not assume that modules in 
ACT-R exclusively drive activation in these regions, nor 
that activation in these regions is only due to the associated 
ACT-R modules. However, these regions have been the best 
indicators of activation in the ACT-R modules over a series 
of studies (see also Anderson, 2007). 

Predicting the BOLD response 
In this section we will describe how we used the model of 
Borst et al. (2009) to generate BOLD predictions. We will 
first describe the task in detail, followed by the model and 
the predictions. 

The task 
In the experiment participants had to perform a subtraction 
and text entry task concurrently (Fig. 1). Both tasks had two 
versions, an easy version in which participants did not have 
to maintain a problem state between responses, and a hard 
version in which they were required to maintain a problem 
state. Participants had to alternate between the tasks: after 
entering a number, the subtraction task was disabled, 
forcing participants to subsequently enter a letter. After 
entering a letter, the text entry task was disabled and the 
subtraction task became available again, etc. 

In the subtraction task, 6-digit column subtraction 
problems had to be solved in right-to-left order. In the easy, 
no problem state version, the upper term was always larger 
or equal to the lower term; these problems could be solved 
without ‘borrowing’. In contrast, the hard version required 
participants to borrow 3 times (see Fig. 1). The assumption 
is that participants used their problem state resource to keep 
track of whether a ‘borrowing’ was in progress. Solved 
columns were masked with #-marks to prevent display-
based strategies (i.e. reading previous columns again). 

For the text entry task, 6-letter words had to be entered. In 
the easy version the words were presented one letter at a 
time. Participants had to click the corresponding button on 
the keypad, after which the next letter appeared. In the hard 

version, a word appeared at the start of a trial. When a 
participant clicked on the first letter, the word disappeared 
and had to be entered without feedback (participants could 
neither see the word they were entering, nor how many 
letters they had entered). It was assumed that participants 
needed a problem state to keep track of the word and their 
position within the word (‘public, 4th position’). 

Before each trial, two colored circles were presented on 
the screen, one on the left and one on the right side, 
indicating whether the task on that side of the screen was 
going to be easy (green circle) or hard (red circle). 
Participants were instructed to act both quickly and 
accurately. The tasks were performed in all difficulty 
combinations: easy subtraction/easy text entry, hard/easy, 
easy/hard, and hard/hard. 

Three changes were made with respect to the original task 
of Borst et al. (2009) to make it suitable for the fMRI 
scanner: a) letting participants respond using a mouse 
instead of the keyboard, b) changing the length of the 
stimuli from 10 to 6 numbers / characters, and c) making the 
interface more compact to minimize head movement. 

The model 
We will now describe the ACT-R/threaded cognition model 
that Borst et al. (2009) developed to account for the task 
above. Of particular importance for the tasks at hand is 
ACT-R’s problem state module. This module can hold a 
problem state consisting of one chunk of information, which 
means that the module’s contents have to be replaced 
frequently when it is required by multiple tasks. A problem 
state is accessible at no time cost, but replacing a problem 
state takes 200 ms. If the problem state is replaced, the 
previous problem state is automatically moved to 
declarative memory. Thus, the total time to replace a 
problem state is 200 ms plus the time it takes to retrieve the 
problem state from memory. Therefore, the problem state 
resource constitutes a bottleneck in multitasking: switching 
problem states incurs a considerable time cost. 

The two tasks in the experiment were implemented as two 
threads in the model. Both threads use the visual module to 
perceive the stimuli and the manual module to operate the 
mouse and the keyboard. In the easy version of the 

Table 1. ACT-R modules and associated brain regions. 
ACT-R 
Module 

Brain Region MNI 
Coordinates 

Manual Precentral gyrus (BA 3) -37, -28, 51 
Visual Fusiform gyrus (BA 37) -22, -59, -15 
Declarative 
Memory 

Inferior frontal sulcus  
(BA 45/46) 

-42, 22, 21 

Problem State Intraparietal sulcus  
(BA 7/39/40) 

-23, -67, 36 

Figure 1. Screenshot of the experiment. 



subtraction task, the model perceives the numbers, retrieves 
a fact from memory (e.g., 5–2=3) and enters the difference. 
In the hard version the model also starts by retrieving a fact 
from memory, if its outcome is negative (e.g., 3-6=-3) the 
model adds 10 to the upper term, stores in its problem state 
that a ‘borrowing’ is in progress, and retrieves a new fact 
(13–6=7). If the problem state indicates that a ‘borrowing’ is 
in progress, the model subtracts 1 from the upper term 
before the initial retrieval. 

In the easy version of the text entry task, the model 
perceives the letter and clicks on the corresponding button. 
In the hard version, the model has to recall for each 
response what the target word is and what the current 
position is within the word: it uses the problem state 
resource to store the word and the current position (‘public, 
4th position’). If it is in the hard condition, the model does 
not look at the display, but uses the word and position in its 
problem state. However, before it can enter a letter, it first 
has to retrieve an order fact to determine what the next letter 
is. After entering a letter, the model updates its problem 
state to reflect that it is one position further in the word. 

Because the model only needs multiple problem states in 
the hard/hard condition, and either zero (easy/easy) or one 
(easy/hard, hard/easy) in the other conditions, it predicts an 
over-additive effect of task difficulty on response times and 
accuracy. Constantly replacing the problem state in the 
hard/hard condition incurs a time cost, resulting in increased 
response times; furthermore, incorrect problem states are 
sometimes retrieved, resulting in errors. This model was 
used to generate BOLD predictions for the task, which we 
will describe next. 

A priori BOLD predictions 
As explained above, the different modules of ACT-R have 
been mapped onto brain regions. After changing the model 
to work with the new interface of the experiment (i.e. using 
the mouse instead of the keyboard), we generated 
predictions for four predefined regions. For these 
predictions we set the a and s parameters in the BOLD 
equation to 4 and 1.2, respectively. These are customary 
values in the literature, and as we did not fit our model to 
the fMRI data but predicted the data beforehand, there was 
no reason to alter these values. For the same reason the m-
parameter was not used for scaling, but left at 1. We will 
discuss the four most important predictions of our model: 
the manual module, the visual module, the problem state 
module, and the declarative memory module. The results are 
displayed in Figure 2; each panel shows the BOLD response 
over a complete trial (entering 6 letters and numbers). 

The predictions for the manual area, part of the precentral 
gyrus, are displayed in Figure 2A. While in all conditions 
the same number of responses has to be given, there are 
clear differences in the model predictions. This is caused by 
the fact that the individual responses in the more difficult 
conditions are spaced further apart in time (i.e., response 
times are higher). Consequently, the BOLD response has 
more time to decay between each response, resulting in 

longer but lower activation curves. This is in line with the 
fact that the area under the curve should be equal in all 
conditions, as it is proportional to the total time a module is 
active (Anderson, 2005), which is the same in each 
condition. 

For the visual module a similar pattern can be observed 
(Fig. 2B). However, here the hard subtraction/easy text 
entry and the easy subtraction/hard text entry conditions are 
switched. This is caused by two things: first, when text entry 
is hard, the model does not have to look at the screen to see 
what it has to enter, but already knows the word it is 
entering. Therefore, less visual processing is required in the 
hard text entry conditions as compared to easy text entry. 
Second, in the hard subtraction conditions, the model does 
more visual processing: after noticing that it has to borrow 
(by reading the upper and lower terms), it reads the upper 
term again to process the borrowing, and afterwards reads 
the lower term again to come up with the final response. 

Figure 2C shows the predictions for the problem state 
module. In the easy/easy condition the model does not use 
any kind of problem state, which accounts for the flat line. 
In both the easy/hard and the hard/easy conditions an 
intermediate activity level is predicted as a problem state 
has to be maintained for one of the tasks. In the hard/hard 
condition, the problem state has to be replaced on every step 
in a trial, because both tasks need to maintain a problem 
state. Thus, we expect much more activation in the 
hard/hard condition as compared to all other conditions: 
resulting in an over-additive interaction effect. 

A related interaction effect can be observed for the 
declarative memory module (Fig. 2D). In the easy/easy 
condition, the model only needs to retrieve simple 
subtraction facts, which are extremely fast retrievals, 

Figure 2. The BOLD predictions. 1 scan is 2 seconds. 



resulting in almost no BOLD activity. In the easy 
subtraction/hard text entry condition, the model needs to 
retrieve both simple subtraction facts and facts about letter 
order in words, resulting in higher activation levels. In the 
hard subtraction/easy text entry condition the model needs 
to retrieve multiple subtraction facts on most of the steps in 
a trial, again predicting higher activation levels. In the 
hard/hard condition there is by far the most activation 
predicted, as not only the subtraction facts and letter order 
facts have to be retrieved, but also a problem state on each 
step.  

To summarize, the model predicts lower but more 
persistent activation levels for the harder conditions in the 
visual and manual modules, and higher activation levels for 
the harder conditions in the problem state and declarative 
memory modules. We will now describe the fMRI 
experiment we carried out to test these predictions. 

The Experiment 
Ten students from Carnegie Mellon University participated 
in the experiment. Because one of them had abnormal brain 
anatomy, 9 datasets are left for analysis (2 female, average 
age 22, range 19-24, right-handed). Informed consent as 
approved by the Institutional Review Boards at Carnegie 
Mellon University and the University of Pittsburgh was 
given before the experiment. Participants received $65. 

The 6-digit subtraction problems were generated anew for 
each participant. In the hard version, each subtraction 
problem featured 3 columns in which participants had to 
‘borrow’, answers were always 6 digits long. The words in 
the hard text entry condition were handpicked from a list of 
high frequent 6 letter words (CELEX database) to ensure 
that similarities between words were kept at a minimum. 
These stimuli were also used in the easy text entry task, 
except that the letters within the words were scrambled to 
create nonsense letter strings, under the constraint that a 
letter never appeared twice in a row. 

Each trial started with the presentation of a fixation cross, 
followed by two circles indicating the difficulty levels of the 
tasks, to avoid measuring ‘surprise-reactions’. The circles 
stayed on the screen for 5 seconds, after which the fixation 
cross was displayed again for 1 second. Afterwards, the 
subtraction and text entry tasks were presented. Participants 

had to start with the subtraction task, after which they had to 
alternate between the tasks. After entering the last response 
in each task, a feedback screen was shown for 3 seconds, 
indicating how many letters / numbers were entered 
correctly. Between trials there was a 13-17 second break, 
sampled from a uniform distribution. The start of the circles 
was aligned to the start of a scan, as was the start of the 
subtraction and text entry tasks. 

The experiment consisted of one practice block and six 
experimental blocks. The practice block was administered 
during the structural scanning, to familiarize participants 
with performing the task in the scanner. All blocks consisted 
of 12 trials, 3 per condition, fully randomized. Thus, the 
complete experiment consisted of 72 trials. On the day 
before the scan day, participants practiced the experiment 
for approximately 30 minutes outside the scanner. 

Results 
Only the data of the experimental phase were analyzed. 
Outliers in response times faster than 250 ms and slower 
than 9000 ms were removed from the data, after which we 
removed data exceeding 3 standard deviations from the 
mean per condition per participant (in total, 2.2% of the data 
was removed). All F- and p-values are from repeated-
measure ANOVAs, all error bars depict standard error.  

The left panel of Figure 3 shows the average response 
time per condition; black bars depict experimental data, grey 
bars model data. Response times are measured as the time 
between two mouse-clicks, that is, the time it takes to give a 
response after having given the previous response. First 
responses of each task were removed. An ANOVA revealed 
a significant interaction effect of Subtraction and Text Entry 
Difficulty (F(1,8)=6.1, p=.04). A subsequent simple effects 
analysis showed significant effects of Subtraction Difficulty 
when text entry was easy (F(1,8)=12.04, p<.01), and of 
Subtraction Difficulty when text entry was hard (F(1,8) = 
29.4, p<.001). The simple effects of Text Entry Difficulty 
did not reach significance. Thus, response times increase 
with subtraction difficulty, but even more when text entry 
was hard as well. The right panel of Figure 3 shows the 
accuracy data. No significant effects were observed, which 
is probably due to the low statistical power caused by the 
small number of participants, as such effects were observed 
in previous studies. 

The results are in line with our previous findings (Borst, 
et al., 2009) and with our hypothesis. However, the effects 
are slightly smaller than observed previously. 

The modeling results are displayed alongside the data in 
Figure 3. The model predicted an over-additive interaction 
effect because only one problem state can be maintained at a 
time.  This was indeed observed in the data. However, the 
model predicted a slightly larger effect, as it was fitted on 
the data of the previous experiment. 

Imaging data: confirmatory analysis 
The results in the left precentral gyrus, associated with the 
manual module, are shown in Figure 4A. The data resemble Figure 3. Behavioral results and model predictions. 



the model closely: the easier the condition, the higher and 
broader the BOLD curve. This is explained by the fact that 
the responses are spaced further apart in the harder 
conditions, letting the activation decay between responses. 

 Figure 4B displays the BOLD responses in the fusiform 
gyrus, associated with the visual module. Again, higher 
activation levels were found for the easier conditions. The 
model predicted this, but it also predicted that the hard/easy 
and easy/hard conditions would switch position as 
compared to the manual module. While they are closer 
together, they did not switch completely. Presumably, the 
participants make less strict eye-movements than our model, 
and do more visual processing in the hard text entry 
conditions than predicted. 

In Figure 4C the results of the intraparietal sulcus 
(associated with the problem state module) are shown. As 
the area under the curves is proportional to the total time a 
module is engaged (Anderson, 2005), most activation is 
observed in the hard/hard condition, as the model predicted. 
However, the model obviously predicted a much larger 
effect, with a clear interaction effect between conditions. 

Finally, Figure 4D shows the activation in an area close to 
the inferior frontal sulcus, associated with the declarative 
memory module. Because four of our participants showed a 
negative BOLD response in the original area, we slightly 
changed the region to a nearby area where all our 
participants showed a positive BOLD response. This region, 
centered at x=-48, y=30, z=30, shows a response that 
roughly shows the same effects as our model: almost no 
activation in the easy/easy condition, and an increasing 
BOLD response with increasing difficulty. However, the 
effects were not as large as predicted. 

To summarize, we confirmed our main predictions that 
there are higher activation levels in the easier conditions in 
the visual and manual regions, and that an opposite effect 
can be observed in the problem state and declarative 
memory regions. However, the BOLD response in the 
problem state region was different from the predictions, and 
the effect in the declarative memory module was less 
pronounced.  

Imaging data: exploratory analysis 
Besides the confirmatory analysis, we also performed an 

exploratory analysis of the fMRI data. The results are shown 
in Table 2. At the top, regions are shown that were more 
active in the hard subtraction condition as compared to the 
easy subtraction condition (uncorrected p-value < 0.001 and 
contiguous voxel size > 20). First of all, we found a region 
around the intraparietal sulcus to be active both in the left 
and the right hemisphere. This region corresponds to the 
horizontal segment of the intraparietal sulcus (HIPS), which 
is an important circuit for numeric processing. Next, we 
found two regions around the right middle frontal gyrus that 
responded more in the hard subtraction condition than in the 
easy condition. The more anterior region partly overlaps 
with ACT-R’s declarative memory region. These regions 
conform to our expectations of more memory retrievals in 
the harder subtraction condition. The largest active region 
was found in the medial frontal cortex. It is known that this 
region is involved in cognitive control and decision making. 
Not surprisingly, participants need more extensive cognitive 
control in the hard subtraction condition, as they have to 
keep track of steps in the borrowing process. 

At the bottom of Table 2 regions are shown that are more 
active in the hard text entry condition as compared to the 
easy text entry condition (uncorrected p-value < 0.01 and 
contiguous voxel size > 20). More activation was found in 
the medial frontal cortex and the intraparietal sulcus; both 
regions partly overlap with the regions we found for the 
subtraction task. However, the region in the medial frontal 
cortex is more posterior and superior, and the parietal region 
is more central and was only found in the left hemisphere. 

Posteriori Model Fit 
One of the predictions of our model was an interaction 
effect in the posterior parietal cortex. However, instead of 

Table 2. Results of the exploratory analysis. 
Region Size in 

Voxels 
MNI coordinates 

(x,y,z) 
Hard Subtraction > Easy Subtraction (p < .001) 

Right Intraparietal Sulcus 102 36, -36, 33 
Right Middle Frontal Gyrus 56 39, 36, 24 
Medial Frontal Cortex 113 -3, 18, 48 
Left Intraparietal Sulcus 41 -45, -42, 39 
Right Middle Frontal Gyrus 49 27, 12, 57 

Hard Text Entry > Easy Text Entry (p < .01) 
Medial Frontal Cortex 77 -3, 12, 57 
Left Intraparietal Sulcus 35 -33, -48, 36 

Figure 4. fMRI results for the four regions. 



clear differences, the data show quite similar curves. While 
the area under the curves does give an indication of more 
total activation in the more difficult conditions, the data 
look very dissimilar from our model predictions.  

From previous ACT-R/fMRI research it is known that 
activation in the problem state region often reflects visual 
processing (e.g., Kao & Anderson, personal communication; 
Sohn, et al., 2005), which is consistent with the literature on 
the posterior parietal cortex (e.g., Culham & Kanwisher, 
2001). Figure 5A shows activation in the left fusiform gyrus 
and the left posterior parietal cortex in the predefined 
regions of ACT-R during a simple stimulus-response task 
(Kao & Anderson, personal communication). In this task 
participants had to press a key in response to the appearance 
of a stimulus, without any further processing. As can be 
seen, activation was observed in the posterior parietal 
cortex. Because in this task no problem states are involved, 
the activation in the parietal cortex cannot have been caused 
by problem state activity. On this basis, we argue that 
activation in ACT-R’s parietal region is not only due to 
problem state related actions, but also to visual-spatial 
actions. This notion was operationalized by assuming that 
ACT-R’s visual-location module (which represents spatial 
information and was not mapped onto a brain region before) 
and the problem state module both cause activation in the 
posterior parietal cortex. 

To let our model make new predictions for the problem 
state region, we first calculated the influence of the visual 
system on the posterior parietal cortex in the data of Kao 
and Anderson. Linear regression showed that activation in 
the parietal cortex caused by the visual system was best 
predicted by taking .57 times the BOLD response of the 
fusiform gyrus. Next, we let the model predict activation in 
the parietal cortex by adding .57 times the activation of the 
visual-location module to the activation of the problem state 
module. The result can be seen in Figure 5B, showing a 
close fit to the data. 

Discussion 
In the current study we set out to confirm previous modeling 
results (Borst, et al., 2009) with an fMRI study. We used an 
existing experiment and cognitive model of the problem 
state bottleneck to generate a priori fMRI predictions. These 
model predictions turned out to be reasonably good 
indicators of activation in the visual, manual, and 
declarative memory regions of the brain. It should be noted 
that we did neither fit the model to the behavioral data, nor 
fit the model to the fMRI data. Usually, fMRI predictions 
are fitted to a model by calculating the best fitting a, s, and 
m parameters, but we thought it more informative to show 
our a priori predictions using default values. 

In the posterior parietal cortex, associated with the 
problem state module, we found a different pattern than 
predicted by the model. To account for the BOLD response 
in the posterior parietal cortex, we let activation in this 
region depend both on activity of the problem state module, 
as is customary, and on the visual-location module, which 

was not mapped to a brain area before. While it is in 
accordance with the literature to assume visual-spatial 
influences in the parietal cortex (e.g., Culham & Kanwisher, 
2001), the notion that the visual-location module influences 
the parietal cortex is tentative, and will have to be confirmed 
by new studies. Thus, while the resulting model outcome 
resembles the fMRI data, more experiments will be 
necessary to confirm the existence of a problem state 
bottleneck in the brain. 
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