
Learning and revising task-specific
rules in ACT-R

Niels Taatgen
Cognitive Science and Engineering

University of Groningen
Grote Kruisstraat 2/1
9712 TS Groningen

email: niels@tcw2.ppsw.rug.nl
9 July 1996

Abstract

This paper discusses the problem of how to learn and revise rules for a new task.
It will use the framework of the ACT-R theory, which uses analogy to learn new
productions. As an example, two general rules to learn new productions will be
discussed that can learn two different tasks, a beam-task and a card-classification
task.

1 Introduction
If, in an experimental situation, some new task is presented to a subject, he or
she is, after brief instructions, almost always capable of doing the task. This
means that in a short period of time the subject has acquired the necessary
task-specific knowledge to be able to get started on the task. Cognitive archi-
tectures based on production rules often ignore this phase of the experiment
and just assume that subjects somehow produce this knowledge while reading
instructions or studying an example.

When the task involves complex problem-solving, the set of rules the subject
initially comes up with is often insufficient to reach the goal. In that case the
initial rules need to be replaced or refined later on. Since revising task-knowl-
edge also involves the acquisition of new rules, the mechanism that is respon-
sible for the initial rules might also be responsible for the revised rules.

The hypothesis that will be explored in this paper is, that a set of general pro-
duction rules is responsible for learning both initial and revised rules for a new
task.

2 New production rules in ACT-R
In the ACT-R architecture, new production rules can be learned by the analogy
mechanism (Anderson, 1993; Lebiere, 1996). It involves the generalisation of
examples in declarative memory whenever a goal turns up that resembles the
example. The examples are stored in specialised chunks, dependency chunks,
that contain all the information needed: an example goal, an example solution,

facts (called constraints) that need to be retrieved from declarative memory to
create the solution, and sometimes additional subgoals that must be satisfied
before the solution applies. Adding two to three to obtain five using an addi-
tion fact is an example of a dependency:
dependency2+3

isa dependency
goal example-goal1
modified example-solution1
constraints fact2+3

example-goal1
isa addition-problem
arg1 two
arg2 three
answer nil

example-solution1
isa addition-problem
arg1 two
arg2 three
answer five

fact2+3
isa addition-fact
addend1 two
addend2 three
sum five

Analogy will produce the following production rule based on this depend-
ency:
(p addition-problem-production1
=example-goal-variable>

isa addition-problem
arg1 =two-variable
arg2 =three-variable
answer nil

=fact2+3-variable>
isa addition-fact
addend1 =two-variable
addend2 =three-variable
sum =five-variable

==>
=example-goal-variable>

answer =five-variable)

Although the ACT-R theory specifies how new production rules are generated
from examples, it does not specify where the examples come from. But since
examples are just chunks in declarative memory, they can be created by pro-
duction rules. So the schema to produce task-specific production rules will be
as follows:

The general rules themselves need of course information to work with. Several
sources of information may be available, which must be present in declarative
memory, since production rules cannot directly inspect other production rules.
Possible sources of information are:

procedural memory

declarative memory

General rules

Dependencies

Task-specific
rules

• Task instructions and examples
• Relevant facts and biases in declarative memory
• Feedback
• Old goals and dependencies for the same problem

3 The beam task
To explore the above ideas we will use the task of solving beam problems. The
problem is relatively easy: a beam is given, with weights on the left and the
right arm. Attached to the arms of the beam are labels, each with a number on
it. The task is to predict whether the beam will go left, right or remain in bal-
ance. The number on the labels have no influence on the outcome. The figure
below shows an example of a beam:

Although the task is easy if we know something about weights and beams, it is
much more difficult if we know nothing at all.

The general rules used to learn this task are the following:

Property-retrieval

If there is a task that has a number of objects, create a dependency that contains
an example of retrieving a certain property of each of the objects.

In the case of the beam task, the objects are the arms of the beam, and weight
and label are possible properties.

Find-fact-on-feedback

If feedback indicates that the answer is incorrect, and also contains the correct
answer, set up a dependency that uses the goal and the answer as examples.
Also, retrieve some fact that serves as a constraint in the dependency.

To be able to generate correct rules for the beam task, we need to retrieve the
fact that a certain number is greater than another number, to predict correctly
whether the beam will go left or right.

2 3

1 4weight

label

Since the general rules are just production rules, they are in direct competition
with the task-specific rules they generate. So if property-retrieval generates a
rule X to retrieve the label, X will compete with property-retrieval. So if X is
doing a bad job, which it will if it retrieves the label that has no relevance at all
to solving the problem, its evaluation will decrease, and it will eventually lose
the competition, in which case property-retrieval will create an example of
retrieving weight.

Although find-fact-on-feedback is only activated if feedback indicates an
incorrect answer, the rules it produces are in competition with each other. The
rule with the highest success rate will eventually win.

Both property-retrieval and find-fact-on-feedback can be influenced by prior
knowledge. If there is an association strength between beam and weight, indi-
cating knowledge that a beam has something to do with weight, property-
retrieval will choose weight in favour of label. If there is an association
strength between beam and greater-than, a greater-than fact will be retrieved
by find-fact-on-feedback.

The following figures summarise the general rules:

Apart from the general rules, the model contains lisp functions to generate ran-
dom beams, and production rules to give feedback. When the model produces

Property-retrieval

Select a property
type

Create a depend-
ency

Dependency
contains an
example of

retrieving the
property

Task-specific rule
Retrieve a certain

property

Competition
If the task-specific rule

behaves too poor, a new
property will be tried

Possible bias:
association

between weight
and beam

Find-fact-on-feedback

3 2 3
2

“left”

“Don’t know”
rule fires

Find-fact-type:
greater-than

Find-fact:
3 greater-than 2

Possible bias
association

between beam and
greater-than

Dependency
Example of answering left if left
arm has a greater weight than

the right arm

Task specific rule
Answer left if left arm has a
greater weight than the right

arm

an incorrect answer, it will try the same beam again until it can predict the
right outcome.

4 Simulation results
The general rules turned out to be sufficient to learn the task. The following
rules are examples of (correct) rules learned by the model. The rule generated
by property-retrieval is:
(P GEN-GOAL-PRODUCTION10
 =OLDGOAL10-VARIABLE>
 ISA GEN-GOAL
 TYPE SOLVE-BEAM
 OB1 =O6-VARIABLE
 OB2 =O7-VARIABLE
 PROP1 NONE
 PROP2 NONE
 =P7-VARIABLE>
 ISA PROPERTY
 OF =O6-VARIABLE
 TYPE WEIGHT
 VALUE =ONE-VARIABLE
 =P8-VARIABLE>
 ISA PROPERTY
 OF =O7-VARIABLE
 TYPE WEIGHT
 VALUE =SIX-VARIABLE
 ==>
 =OLDGOAL10-VARIABLE>
 PROP1 =ONE-VARIABLE
 PROP2 =SIX-VARIABLE
 PROPTYPE WEIGHT)

One of the rules generated by find-fact-on-feedback is:
 (P GEN-GOAL-PRODUCTION12
 =OGOAL11-VARIABLE>
 ISA GEN-GOAL
 TYPE SOLVE-BEAM
 OB1 =O6-VARIABLE
 OB2 =O7-VARIABLE
 PROP1 =ONE-VARIABLE
 PROP2 =SIX-VARIABLE
 ANSWER NONE
 PROPTYPE WEIGHT
 =F61-VARIABLE>
 ISA GEN-FACT
 TYPE GT-FACT
 SLOT1 =SIX-VARIABLE
 SLOT2 =ONE-VARIABLE
 ==>
 =OGOAL11-VARIABLE>
 ANSWER RIGHT)

The model was tested in several conditions, differing in the bias given for the
properties and the fact-type. The following table summarises the conditions:

P+ Association between beam and weight
P- Association between beam and label, so a bias for the wrong property
F+ Association between beam and greater-than
F- Association between both beam and greater-than, and beam

and number, so two possible fact-types.

F-- No associations between beam and fact-types, four fact-types
are possible.

Each experiment has a P and an F-condition. Each experiment has been run 30
times for 50 trials. The following table shows the results:

As can be seen in the graph, the P+F+ condition learns to solve the task quite
rapidly, and the fact that the model doesn’t reach a 100% score within a few tri-
als is only due to the fact that beams are generated randomly, only occasionally
producing a beam in which balance is the correct answer. Performance
decreases if the model has less initial information. In the case of the P-F-- con-
dition, the model often fails to find the correct rules for the task.

The results in the figure above suggest a gradual increase of performance. This
is however not the case, but a result of averaging 30 runs. If individual runs are
examined, each has a certain point where performance increases dramatically.
To make this clear the following graph depicts the average number of incorrect
tries for each trial in the P-F+ condition, averaged with respect to the point
where the model switches from examining the label property to examining the
weight property. So at x=0 the model creates a dependency that contains an
example of retrieving weight.

Trial number

Pe
rc

en
ta

ge
 c

or
re

ct

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43

P-F+

P-F-

P+F+

P-F--

P+F--

trial relative to property switch

nu
m

be
r

of
 f

ai
lu

re
s

0

0.5

1

1.5

2

2.5

3

3.5

-1
0 -8 -6 -4 -2 0 2 4 6 8

The dependency is created at the moment that the model has failed several
times to predict the right answer. As a result, the evaluation of the rule that
retrieves the labels drops and the general rule can propose a new dependency.

5 The card task
General rules are of course only general if they can be used for different tasks.
So the same rules were used for a new task, a card-classification task. In this
task, cards with pictures must be sorted into two categories. The pictures are
either one or two squares or circles, which are either red or green and either
large or small. The criterion to sort on is the colour (red=yes; green=no), which
the subject has to discover. The same general rules can be used to learn this
task. First, a property must be selected, so either colour, shape, size or number.
After that, the relevant aspect is tied to the answer. The following rules are
examples of rules learned by the model:
(P GEN-GOAL-PRODUCTION167
 =OLDGOAL1167-VARIABLE>
 ISA GEN-GOAL
 TYPE SOLVE-CAT
 OB1 =O164-VARIABLE
 PROP1 NONE
 =P165-VARIABLE>
 ISA PROPERTY
 OF =O164-VARIABLE
 TYPE COLOUR
 VALUE =GREEN-VARIABLE
 ==>
 =OLDGOAL1167-VARIABLE>
 PROP1 =GREEN-VARIABLE
 PROPTYPE COLOUR)

 (P GEN-GOAL-PRODUCTION169
 =OGOAL167-VARIABLE>
 ISA GEN-GOAL
 TYPE SOLVE-CAT
 OB1 =O164-VARIABLE
 PROP1 =GREEN-VARIABLE
 ANSWER NONE
 PROPTYPE COLOUR
 =GREEN-VARIABLE>
 ISA GEN-FACT
 TYPE COLOUR
 SLOT1 GREEN
 ==>
 =OGOAL167-VARIABLE>
 ANSWER NO)

6 Conclusions and future work
The beam and card task show that different tasks can be learned by the same
general rules. The rules produce both initial rules and revised rules. Also, the
beam-task can be learned under several conditions: if the model has some
knowledge about beams, it can learn the task quite rapidly, and if the model
has little or no knowledge, learning is much slower. So this type of learning
strikes a nice balance between one-shot learning methods like explanation-
based learning and learning using huge amounts of examples, as in neural net-
works and genetic algorithms.

Future work will consist of the extension of the set of general learning rules,
and the application of these rules to a larger set of tasks. Also, the general
schema allows for the generation of new general rules, possibly contributing to
a solution to the bootstrapping problem of learning.

References

Anderson, J.R. (1993). Rules of the Mind. Hillsdale, NJ: Lawrence Erlbaum.

Lebiere, C. (1996). ACT-R 3.0: A users manual. Report, Carnegie Mellon Univer-
sity, Pittsburgh.

