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Abstract. Theory of mind refers to the ability to reason explicitly about
unobservable mental content such as beliefs, desires, and intentions of
others. People are known to make use of theory of mind, and even rea-
son about what other people believe about their beliefs. Although it is
unknown why such a higher-order theory of mind evolved in humans,
exposure to mixed-motive situations may have facilitated its emergence.
In such mixed-motive situations, interacting parties have partially over-
lapping goals, so that both competition and cooperation play a role. In
this paper, we consider negotiation using alternative offers in a particular
mixed-motive situation known as Colored Trails, and determine to what
extent higher-order theory of mind is beneficial to computational agents.
Our results show limited effectiveness of first-order theory of mind, while
second-order theory of mind turns out to benefit agents greatly by al-
lowing them to reason about the way they communicate their interests.

1 Introduction

In everyday life, people regularly reason about what other people know and be-
lieve. People use this theory of mind [1] to understand why other people behave
in a certain way, to predict their future behaviour, and to distinguish between
intentional and accidental behaviour. People also take this ability one step fur-
ther, and consider that others have a theory of mind as well. This second-order
theory of mind allows people to consider and even expect that others will un-
derstand why they behave the way that they do. In this paper, we make use of
agent-based computational models to explain why our ability to reason about
mental content of others may have evolved.

Second-order theory of mind allows people to reason explicitly about belief
attributions made by others. For example, in the sentence “Alice knows that Bob
knows that Carol is throwing him a surprise party”, a second-order knowledge
attribution is made to Alice, in which she attributes knowledge to Bob. The
human ability to make use of higher-order (i.e. at least second-order) theory
of mind is well-established, both through tasks that require explicit reasoning
about second-order belief attributions [2, 3], as well as in strategic games [4,
5]. However, the use of theory of mind of any kind by non-human species is a
controversial matter [6–8]. These differences in the ability to make use of theory
of mind raise the issue of the reason for the evolution of a system that allows



humans to use higher-order theory of mind to reason about what other people
understand about mental content, while other animals, including chimpanzees
and other primates, do not appear to have this ability.

A possible explanation for the emergence of higher-order theory of mind is
that it is needed in situations that involve mixed-motive interactions such as
negotiations [9] or crisis management [10]. In these situations, interactions are
partially cooperative in the sense that the interaction can lead to a mutually
beneficial outcome, but also partially competitive in the sense that there is no
outcome that is optimal for everyone involved. Mixed-motive situations can be
understood as the task of sharing a pie [11]. When negotiating parties cooperate
to find mutually beneficial solutions, they are searching for ways to enlarge the
pie that they are trying to share. At the same time, negotiating parties compete
to receive as large a portion of the pie as possible for themselves.

In this paper, we make use of agent-based computational models to inves-
tigate the advantages of making use of higher-order theory of mind in mixed-
motive settings. Agent-based modeling has proven its usefulness as a research
tool to investigate how behavioral patterns emerge from the interactions between
individuals (cf. [12]), by allowing precise control and monitoring of the mental
content of agents, including application of theory of mind. This approach differs
from related work on prescriptive models of negotiation (see for example [13–
15]) in that we simulate interactions between agents that differ in their theory
of mind abilities to determine the extent to which higher-order theory of mind
provides agents with an advantage over those that are more restricted in their
use of theory of mind.

We have selected to investigate the effectiveness of higher-order theory of
mind in the influential Colored Trails setting, introduced by Grosz, Kraus and
colleagues [16–18], which provides a useful test-bed to study interactions in
mixed-motive situations. In single-shot negotiations in Colored Trails, first-order
theory of mind has been shown to benefit agents greatly, while the advantage of
second-order theory of mind only appears when negotiations involve more than
two players [19]. In the current paper, we change the Colored Trails setting to
include incomplete information about the goals of the partner and to allow for
multiple rounds of negotiation, where two agents alternate in making offers until
an agreement is reached.

The remainder of the paper is structured as follows. Section 2 describes the
details of the Colored Trails setting we investigate, after which Section 3 presents
how theory of mind agents negotiate in this setting. To determine the effective-
ness of theory of mind, we simulated negotiations between agents of different
orders of theory of mind. The results of these can be found in Section 4. Finally,
Section 5 provides discussion and gives directions for future research.

2 Colored Trails

To determine the effectiveness of higher orders of theory of mind in negotiations,
we compare performance of computational agents in the setting of Colored Trails



Fig. 1: The Colored Trails game is played on a 5 by 5 board. Players are initially
placed on the black tile, and aim to approach their goal tile as closely as possible.
To follow the black path from the initial tile to goal location G, a player would
have to hand in two white chips and two gray chips.

(CT). Colored Trails is a board game designed as a research test-bed for investi-
gating decision-making in groups of people and computer agents [17, 18]. Colored
Trails is played by two or more players on a board of colored tiles. Each player
starts the game at a given initial tile with a set of colored chips. The colors
of the chips match those of the tiles of the board. A player can move to a tile
adjacent to his current location by handing in a chip of the same color as the
destination tile. Each player is also assigned a goal location, which the player has
to approach as closely as possible. To achieve this goal, players are allowed to
trade chips among each other. The Colored Trails setting represents a multi-issue
bargaining situation, where each issue is represented by a color, while different
paths towards the goal location represent different acceptable solutions.

We follow the scoring rules in [17] and award a player that reaches his goal
tile 500 points. If a player is unable to reach the goal tile, he pays a penalty
of 100 points for each tile in the shortest path from his current location to his
goal location. Chips that have not been used to move on the board are worth 50
points. For each player, reaching the goal location is therefore the most valuable.
Since a player generally needs a different set of chips to achieve his goal than his
trading partner, there may be an opportunity for a trade that would allow both
players to reach a higher score. But since unused chips increase a player’s score
as well, players compete to own as many chips as possible.

In our setting, the Colored Trails game is played by two players on a 5 by
5 board such as the one depicted in Figure 1. Both players start at the center
of the board, indicated by the black square. This initial location is publicly
announced to the players, so that each player knows the initial location of the
other player. Each player also knows his own goal location, which has been
randomly chosen from the 12 possible tiles that are at least three steps away
from the goal location, indicated by the gray tiles in Figure 1. Although players
know their own goal location, they do not know the goal location of their trading
partner. This ensures that at the start of a game, players are uncertain about



the bargaining position of their trading partner. That is, they do not know the
score of their trading partner if negotiations should fail, or his preferences over
chips. Through the use of theory of mind, agents can extract information from
the offers made by the trading partner to try to learn his goal location.

Negotiation between players takes the form of a sequence of offers. Players
take turns suggesting a redistribution of chips, which their trading partner can
choose to accept or counter with an offer of his own. The game ends as soon as
an offer is accepted. Alternatively, when a player believes that it is impossible
to reach an agreement, he can end the negotiation and the initial distribution of
chips becomes final. Players can make any offer they wish. For example, a player
may repeat an offer that has been previously rejected by his trading partner, or
make an offer that he himself has previously rejected. However, both players pay
a 1 point penalty for each round of play. That is, when negotiations end after
five offers, the final score of each player is reduced by five points.

In Colored Trails, players can achieve a higher score by trading chips in such a
way that both players can move closer to their respective goal locations, thereby
enlarging the pie they share. At the same time, players compete to obtain as
large a piece of the pie as possible through trades that will increase their own
score more than it will increase the score of their trading partner.

3 Theory of mind agents in Colored Trails

To investigate the effectiveness of theory of mind in mixed-motive settings, we
constructed theory of mind agents that are able to play the game as outlined
in Section 2. These agents are inspired by the theory of mind agents used by
[20] to investigate the effectiveness of theory of mind in competitive settings.
To focus our investigations to the effectiveness of theory of mind, we assume
that agents make no mistakes in finding routes between locations and do not
consider the possibility that mistakes could be made in finding these routes. In
the following subsections, we describe how agents of different orders of theory of
mind negotiate with their trading partner in the Colored Trails setting. 3

3.1 Zero-order theory of mind agent

The zero-order theory of mind (ToM0) agent is unable to attribute mental con-
tent to others. Instead, the ToM0 agent forms zero-order beliefs about the like-
lihood of his trading partner accepting a certain offer. The ToM0 agent uses
these beliefs to calculate the expected value of making an offer, which takes into
account the change in the score of the ToM0 agent if his trading partner should
accept his offer, as well as the cost of another round of negotiation. A negative
expected value for some offer O means that the ToM0 agent believes that it
would be better to withdraw from negotiations rather than to make offer O.

3 The formal model of theory of mind agents is available as an online appendix at
http://www.ai.rug.nl/SocialCognition/Experiments/.



The ToM0 agent bases his zero-order beliefs on his observations of the be-
haviour of his trading partner. For example, if the trading partner rejects an
offer made by the ToM0 agent, the ToM0 agent believes that his trading partner
will also reject any offer that assigns fewer chips to his trading partner and more
to himself. Similarly, when the trading partner makes an offer that assigns many
red chips to the trading partner, the ToM0 agent concludes that it is unlikely
that his trading partner is willing to accept an offer that assigns few red chips
to the trading partner and adjusts his beliefs accordingly.

The degree to which the ToM0 agent adjusts his beliefs based on the observed
behaviour of his trading partner is represented by a learning speed parameter
λ (0 ≤ λ ≤ 1). A ToM0 agent with zero learning speed does not adjust his
beliefs over the course of negotiation. Such a ToM0 agent rarely withdraws from
negotiation, and keeps making the same offer until his trading partner either
accepts or makes an acceptable counteroffer. Such a counteroffer made by the
trading partner should increase of the score of the ToM0 agent that is at least
as much as the expected value the ToM0 agent assigns to his own offer.

If the ToM0 agent has the maximum learning speed (λ = 1), he radically
changes his beliefs based on the behaviour of his trading partner. For example,
when his trading partner rejects an offer made by the ToM0 agent, the ToM0

agent considers it impossible that his trading partner would accept this offer at
any future point in the negotiations. Similarly, when the trading partner makes
an offer that assigns three red chips to the trading partner, a ToM0 agent with
learning speed λ = 1 believes that his trading partner will not accept any offer
that assigns two or fewer red chips to the trading partner. With a learning speed
λ = 1, a ToM1 agent is therefore quick to end negotiations, either by accepting
an offer made by his trading partner or by withdrawing from negotiation.

Example 1. Suppose two agents play the Colored Trails game as shown in Figure
2a, in which agent 1 is a ToM0 agent who wants to move from the central square
to the white square marked l1. Each agent has an initial set of chips, which holds
3 gray chips and 1 black chip for agent 1, while agent 2 has 3 white chips and
1 gray chip. Figure 2a also shows that with the initial distribution, agent 1 can
move two tiles towards his goal location, which results in a score of 0.

Suppose that agent 2 makes an offer to trade the black chip held by agent
1 for the gray chip held by agent 2. Since this offer assigns all black and white
chips to agent 2, agent 1 decreases his belief that agent 2 will accept an offer in
which agent 1 receives any of the black or white chips. After this belief update,
agent 1 decides how to respond. Since accepting the offer would decrease the
score of agent 1, agent 1 would rather withdraw from negotiation than accept
the offer. However, agent 1 may still consider to make a counteroffer.

Agent 1 can reach his goal either with 1 gray chip, 1 black chip, and 1 white
chip, or alternatively with 2 white chips and 1 gray chip. Both options would
increase the score of agent 1 by 500. Agent 1 could also ask for more chips than
he needs to reach his goal location. Each additional unused chip would increase
the score of agent 1 by 50, but also decreases his belief that agent 2 will accept



(a) (b)

Fig. 2: Example of a negotiation setting in Colored Trails. Agent 1 wants to move
from the central square to his goal location l1. With his initial set of chips, agent
1 can move two tiles towards his goal location, as shown by the path in (a).
When agent 1 is a ToM1 agent, he tries to determine the goal location of agent
2 by calculating how accepting the offer an offer from agent 2 would change the
score of agent 2, for all possible goal locations.

the offer. Depending on his exact beliefs, agent 1 decides whether there is any
counteroffer that is worth risking the cost of rejection.

3.2 First-order theory of mind agent

The first-order theory of mind (ToM1) agent considers the possibility that his
trading partner has beliefs and goals, which determine whether or not his trading
partner will accept an offer. The ToM1 agent is able to consider his own offer
from the perspective of his trading partner, and decide whether he would accept
that offer if he were in the position of his trading partner. However, the ToM1

agent does not know the actual goal location and zero-order beliefs of his trading
partner, but forms beliefs about his trading partner’s goal location and beliefs.

Unlike settings that have complete information like rock-paper-scissors [20],
offers in Colored Trails can reveal information about a player’s preferences. Using
his first-order theory of mind, the ToM1 agent can extract information about his
trading partner’s goal location from the offers he receives. By putting himself
in the position of his trading partner, the ToM1 agent knows that his trading
partner would not make an offer that, if the ToM1 agent were to accept it, would
reduce the score of the trading partner. The ToM1 agent therefore believes that
locations for which this is the case cannot be the goal location of his trading
partner. For other locations, the ToM1 agent determines what offer he would
have made if he were in the position of his trading partner. Those locations for
which the ToM1 agent would have made an offer similar to the one he received
from his trading partner are assigned the highest likelihood.

To decide on the best offer to make, the ToM1 agent explicitly considers how
his trading partner will respond. This allows the ToM1 agent to subtly manipu-
late his trading partner. While deciding what offer to make to his trading partner,



the ToM1 agent determines what counteroffer he believes his trading partner will
be making, and whether he would be willing to accept that counteroffer. The
ToM1 agent may therefore decide to make an offer O that he believes will be
rejected by his trading partner, but which he also expects to change the beliefs
of the trading partner in such a way that the trading partner makes counteroffer
O′, which the ToM1 agent is willing to accept. However, to accurately predict
the behaviour of the trading partner, the ToM1 agent needs to know the goal
location of the trading partner. Thus, first-order theory of mind has limited use
for making the opening bid of a negotiation.

Although the ToM1 agent forms explicit beliefs about goal location and be-
liefs of his trading partner, the ToM1 agent makes no attempt to model the
learning speed λ of his trading partner. Instead, the ToM1 agent makes use of
his own learning speed when he updates the beliefs he attributes to his trading
partner, implicitly assuming that every agent has the same learning speed. This
means that a ToM1 agent with zero learning speed λ = 0 believes that the beliefs
of his trading partner do not change in response to any offer he makes, while a
ToM1 agent with maximal learning speed λ = 1 believes that his trading partner
will quickly withdraw from negotiations if he makes his trading partner offers
that are too demanding. This implies that the ToM1 agent will have an incorrect
representation of the beliefs of his trading partner unless the ToM1 agent and
his trading partner have the same learning speed.

Example 2. We consider the game shown in Figure 2a, in which agent 1 is a
ToM1 agent. When agent 2 offers to trade the black chip held by agent 1 for the
gray chip held by agent 2, agent 1 uses this to extract information about the goal
location of agent 2. For each of the possible goal locations, Figure 2b shows the
change in the score of agent 2 if agent 1 were to accept the offer. For example, if
the goal location of agent 2 is the white square at the bottom right of the board,
accepting the offer would increase the score of agent 2 by 600 points.

The ToM1 agent 1 believes that the goal location of agent 2 cannot be any of
the locations that have a negative or zero change in score, since in these cases,
agent 2 would have been better off withdrawing from negotiation. Furthermore,
by considering the game from the perspective of his trading partner, agent 1
believes that if the goal location of agent 2 had been any of the locations that
show an increase by 50 points, agent 2 would have made a different offer. Agent 1
concludes that the offer made by agent 2 is most consistent with his goal location
being one of the three remaining locations. If agent 1 were to accept the offer,
agent 2 would be able to reach any one of these three locations.

After updating his goal location beliefs, ToM1 agent 1 decides whether or not
to make a counteroffer. Using his first-order theory of mind, agent 1 knows that
agent 2 will only accept an offer that would increase his score. For two of the
three most likely goal locations, agent 2 would be able to reach his goal location
with 1 gray, 1 black, and 1 white chip, while agent 1 would be able to reach
his goal location by using 2 white chips and 1 gray chip. The final possible goal
location also allows both agents to reach their goal location, with agent 2 using
2 white chips and 2 gray chips, while agent 1 uses 1 black, 1 gray, and 1 white



chip. However, there is no offer that is guaranteed to allow both agents to reach
respective their goal locations given the information about the goal location of
agent 2. The final decision depends on the beliefs of agent 1.

3.3 Higher orders of theory of mind agent

Agents that are able to use orders of theory of mind beyond the first can use this
ability to attempt to manipulate the beliefs of lower orders of theory of mind to
obtain an advantage. For example, a second-order theory of mind (ToM2) agent
models his trading partner as a ToM1 agent, which means that the ToM2 agent
believes that his trading partner may be interpreting the offers he makes to find
out what his goal location is. This allows the ToM2 agent to construct an offer
which will inform his trading partner about his goal location. This could speed
up the process of finding a mutually beneficial offer.

Second-order theory of mind also allows the ToM2 agent to deceive and ma-
nipulate his trading partner more effectively. By careful construction of the offers
he makes, the ToM2 agent can provide his trading partner with incomplete or
ambiguous information about his goal location, or induce a false belief in his
trading partner concerning his goal location. This may cause a ToM1 trading
partner to make an offer that is more generous towards the ToM2 agent than
the trading partner believes it to be.

For each additional order of theory of mind, agents also take an additional
round of play into consideration. Where a ToM0 agent only judges whether his
trading partner is likely to accept an offer O, a ToM1 agent believes that the way
a ToM0 trading partner reacts to an offer O depends on how likely the trading
partner thinks it is that the ToM1 agent will accept a possible alternative offer
O′. A ToM2 agent considers an additional round of play by realizing that the
reaction of a ToM1 trading partner to an offer O depends on what this trading
partner believes to be the reaction of a ToM0 agent to a possible alternative offer
O′, which in turn depends on how likely a ToM0 agent considers it to be that
his trading partner will accept a possible alternative offer O′′.

Example 3. We consider the game shown in Figure 2a. Example 2 showed that
if agent 1 is a ToM1 agent, he believes that there are three possible goal loca-
tions for agent 2, and has to make a decision of what offer to make under this
uncertainty of goal location. If agent 1 is a ToM2 agent, he can decide to make
an offer that is unlikely to be accepted, but may provide agent 2 with enough
information to construct an offer that is acceptable to both agents. For example,
ToM2 agent 1 believes that if his offer assigns the black chip to agent 2, this
provides agent 2 with information about his goal location. Agent 1 can make an
offer that assigned 2 gray and 2 white chips to himself to signal that he does
not assign a high value to the black chip. However, since the offer of agent 2
assigns the black chip to agent 2, this chip may be of high value for agent 2. By
constructing an offer that assigns the black chip to himself, agent 1 can attempt
to make agent 2 believe that the black chip is valuable to agent 1 as well. This
may encourage agent 2 to give up more chips in exchange for the black chip.



4 Simulation results

We performed simulations where the theory of mind agents described in Section
3 negotiated in the Colored Trails setting described in Section 2 according to an
alternating offers protocol. Games were played by two agents on a 5 by 5 board
of tiles, randomly colored with one of five possible colors. At the start of the
game, each player received an initial set of four randomly colored chips, drawn
from the same colors as those on the board. Since each player needs at most
four chips to reach his or her goal location, it is sometimes possible that after a
trade, both players can reach their respective goal location. However, this was
not always the case. To ensure that both players have an incentive to negotiate
to increase their score, game settings in which some player could reach his goal
location with the initial set of chips without trading were excluded from analysis.

To determine the effectiveness of theory of mind, pairs of agents played 1,000
consecutive Colored Trails games. Although agents alternated in making offers,
the literature suggests that the opening bid is influential [11, 21], because it
serves as an anchor for the negotiation process. Because of this, we differentiate
between initiators, who make the first offer in a game, and responders.

In our simulations, we determined the negotiation score of a ToMi initiator
playing Colored Trails with a ToMj responder, for each combination of i, j =
0, 1, 2. The negotiation score is calculated as the average difference between the
initiator’s final score after negotiation ended and his initial score at the start of
negotiation. A negative score therefore indicates that the initiator paid a higher
cost for negotiation than he gained from the resulting trade. Agents started every
game reasoning at their highest theory of mind ability. That is, a ToM2 agent
always started the game by taking into account the beliefs his trading partner
might have about his own beliefs. Although negotiations could theoretically take
infinitely long, games that continued for more than 100 rounds of offers made
were considered to be unsuccessful. In this case, the initial situation became
final, and both agents incurred the cost of 100 rounds of play. In our model,
agents were unable to reason about this limit.

In the following subsections, we present competitive and cooperative aspects
of negotiation in Colored Trails separately. In Section 4.1, we present the in-
dividual performance of agents, which shows how well agents compete. Section
4.2 focuses on the cooperative element of negotiation, and describes the effect of
theory of mind on the combined score of the agents in the Colored Trails setting.

4.1 Individual performance results

In this section, we describe the individual performance of theory of mind agents
when negotiating in Colored Trails. How large a piece of pie the agents end up
with shows how theory of mind influences the competitive abilities of agents.

Figure 3a shows the average negotiation score of a ToM0 initiator playing
Colored Trails with a ToM0 responder. The three-dimensional figure shows the
negotiation score as a function of the learning speeds of both initiator and re-
sponder. Since most points in the figure are above the semi-transparent plane of



(a) ToM0 initiator, ToM0 responder (b) ToM1 initiator, ToM0 responder

(c) ToM0 initiator, ToM1 responder (d) ToM1 initiator, ToM1 responder

(e) ToM2 initiator, ToM1 responder (f) ToM1 initiator, ToM2 responder

Fig. 3: Average negotiation score of theory of mind agents playing Colored Trails.



Fig. 4: Average negotiation score of a ToM2 agent negotiating with a ToM2

trading partner in Colored Trails.

zero negotiation score, the figure shows that ToM0 agents are often able to in-
crease their score through negotiation despite their inability to reason explicitly
about the goals and desires of their trading partner.

Figure 3a shows that the negotiation score of the ToM0 initiator generally
increases as his own learning speed decreases. An agent with a low learning
speed changes his behaviour little in response to the offers his trading partner
makes, and behaves as if he is unwilling to make concessions. An agent with zero
learning speed (λ = 0) does not adjust his behaviour at all, but keeps repeating
the same offer. When both agents follow this strategy, and neither is willing to
accept the offer of ther trading partner, the agents will be unable to reach an
agreement and only carry the burden of a failed negotiation. Summing up, there
is an evolutionary pressure on ToM0 agents to decrease their learning speed,
which may result in the worst possible outcome in which negotiation fails.

Figure 3b shows that the score of a ToM1 initiator negotiating with a ToM0

responder is not always higher than that of a ToM0 initiator in the same posi-
tion. Although the ToM1 obtains a higher score when both agents have a high
learning speed, the ToM1 initiator performs poorly when his learning speed is
low. Moreover, a ToM1 initiator with learning speed λ = 0 withdraws from ne-
gotiation before making his initial offer. The reason for this is that the ToM1

agent attributes his own learning speed to his trading partner. A ToM1 agent
with zero learning speed predicts that his trading partner will keep repeating the
same offer until the ToM1 agent makes an acceptable offer. As a result, the ToM1

agent believes that the only way to successfully complete negotiations is for him
to give his trading partner what he wants. At the start of a game, however, the
ToM1 initiator does not know the goal location of the responder. As a result,
there is no offer that the ToM1 initiator believes to be successful, and the ToM1

initiator chooses not to engage in negotiation.

Although the ToM1 agent has an incentive to keep his learning speed high,
Figure 3c shows that even in the presence of a ToM1 responder, the ToM0 initia-



tor performs best when his learning speed is close to zero. Since a ToM1 agent
will adjust his offers to take into account the score of his trading partner, the
trading partner has no incentive to make any concessions. That is, even though
the presence of a ToM1 agent prevents negotiation from failing, the ToM0 agent
benefits more from this outcome than the ToM1 agent.

Figure 3d shows the negotiation score of a ToM1 initiator playing Colored
Trails with a ToM1 responder. The figure shows a ridge along the line of equal
learning speeds, where the agent with the lower learning speed generally obtains
the higher score. A ToM1 agent with a high learning speed attributes this learn-
ing speed to his trading partner and expects that his offers strongly influence the
behaviour of his trading partner. Such a ToM1 agent believes that his trading
partner is quick to conclude that a negotiation will be unsuccessful. To prevent
his trading partner from withdrawing from negotiations, the ToM1 agent makes
offers that benefit his trading partner more at the expense of his own score.

However, unlike ToM0 agents, ToM1 agents suffer when their learning speed
becomes too low. When a ToM1 agent has a learning speed below λ = 0.2, his
performance does not increase as his learning speed goes down. Because of this,
the evolutionary pressure on ToM1 agents to have low learning speeds does not
lead to a situation in which negotiation fails as it does for ToM0 agents.

Figure 3e and Figure 3e show the performance of a ToM1 and a ToM2 agent
negotiating in the Colored Trails setting. The figures show that the ToM2 ini-
tiator is more effective in obtaining a large piece of the pie when negotiating
with a ToM1 responder than vice versa, irrespective of the learning speeds of the
agents. Compared to results of lower orders of theory of mind, Figure 3e also
shows a fairly flat surface, indicating that the score of the ToM2 initiator is less
dependent on learning speeds of the initiator and responder.

Figure 4 shows that when a ToM2 initiator negotiates with a ToM2 respon-
der, his score is not influenced greatly by the learning speeds of either agent.
Nonetheless, the ToM2 initiator performs best when his learning speed is low,
but greater than zero.

The results in this section show that although a ToM1 agent succeeds in
securing a larger pie when negotiating with a ToM0 trading partner than a
ToM0 agent, the ToM1 agent only obtains a small piece of this pie. The ToM2

agent negotiates successfully with other theory of mind agents as well, but also
ensures that he receives a large piece of pie for himself. In the next subsection,
we take a closer look at the cooperative abilities of these theory of mind agents.

4.2 Social welfare results

In the previous section, we compared the individual competitive performance of
agents of several orders of theory of mind negotiating in Colored Trails. In this
section, we show how theory of mind affects the cooperative ability of agents.
To this end, we take a closer look at the increase in social welfare that theory of
mind agents achieve, where social welfare is measured by the sum of the scores of
the initiator and the responder. Figure 5 and Figure 6 show the increase in social
welfare for different combinations of theory of mind initiators and responders.



(a) ToM0 agent, ToM0 partner (b) ToM0 agent, ToM1 partner

(c) ToM1 agent, ToM0 partner (d) ToM1 agent, ToM1 partner

(e) ToM1 agent, ToM2 partner (f) ToM2 agent, ToM1 partner

Fig. 5: Average combined negotiation score of theory of mind agents playing
Colored Trails.



Fig. 6: Average combined negotiation score of two ToM2 agents negotiating.

Figure 5a shows that ToM0 agents can cooperate surprisingly well. However,
cooperation between ToM0 agents is not stable due to the competitive element
of Colored Trails. The ToM0 agents experience an evolutionary pressure towards
zero learning speed, which can eventually lead to negotiation failure.

Although Section 4.1 shows that the presence of a ToM1 agent can stabilize
cooperation in Colored Trails, Figure 5 shows that this does not imply higher
social welfare. Figures 5b and 5c do not show an improvement over the perfor-
mance of ToM0 agents shown in Figure 5a. When two ToM1 agents play Colored
Trails together, they achieve the highest social welfare when both agents have
the maximum learning speed λ = 1. However, the competitive element in Col-
ored Trails puts an evolutionary pressure on ToM1 agents to lower their learning
speed. Although this does not lead to a breakdown of negotiation as it does
for ToM0 agents, social welfare suffers from the lower learning speed of ToM1

agents. That is, the individual desire of ToM1 agents to obtain as large a piece
of pie as possible results in a smaller pie to share.

In contrast, Figures 5e and 5f show that the ability of a ToM2 agent and
a ToM1 agent to achieve a high social welfare depends mostly on the learning
speed of the ToM1 agent. Interestingly, the learning speed of the ToM1 agent that
results in a higher social welfare also yields the ToM1 agent the best individual
score. That is, the learning speed that would yield the ToM1 agent the largest
piece of pie when negotiating with a ToM2 agent also yields the largest total pie.

Figure 6 shows a similar effect when two ToM2 agent negotiate in Colored
Trails. The maximum social welfare is achieved when both agents have a low
non-zero learning speed, which also yields them individually the highest score.

5 Discussion

We have used agent-based models to show how theory of mind can present indi-
viduals with an advantage over others that lack such an ability in the negotiation
setting Colored Trails. Our results show how theory of mind can indeed present



individuals with evolutionary advantages, by facilitating successful negotiation
with others. Although agents without a theory of mind are very successful un-
der optimal circumstances, zero-order theory of mind agents face a cooperative
dilemma where agents can defect on cooperation by not making any conces-
sions to their trading partner. When this strategy is adopted by all agents, these
agents are unable to negotiate successfully. In terms of sharing a pie, the in-
dividual goals of agents to receive as large a piece of pie as possible increases
competition until there no longer is any pie to share.

Agents negotiate more successfully when the ability to make use of theory
of mind is introduced. By reasoning explicitly about the goals of their trading
partner, first-order theory of mind agents can recognize the need for a mutually
beneficial outcome. However, this does not solve the cooperative dilemma com-
pletely. The attempts of first-order theory of mind agents to obtain as large a
piece as possible comes at the expense of the size of the pie as a whole.

Although first-order theory of mind has a limited effectiveness in the nego-
tiation setting we describe, second-order theory of mind greatly benefits agents.
When a second-order theory of mind agent negotiates with another agent capa-
ble of theory of mind, neither agent has an incentive to deviate from the outcome
that maximizes social welfare. That is, agents that succeed in negotiating the
largest possible pie could not have received a larger piece of pie for themselves
by changing their behaviour. Moreover, second-order theory of mind also allows
an agent to obtain a larger piece of the pie for himself. In future research, we
aim to determine whether the extent to which theory of mind is effective in
mixed-motive settings goes beyond second-order theory of mind.

The setting we investigate is similar to [16] in that we model bounded ratio-
nal agents negotiating with incomplete information. However, the second-order
theory of mind agents that we model also take into account that their trading
partner has incomplete information concerning their own goals as well. In future
work, these agents of [16] can be compared directly to theory of mind agents.

The effectiveness of theory of mind in our setup can be understood in terms
of interest-based bargaining [11, 22]. Without theory of mind, agents can only
negotiate in terms of positions, by making offers without regard for the interests
of others. First-order theory of mind allows an agent to identify the interests
of his trading partner, while a second-order theory of mind agent is able to
communicate his interests through his choice of offers. That is, theory of mind
allows agents to engage in interest-based bargaining, where agents reveal their
interests to uncover mutually beneficial solutions.
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