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Abstract
Opponent modeling in multi-agent game playing and decision making allows agents to recursively model their oppo-
nent, creating increasingly complex models of increasingly sophisticated opponents. Human participants show this
ability to predict the actions of others through theory of mind, by explicitly attributing unobservable mental content
such as beliefs, desires, and intentions to an opponent. However, whereas recursive opponent modeling could con-
tinue indefinitely, humans show difficulties in using higher orders of theory of mind. One of the explanations for the
limited recursive use of theory of mind in humans can be that recursion is initially advantageous, but that there is
little advantage of deeper recursion beyond a certain point. Our previous research supports this explanation through
agent-based simulations in the specific setting of a dynamic game, which shows a reduction in advantage after the
second step of recursion. In this paper, we aim to determine whether this effect is generalizable to other settings, such
as iterated single-shot games. We investigate the advantages of theory of mind in three variations of the well-known
rock-paper-scissors game. We find that first-order and second-order theory of mind agents clearly outperform oppo-
nents that are more limited in their ability to make use of theory of mind, but that the advantage for deeper recursion to
third-order theory of mind is small in comparison. Furthermore, we find that the advantage of second-order theory of
mind remains for games with a larger action space when for each opponent action there exists a unique best response.

1 Introduction
In settings where multiple strategic agents perform actions that influence each other’s decision making process, it
is often necessary to accurately predict the behaviour of others in order to respond appropriately [19]. One option
to do so is by modeling an opponent explicitly, e.g. through dynamic epistemic logic [21, 29, 30], epistemic game
theory [5, 6], interactive POMDPs [16], networks of influence diagrams [24], or iterated best-response models such as
cognitive hierarchy models [9] and level-n theory [2]. These models allow for recursive modeling of an opponent, by
modeling the opponent as an opponent-modeling agent itself, creating increasingly complicated models to predict the
actions of increasingly sophisticated opponents.

In humans, the ability to predict the actions of others by explicitly attributing to them unobservable mental content,
such as beliefs, desires, and intentions, is known as theory of mind. Experiments in which humans play games show
evidence that humans use theory of mind recursively in their decision making process [13, 17, 18, 23]. For example,
when asked to search for a hidden object in one of four boxes, three of which are labeled ‘A’ and one of them ‘B’,
participants tend to ignore the box labeled ‘B’, using their nested belief that a hider would believe that a seeker would
consider the most obvious place to search for a hidden object to be the box labeled ‘B’ [10]. The ability to use higher-
order theory of mind is well established for humans, and may indicate an evolutionary advantage that justifies the
recursive use of theory of mind. However, whereas humans make use of higher-order theory of mind, the use of theory
of mind of any kind by non-human species is a controversial matter [3, 22, 27, 28]. Also, whereas recursive opponent
modeling could continue indefinitely, children between the ages of 6 and 8 struggle to apply higher-order theory of
mind [13], and even adults use higher-order theory of mind only up to a certain point [13, 17, 31].

In this paper, we consider agent-based computational models to investigate the advantages of making use of higher-
order theory of mind. Agent-based modeling has proven its usefulness as a research tool to investigate how behavioral
patterns emerge from the interactions between individuals (cf. [12]). In Evolutionary Game Theory, agent-based
models have been used to explain the existence of cooperative behaviour as well as the influence of local interactions
in a spatial structure on the global distribution of strategies [15, 20]. We have previously used the approach of agent-
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based modeling to investigate the effectiveness of recursive opponent modeling in the setting of a specific game called
Limited Bidding [11]. Limited Bidding is a two-player extensive form game, in which each player is given an identical
set of five tokens of different values. Over the course of five rounds, players simultaneously choose a token to play,
with the exception that each token may only be used in one round per game. A round is won by the agent that played the
token with the highest value, while the game is won by the agent that won most rounds. The results in this setting show
that opponent modeling in the form of first-order theory of mind is successful against naı̈ve agents, and second-order
theory of mind is successful against both naı̈ve and first-order theory of mind agents. However, continued recursion,
to third-order theory of mind and higher, provides the agent with limited additional advantages [11].

Our results from Limited Bidding support the Machiavellian intelligence hypothesis1 [33] in the sense that theory
of mind can give individuals a competitive advantage over their opponent when playing Limited Bidding, but it is
unclear whether these effects are caused by the specific game structure. In this paper, we apply the model that we
presented in [11] to several variations of repeated rock-paper-scissors (RPS). These games are outlined in Section 2.
Section 3 describes how theory of mind may be used to obtain an advantage over less sophisticated opponents within
our setting. Section 4 gives a detailed description of the theory of mind agents that are placed in competition with one
another. The results of a tournament between agents with different abilities for theory of mind are presented in Section
5. Finally, Section 6 discusses our findings.

2 Outline of three games
We test the effectiveness of theory of mind across three variations of the rock-paper-scissors game. In the following
subsections, we will present these variations in more detail and present hypotheses for our agent-based simulations.
These games are in a special class of games, in which there is no outcome that is satisfactory for both players. For each
outcome, there is at least one player who could have done better by selecting a different action. That is, these games
do not have a pure-strategy Nash equilibrium. We believe opponent modeling to be especially relevant in this class
of games. These games are therefore a suitable starting point to investigate the possible advantages of higher-order
theory of mind.

2.1 Rock-paper-scissors
The game of rock-paper-scissors (RPS) [32] is a two-player symmetric zero-sum game in which both players simulta-
neously choose one of the three possible actions ‘rock’, ‘paper’, or ‘scissors’. If both players choose the same action,
the game ends in a draw. Otherwise, the player that chooses ‘rock’ wins from the one that chooses ‘scissors’, ‘scissors’
wins from ‘paper’, and ‘paper’ wins from ‘rock’. The game can be represented as shown in Table 1, which shows the
payoff table and a graph representation for the RPS game. The matrix shows the payoff for the player choosing the
row action for every possible choice of the player choosing the column action. In the graph, an arrow from action A
to action B denotes the relation ‘A defeats B’.

RPS is known to have a unique mixed-strategy Nash equilibrium (see e.g. [4]) in which the player chooses each
of the options with equal probability. Although randomizing over the possible actions has an expected utility of
zero, a randomizing player prevents his opponent from taking advantages of regularities in his strategy. However,
experimental evidence suggests that human participants are poor at generating random sequences [25], and do not
always play as predicted by game theory [8].

If theory of mind presents individuals with an advantage over their competitors, our results for RPS should show
that agents with a higher order of theory of mind outperform opponents that are more limited in their ability to make
use of theory of mind.

2.2 Elemental rock-paper-scissors
Elemental rock-paper-scissors (ERPS)2 is an extension of RPS that includes five actions, as shown in Table 2. The
ERPS game preserves the property of RPS that each action is defeated by exactly one response. That is, for each action

1For a discussion of alternative hypotheses for the evolution of theory of mind, see [31].
2Based on the five elements in Chinese philosophy.
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Rock Paper Scissors

Rock 0 -1 1
Paper 1 0 -1
Scissors -1 1 0

Rock Paper

Scissors

Table 1: (RPS) Payoff table and graph representation for the rock-paper-scissors game. The table shows the payoff for
the player choosing the row action ‘rock’, ‘paper’ or ‘scissors’, for every possible choice of the player choosing the
column action. Arrows in the graph are read as ‘defeats’. For example, the arrow from ‘paper’ to ‘rock’ means that
‘paper’ defeats ‘rock’.

Wood Metal Fire Water Earth

Wood 0 -1 0 0 1
Metal 1 0 -1 0 0
Fire 0 1 0 -1 0
Water 0 0 1 0 -1
Earth -1 0 0 1 0

Wood Metal

Earth Fire

Water

Table 2: (ERPS) Payoff table and graph representation for the elemental rock-paper-scissors game, in which agents
choose between five different actions. The table shows the payoff for the player choosing the row action ‘wood’,
‘metal’, ‘fire’, ‘water’, or ‘earth’, for every possible choice of the player choosing the column action. Arrows in the
graph are read as ‘defeats’. For example, the arrow between ‘wood’ and ‘earth’ means that ‘wood’ defeats ‘earth’.

Rock Paper Scissors Lizard Spock

Rock 0 -1 1 1 -1
Paper 1 0 -1 -1 1
Scissors -1 1 0 1 -1
Lizard -1 1 -1 0 1
Spock 1 -1 1 -1 0

Rock Paper

Lizard Scissors

Spock

Table 3: (RPSLS) Payoff table and graph representation for the rock-paper-scissors-lizard-Spock game. The table
shows the payoff for the player choosing the row action ‘rock’, ‘paper’, ‘scissors’, ‘lizard’ and ‘Spock’, for every
possible choice of the player choosing the column action. Arrows in the graph are read as ‘defeats’. For example, the
arrow between ‘lizard’ and ‘Spock’ means that ‘lizard’ defeats ‘Spock’.

that an opponent may play, there is a unique best response that yields the agent a positive outcome.
The differences in performance of agents playing RPS and those playing ERPS should provide insight in the way

theory of mind performance is related to the structure of the game. In ERPS, the predicted behaviour of the opponent
is not limited to the three possible actions of RPS. We expect that the larger action space allows higher-order agents to
perform better in ERPS than in RPS. However, the additional actions may make it more difficult to accurately predict
the opponent, which may result in a decrease in performance of theory of mind agents playing ERPS, as compared to
those playing RPS.
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2.3 Rock-paper-scissors-lizard-Spock
Rock-paper-scissors-lizard-Spock (RPSLS)3 is an extension of RPS with a different interaction topology. Like ERPS,
RPSLS has five actions, but in RPSLS each action wins from exactly two other actions, while being defeated by the
remaining two other actions. Table 3 shows the payoff matrix and a graph representation of the RPSLS game.

Unlike the previous two games, the best response to an action in RPSLS is not unique. If an agent predicts its
opponent to play ‘paper’, the agent has no preference for playing either ‘scissors’ or ‘lizard’, since both of them will
defeat ‘paper’ equally well. As a result, we expect that the application of increasingly higher orders of theory of mind
will result in less of an advantage for the agent than in the cases of RPS and ERPS, in which the best response to a
predicted action is unique.

3 Simulation theory of mind
An agent may try to take advantage of regularities in its opponent’s strategy by predicting its behaviour. In human
participants, one way of generating such predictions is by using simulation-theory of mind [19]. In simulation-theory
of mind, a player takes the perspective of his opponent, and simulates the decision making process of the opponent
by making the decision for himself. Through the implicit assumption that the opponent’s thought process can be
accurately modeled by his own thought process, the player then predicts that the opponent will make the same decision
he would have made if the roles were reversed. To avoid confusion, we will refer to a focal agent as if it were male,
while we refer to opponents as if they were female.

A zero-order theory of mind agent is unable to model the mental content of his opponent, including beliefs, desires
and intentions. Specifically, a zero-order theory of mind agent cannot represent that his opponent has goals different
from his own. When predicting his opponent’s behaviour, the agent is therefore limited to his memory of previous
events. If, for example, the zero-order theory of mind agent remembers his opponent to have played ‘rock’ in previous
encounters, a natural conclusion would be that his opponent is going to play ‘rock’ again. Given this belief, the zero-
order theory of mind agent would therefore adjust his behaviour to play ‘paper’ more often. Anecdotal evidence of
RPS tournaments held with human participants suggests that inexperienced or frustrated players tend to play the action
that would have won in the last round. That is, they play as if they were zero-order theory of mind agents.

In contrast to a zero-order theory of mind, a first-order theory of mind agent considers the possibility that his
opponent is trying to win the game for herself, and that she reacts to the choices made by the first-order theory of
mind agent. To predict his opponent’s behaviour, the first-order theory of mind agent puts himself in the position of
his opponent. For example, suppose that the first-order theory of mind agent remembers that he previously played
‘rock’ against the same opponent. He realizes that if the roles were reversed, and he would remember his opponent
to play ‘rock’ before, the agent would play ‘paper’ more often. The first-order theory of mind agent has the ability to
attribute this thought process to his opponent, and predict that she will play ‘paper’ more often. Given this prediction,
the first-order theory of mind agent should play ‘scissors’ more often.

Although the first-order theory of mind agent models a zero-order theory of mind opponent, agents in our setup
do not know the extent of the abilities of their opponents with certainty. Through repeated interaction, a first-order
theory of mind agent may come to believe that his opponent is not a zero-order theory of mind agent, and that she has
no beliefs at all. Such an opponent without beliefs could, for example, play ‘rock’ irrespective of what the first-order
theory of mind agent has previously played. Based on this belief, a first-order theory of mind agent can choose to play
as if he were a zero-order theory of mind agent.

Similar to the way a first-order theory of mind agent models his opponent as having zero-order theory of mind, a
second-order theory of mind agent models a first-order theory of mind opponent. A second-order theory of mind agent
thus considers the possibility that his opponent is putting herself in his position, and is modeling him as a zero-order
theory of mind agent. If the second-order theory of mind agent remembers his opponent to have played ‘rock’ in
previous encounters, he would therefore believe his opponent to predict that he will be playing ‘paper’ more often. As
a result, the second-order theory of mind agent would predict his opponent to play ‘scissors’ more often, in which case
the agent should play ‘rock’ more often himself.

3Originally by Sam Kass and Karen Bryla.
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Order of theory of mind k
0

b(0)(R) 0.5
b(0)(P ) 0.3
b(0)(S) 0.2

(a) Mental content of the ToM0

agent

Order of theory of mind k
0 1

ck 0.9
b(k)(R) 0.5 0.4
b(k)(P ) 0.3 0.5
b(k)(S) 0.2 0.1

(b) Mental content of the ToM1

agent

Order of theory of mind k
0 1 2

ck 0.9 0.1
b(k)(R) 0.5 0.4 0.4
b(k)(P ) 0.3 0.5 0.3
b(k)(S) 0.2 0.1 0.3

(c) Mental content of the ToM2 agent

Table 4: Mental content of (a) the ToM0 agent in Example 1, (b) the ToM1 agent in Example 2, and (c) the ToM2 agent
in Example 3, in a game of rock-paper-scissors.

4 An agent-based model of theory of mind
The agents that have been described in Section 3 have been implemented as computational agents. In this section, we
discuss the implementation of thse types of computational agents that play the three games RPS, ERPS and RPSLS.
We closely follow the model presented for Limited Bidding [11], in which agents differ in their ability to explicitly
represent beliefs, and therefore in their ability to make use of theory of mind. In the remainder, the shorthand ToMi

will be used to refer to an agent that has abilities up to and including ith-order theory of mind, but not higher.

4.1 Zero-order theory of mind
Theory of mind agents differ in their order of theory of mind, which specifies the maximum nesting of beliefs that
they can represent, and their learning speed 0 ≤ λ ≤ 1. A zero-order theory of mind agent models his opponent’s
behaviour, but cannot represent her beliefs. A zero-order theory of mind agent models his opponent in the form of
a probability distribution b(0) over an action space S , such that b(0)(s) represents what the agent believes to be the
probability that his opponent will play action s ∈ S. We assume:

b(0)(s) ≥ 0 for all s ∈ S, (1)∑
s∈S

b(0)(s) = 1 (2)

That is, (1) agents assign non-negative probability to their opponent playing a certain action s ∈ S, and (2) the
probabilities assigned to possible opponent action sum up to 1.

For a ToM0 agent, the belief structure b(0) represents the extent of his beliefs concerning his opponent’s behaviour.
Given the game’s payoff function and his beliefs about the way his opponent plays the game, a ToM0 agent is able to
decide what action to perform. To reduce predictability of lower-order theory of mind agents, agents choose proba-
bilistically. Specifically, the probability that an agent chooses a certain action is proportional to the probability that
performing the action will result in winning the game (i.e. yield a positive payoff), given the distribution b(0) of oppo-
nent actions. This is represented by the function t∗(b(i)), which is a probability distribution over the action space S.
Agents therefore do not always choose the action that they believe to yield them the highest payoff (cf. [1]). Instead,
when an agent is playing against an unpredictable opponent, the agent will also play more randomly.

A ToM0 agent’s ability to predict his opponent’s behaviour is limited to his beliefs b(0). A ToM0 agent therefore
selects what action to play by using the function t∗ directly. That is, given his zero-order beliefs b(0), a ToM0 agent
will play t∗(b(0)). Example 1 shows the decision process of a ToM0 agent in a specific situation.

4.2 First-order theory of mind
A ToM1 agent has zero-order beliefs b(0) of his opponent’s behaviour, and additionally attributes similar beliefs to his
opponent in the form of an additional probability distribution b(1). Here, b(1)(t) represents what the agent believes
his opponent to judge what the probability is that he will play action t ∈ S. To predict what action his opponent will
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Example 1. Consider the game of rock-paper-scissors. In this game, the action space is S = {R,P, S}, while the
payoffs are given by Table 1.

We consider a ToM0 agent, whose mental content is listed in Table 4a. Based on the agent’s zero-order beliefs
b(0), the agent believes that if he would play R, there is a 20% probability that he will win (i.e. that his opponent
will play S). Similarly, he believes that if he should choose to play P , there is a 50% probability that he will win
the game, and if he plays S, there is a 30% probability that he will win.

The agent chooses which actions to play proportionally to the probability that it will result in winning the game,
given by the agent’s zero-order beliefs. In the case of RPS, the probabilities of winning the game when playing
R, P , or S add up to one. The probability that an agent chooses to play an action is therefore the same as the
probability that this action will result in winning the game. In this case,

t∗(b(0))(R) = b(0)(S) = 0.2 (3)
t∗(b(0))(P ) = b(0)(R) = 0.5 (4)
t∗(b(0))(S) = b(0)(P ) = 0.3. (5)

This means that the ToM0 agent has a 20% probability of playing R, a 50% probability of playing P , and a 30%
probability of playing S.

perform, a ToM1 agent makes use of his first-order beliefs b(1) to determine what action he would most likely play if
the situation were reversed, and the ToM1 was faced with the decision his opponent is making. This is achieved by
ŝ(1) = argmaxs∈S t

∗(b(1)).
A ToM1 agent’s first-order theory of mind produces a prediction for his opponent’s next action, if she is a ToM0

opponent. However, agents in our setting form beliefs about the order of theory of mind their opponent is reasoning
at. This allows a ToM1 agent to believe that his opponent is not reacting to his actions at all, but plays according to
a strategy that does not change over repeated games. In this case, the ToM1 agent should play as if he were a ToM0

agent, and base his decision of what action to play solely on his zero-order beliefs b(0).
The extent to which first-order theory of mind governs the decisions of the ToM1 agent’s actions is determined by

his confidence 0 ≤ c1 ≤ 1 that first-order theory of mind accurately predicts his opponent’s behaviour. The value of
his confidence c1 allows the agent to distinguish between different types of opponents, and he weighs his zero-order
beliefs b(0) against the prediction ŝ(1) of first-order theory of mind accordingly. This weighting process is captured by
a belief integration function U . This function integrates the agent’s first-order prediction âj with his zero-order beliefs
b(0) of opponent behaviour. Compared to his zero-order beliefs b(0), the agent’s integrated belief that his opponent
will be playing action â(1)j increased, while his integrated belief that his opponent will be playing any other action is
decreased. Specifically,

U(b(0), ŝ(1), c1)(s) =

{
(1− c1) · b(0)(s) if s 6= ŝ(1)

c1 + (1− c1) · b(0)(s) if s = ŝ(1).
(6)

Using the belief integration function U , the ToM1 agent combines the prediction ŝ(1) with his zero-order beliefs b(0).
The ToM1 agent then decides what action to do based on these combined beliefs. That is, a ToM1 agent decides what
action to use by calculating

t∗
(
U
(
b(0), ŝ(1), c1

))
= t∗

(
U
(
b(0), argmax

s∈S
t∗
(
b(1)
)
, c1

))
. (7)

An example of the decision process of a ToM1 agent is shown in Example 2.

4.3 Second-order theory of mind
Similar to the way a ToM1 agent models his opponent as a ToM0 agent, a ToM2 agent considers the possibility that
his opponent may be a ToM1 agent. As such, the ToM2 agent has an explicit model of what beliefs he believes his
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Example 2. Consider a ToM1 agent that plays rock-paper-scissors, similar to the agent in Example 1, whose
mental content is given in Table 4b. The Table shows that the ToM1 agent has zero-order beliefs b(0), which
indicate the agent’s beliefs concerning his opponent’s actions, as well as first-order beliefs b(1). For example,
since b(1)(R) = 0.4, the agent believes that his opponent believes that there is a 40% probability that he is going
to play R. Taking the perspective of his opponent, the agent determines what he is most likely to do in her place.
That is, the agent first calculates the probability that he would play each of the possible actions, if his first-order
beliefs b(1) were actually his zero-order beliefs.

t∗(b(1))(R) = b(1)(S) = 0.1 (8)
t∗(b(1))(P ) = b(1)(R) = 0.4 (9)
t∗(b(1))(S) = b(1)(P ) = 0.5 (10)

The ToM1 agent’s first-order theory of mind predicts that his opponent is most likely to select

ŝ(1) = argmax
s∈S

t∗(b(1)) = S. (11)

In this case, the agent’s prediction ŝ(1) conflicts with his zero-order beliefs b(0). According to his first-order
theory of mind, his opponent is most likely going to play S, while the agent’s zero-order beliefs only assigns
a 20% probability that his opponent is going to play S. To be able to make a decision, the agent integrates his
first-order prediction with his zero-order beliefs b(0). In this case, the agent’s confidence c1 in first-order theory
of mind is 0.9. This means that the agent’s integrated beliefs are determined for 90% by his prediction based on
first-order theory of mind, and for 10% by his zero-order beliefs. The ToM1 agent makes use of these integrated
beliefs to decide his strategy.

t∗(U(b(0), S, 0.9))(R) = U(b(0), S, 0.9)(S) = (1− 0.9) · b(0)(S) + 0.9 = 0.92 (12)
t∗(U(b(0), S, 0.9))(P ) = U(b(0), S, 0.9)(R) = (1− 0.9) · b(0)(R) = 0.05 (13)
t∗(U(b(0), S, 0.9))(S) = U(b(0), S, 0.9)(P ) = (1− 0.9) · b(0)(P ) = 0.03 (14)

This means that the ToM1 agent has a 92% probability of playing R, a 5% probability of playing P , and a 3%
probability of playing S.

opponent to be attributing to him. In our model, these beliefs are represented by an additional belief structure b(2).
Using simulation-theory of mind, the agent attributes the decision-making process described by Equation (7) to his
opponent. That is, the agent considers the game from the perspective of his opponent, and determines what he would
do in her position, if he were a ToM1 agent.

To determine his opponent’s actions, the ToM2 agent needs to know her confidence c1 in first-order theory of mind.
In our experiments, we have assumed that all ToM2 agents use a value of 0.8 to determine their opponent’s behaviour
playing as a ToM1 agent4. Based on second-order theory of mind, the ToM2 agent therefore predicts that his opponent
will be playing

ŝ(2) = argmax
s∈S

t∗
(
U
[
b(1), argmax

s∈S
t∗
(
b(2)
)
, 0.8

])
. (15)

This prediction ŝ(2) based on second-order theory of mind is integrated with the ToM2 agent’s zero-order beliefs b(0)

and his prediction ŝ(1) based on first-order theory of mind, before he makes his choice of what action to play. As for
the ToM1 agent, a ToM2 agent does not know at which order of theory of mind his opponent is playing. Instead, the
extent to which second-order theory of mind governs the decisions of the ToM2 agent’s actions is determined by his
confidence 0 ≤ c2 ≤ 1 that second-order theory of mind accurately predicts his opponent’s behaviour. The ToM2 agent

4Results from additional simulations using different values of c1 ∈ [0, 1] turned out to be visually indistinguishable from the ones presented
here for any value of c1 over 0.5.
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Example 3. Consider a ToM2 agent that plays rock-paper-scissors, and whose mental content is given in Table
4c. When a ToM2 agent considers his opponent’s first-order beliefs about his own actions, the agent performs
the decision process of a ToM1 agent from the viewpoint of his opponent. That is, he calculates what he believes
that she predicts that he will do based on her first-order beliefs. The agent’s model of his opponent’s first-order
beliefs are captured by b(2). This is what the agent believes his opponent to believe his first-order beliefs to be.
Firstly, the agent determines what action he would assign the highest probability if his second-order beliefs b(2)

were actually his zero-order beliefs.

argmax
s∈S

t∗(b(2)) = P (17)

That is, the ToM2 agent believes that a ToM1 opponent would predict that he himself would play P .
Secondly, the ToM2 agent determines how his ToM1 opponent’s prediction that he will be playing P influences

her zero-order beliefs. The agent does not explicitly model the opponent’s confidence in first-order theory of
mind. Rather, he assumes a value of 0.8 for this confidence. The agent then integrates his first-order beliefs b(1),
which he believes to correspond to his opponent’s zero-order beliefs, with the prediction that he will play P .
These integrated beliefs are then used to predict the opponent’s behaviour.

U(b(1), P, 0.8)(R) = 0.2 · b(1)(R) = 0.2 · 0.4 + 0.8 = 0.08 (18)
U(b(1), P, 0.8)(P ) = 0.2 · b(1)(R) + 0.8 = 0.2 · 0.5 = 0.90 (19)
U(b(1), P, 0.8)(S) = 0.2 · b(1)(R) = 0.2 · 0.1 = 0.02 (20)

ŝ(2) = argmax
s∈S

t∗
(
U(b(1), P, 0.8)

)
= S (21)

Using his second-order theory of mind, the ToM2 agent therefore predicts that his opponent will play S.
To make a decision, the agent integrates his zero-order beliefs b(0), his first-order prediction ŝ(1) = S (see

Equation (11)), and his second-order prediction ŝ(2) = S. Example 2 shows how the agent’s zero-order beliefs
and his first-order prediction of opponent behaviour are integrated. Using this confidence c2, the agent also
integrates his belief that his opponent is going to play S. In this example, the agent has confidence c2 = 0.1 in
second-order theory of mind. This results in the following integrated beliefs:

U(U(b(0), S, 0.9), S, 0.1)(R) = 0.9 · (0.1 · b(0)(R)) = 0.045 (22)
U(U(b(0), S, 0.9), S, 0.1)(P ) = 0.9 · (0.1 · b(0)(P )) = 0.027 (23)
U(U(b(0), S, 0.9), S, 0.1)(S) = 0.9 · (0.1 · b(0)(S) + 0.9) + 0.1 = 0.928 (24)

Based on his integrated beliefs of what the opponent is going to do, the ToM2 agent decides his strategy. In this
case, the ToM2 agent plays R with a 92.8% probability, P with a 4.5% probability and S with a 2.7% probability.

weighs the integrated beliefs in Equation (7) against his prediction of opponent behaviour ŝ(2) based on second-order
theory of mind. The resulting integrated beliefs are then used to determine the probability that the ToM2 agent is going
to play a certain action. The decision of the ToM2 agent is therefore given by

t∗
(
U
[
U
(
b(0), argmax

s∈S
t∗
(
b(1)
)

︸ ︷︷ ︸
ŝ(1)

, c1

)
, argmax

s∈S
t∗
(
U
[
b(1), argmax

s∈S
t∗
(
b(2)
)
, 0.8

])
︸ ︷︷ ︸

ŝ(2)

, c2

])
. (16)

The decision process of a ToM2 agent is illustrated in a specific setting by Example 3.

4.4 Higher orders of theory of mind
For every additional order of theory of mind available to the agent, say order i, the agent maintains an additional model
of the opponent in the form of belief structure b(i) and a corresponding confidence ci. These beliefs are used to model
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the decision process of an (i − 1)th-order theory of mind opponent and generate a prediction ŝ(i) of her behaviour.
This prediction is weighed against the integrated beliefs over the previous (i− 1) orders of theory of mind to reach a
decision of what action to play. We restrict our investigation to ToMi agents for i = {0, 1, 2, 3, 4}.

A ToM3 agent expands on the decision process of a ToM2 agent by modeling his opponent as a ToM2 agent. Based
on third-order theory of mind, the ToM3 agent uses his third-order beliefs b(3) to predict that his opponent is most
likely going to perform the action

ŝ(3) = argmax
s∈S

t∗
(
U
[
b(1), argmax

s∈S
t∗
(
U
[
b(2), argmax

s∈S
t∗
(
b(3)
)
, 0.8

])
, 0.8

])
. (25)

In this prediction, the ToM3 agent assumes that his opponent does not make use of first-order theory of mind. Equation
(25) models a ‘pure’ ToM2 opponent in the sense that the value for the confidence c1 in first-order theory of mind
attributed to his opponent is set to zero. Note that does not mean that the ToM3 agent is unable to model a ToM1

opponent. To represent the possibility that he is playing against a ToM1 opponent, the ToM3 agent makes use of the
prediction based on application of second-order theory of mind shown in Equation (15).

The prediction ŝ(3) based on third-order theory of mind is integrated with his beliefs based on lower orders of
theory of mind, such that the ToM3 agent decides to play according to

t∗
(
U
{
U
[
U
(
b(0), argmax

s∈S
t∗
(
b(1)
)

︸ ︷︷ ︸
ŝ(1)

, c1

)
, argmax

s∈S
t∗
(
U
[
b(1), argmax

s∈S
t∗
(
b(2)
)
, 0.8

])
︸ ︷︷ ︸

ŝ(2)

, c2

]
,

argmax
s∈S

t∗
(
U
[
b(1), argmax

s∈S
t∗
(
U
[
b(2), argmax

s∈S
t∗
(
b(3)
)
, 0.8

])
, 0.8

])
︸ ︷︷ ︸

ŝ(3)

, c3

})
. (26)

4.5 Belief adjustment and learning speed
Up to now, we discussed how agents of different orders of theory of mind decide what action to play, based on their
current beliefs b(i) and confidence levels ci. By placing himself in the position of his opponent, and viewing the
game from her perspective, an agent makes predictions for the action his opponent is going to perform. Each order of
theory of mind available to the agent generates such a prediction. The agent can use the accuracy of these predictions
to gain information about the opponent’s abilities over repeated games, and adjust his beliefs and confidence levels
accordingly. In the remainder of this sections, we describe how agents update their beliefs b(i) and confidence levels
ci when they observe the outcome of a game.

For each agent, the belief structures b(i) are initialized randomly, while confidence levels ci are initially zero.
When facing an unfamiliar opponent, an agent therefore plays as if he were a ToM0 agent. After each round, the action
t̃ actually performed by the agent and action s̃ performed by his opponent are revealed. Based on this information,
an agent updates his confidence in theory of mind to reflect the accuracy of his predictions. Given an agent-specific
learning speed 0 ≤ λ ≤ 1, a ToM1 agent updates his confidence in first-order theory of mind c1 according to

c1 :=

{
(1− λ) · c1 if s̃ 6= ŝ(1)

λ+ (1− λ) · c1 if s̃ = ŝ(1).
(27)

Equation (27) shows that a ToM1 agent increases his confidence in the use of first-order theory of mind if it yields
accurate predictions, and lowers his confidence if predictions are inaccurate. For higher orders of theory of mind, a
ToMi agent additionally adjusts his confidences ci according to

ci :=

 (1− λ) · ci if s̃ 6= ŝ(i)

ci if there is a 1 ≤ j < i such that s̃ = ŝ(i) = ŝ(j)

λ+ (1− λ) · ci otherwise.
(28)

This update is similar to the updating of the confidence in first-order theory of mind, except that for higher-order
theory of mind, an agent does not change his confidence in ith-order theory of mind if there is some order of theory
of mind j with j < i for which both ith-order and jth-order theory of mind yield correct predictions. That is, theory
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Example 4. Consider the ToM2 agent from Example 3, whose mental content is given in Table 4c. Once both
the agent and his opponent have decided on an action to play, the actions are revealed to both players, and each
receives the payoff based on those actions. Once the outcome of the game is revealed, each agent updates his
beliefs based on what is observed. We assume that the ToM2 agent played action t̃ = R, and that his opponent
played s̃ = S, and that the agent learns at a learning speed of λ = 0.6.

Depending on the accuracy of the prediction of application of ith-order theory of mind, the confidence ci in
that order of theory of mind increases or decreases. In our example, first-order theory of mind predicted that
the opponent would play S (Equation (11)). Since s̃ = ŝ(1), first-order theory of mind resulted in an accurate
prediction. The new confidence c1, as calculated by Equation (27), becomes

c1 := (1− λ) · c1 + λ = (1− 0.6) · 0.9 + 0.6 = 0.96. (29)

Using second-order theory of mind, the agent obtained the prediction ŝ(2) = S. Second-order theory of mind
therefore also correctly predicted that the opponent would play S. However, since first-order theory of mind is of
a lower order than second-order theory of mind, and since first-order theory of mind also correctly predicted the
action of the opponent, the confidence c2 in second-order theory of mind remains unchanged.

The actions that were actually played by the agent and his opponent also change the agent’s beliefs. Each even-
numbered order of theory of mind refers to beliefs concerning the opponent’s actions. These beliefs are therefore
updated to reflect the action that the opponent has taken most recently. This is done by increasing the belief that
the opponent will perform the same action, in our case P , while decreasing the other beliefs. That is, the agent’s
zero-order beliefs b(0) are updated, such that after the update the following holds:

b(0)(R) := U(b(0), S, 0.6)(R) = (1− 0.6) · 0.5 = 0.2 (30)
b(0)(P ) := U(b(0), S, 0.6)(P ) = (1− 0.6) · 0.3 = 0.12 (31)
b(0)(S) := U(b(0), S, 0.6)(S) = (1− 0.6) · 0.2 + 0.6 = 0.68 (32)

This means that after the belief update, the agent believes that there is a 68% probability that his opponent is
going to repeat the action S in the next round.

Note that the agent’s second-order beliefs b(2) are updated in a similar way. However, the agent’s first-order
beliefs b(1) are updated using the action t̃ that the agent played himself.

of mind agents only grow more confident in the use of higher-order theory of mind when this results in accurate
predictions that could not have been made with a lower order of theory of mind.

Each agent also updates his belief structures b(i). Since the zeroth-order beliefs b(0) represent the agent’s beliefs
concerning his opponent’s behaviour, these beliefs are updated using his opponent’s choice s̃. However, second-order
beliefs b(2) specify what the agent believes his opponent to believe about what he believes about her actions. That is,
an agent’s second-order beliefs b(2) describe beliefs concerning the actions of his opponent, and are therefore updated
using her choice s̃ as well. Conversely, the odd-numbered orders of theory of mind describe the actions of the agent
himself. These beliefs are therefore updated using the agent’s choice t̃. Using the belief adjustment function U , the
beliefs are adjusted given an agent-specific learning speed 0 ≤ λ ≤ 1, such that

b(i)(s) := U
(
b(i), s̃, λ

)
(s) if i is even, and (33)

b(i)(t) := U
(
b(i), t̃, λ

)
(t) if i is odd. (34)

That is, agents in this setting make use of exponential smoothing [7] to model future opponent behaviour, and believe
that their opponent is doing the same. The agent’s learning speed λ determines how quickly it learns. A higher value
of λ indicates that the agent changes his beliefs more rapidly based on new information. At the maximum of λ = 1,
a ToM0 agent believes that the previous observation is representative for future behaviour. At the other extreme of
λ = 0, the agent does not change his beliefs at all when new information is presented. The equilibrium strategy of
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random play therefore corresponds to the behaviour of a ToM0 agent with λ = 0 and b(0)(s) = 1
|S| for s ∈ S.

Note that the agents we describe implicitly assume that their opponents update their beliefs using the same learn-
ing speed λ as they do themselves, and do not consider the possibility that their opponent reacts differently to new
information than they do themselves. As a result, none of the agents actively tries to model the learning speed λ of
their opponent.

Example 4 shows the process of belief adjustment for a specific situation. Due to the restrictions on the learning
speed λ, equations (33) and (34) preserve the normalization and non-negativity of beliefs. Similarly, the confidences
ci in the application of ith-order theory of mind remain limited to the range [0, 1].

5 Results
The agents described in Section 4 have been implemented in Java and their performance has been tested in competition
of the games RPS, ERPS and RPSLS described in Section 2. Agents played against each other in trials that consist
of 20 consecutive games. An agent’s trial score is the average of the agent’s game scores over all games in the trial,
ranging from -1 to 1. We have compared the results for trials of 20 games to longer trials of 50 and 100 games and
found no qualitative differences.

To determine the advantage of the ability to make use of higher orders of theory of mind, we simulated focal
agents in competition with an opponent that was exactly one order of theory of lower than the agent. The figures in
this section depict the focal agent’s trial score averaged over 1000 runs, as a function of his learning speed λi, as well
as the learning speed λj of his opponent. Simulation results are shown for every 0.02 step in learning speeds over the
range λi, λj ∈ [0, 1]. Higher and lighter areas represent that the focal agent performed better than his opponent, while
lower and darker areas show that his opponent obtained a higher average score. To emphasize the shape of the surface,
the grid that appears on the bottom plane has been projected onto the surface, and the plane of zero performance
appears as a semi-transparent surface.

5.1 Rock-paper-scissors
Figure 1a shows the performance of a ToM1 agent in competition with a ToM0 opponent in the rock-paper-scissors
game. The ToM1 agent is at a clear advantage when playing against a ToM0 opponent. When his learning speed
λi > 0.1, the ToM1 agent will on average win more rounds than his ToM0 opponent, regardless of her learning speed.
The ToM1 agent’s performance is highest when both players learn at high speed, although performance levels out when
his learning speed exceeds λi = 0.5.

As shown by Figure 2a, performance of a ToM2 agent when playing against a ToM1 opponent is similar to the
performance of a ToM1 agent playing against a ToM0 opponent,. However, the ToM2 agent is less effective at lower
learning speeds. As a result, the ToM2 agent requires a learning speed of at least λi > 0.15 in order to obtain a positive
score on average.

Figure 3a shows that although a ToM3 agent can still obtain an average positive score when playing RPS against a
ToM2 opponent, performance is poor compared to the performance of a ToM2 agent playing against a ToM1 opponent.
Even in the most favourable circumstances, the performance of a ToM3 agent never reaches 0.3. For even higher orders
of theory of mind, the additional advantage is even more limited. Figure 4a shows that when a ToM4 agent faces a
ToM3 opponent in RPS, the one with the highest learning speed is expected to win. In this case, the ability to make
use of fourth-order theory of mind does not yield the agent advantages beyond those that can be obtained through
third-order theory of mind.

5.2 Elemental rock-paper-scissors
The results of theory of mind agents in the game of ERPS turn out to be qualitatively equivalent to the results for RPS.
Figures 1b and 2b show that both the ToM1 agent and the ToM2 agent perform well against an opponent that is more
limited in her ability to apply theory of mind. Similarly, Figure 3b shows that a ToM3 agent performs poorly when
playing against a ToM2 opponent compared to the performance of a ToM2 agent playing against a ToM1 opponent,
while Figure 4b shows that a ToM4 agent only outperforms a ToM3 opponent when he is learning at a higher rate.

11



(a) Rock-paper-scissors (b) Elemental rock-paper-scissors (c) Rock-paper-scissors-lizard-Spock

Figure 1: Performance of a ToM1 agent playing the three games against a ToM0 opponent.

(a) Rock-paper-scissors (b) Elemental rock-paper-scissors (c) Rock-paper-scissors-lizard-Spock

Figure 2: Performance of a ToM2 agent playing the three games against a ToM1 opponent.

(a) Rock-paper-scissors (b) Elemental rock-paper-scissors (c) Rock-paper-scissors-lizard-Spock

Figure 3: Performance of a ToM3 agent playing the three games against a ToM2 opponent.
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(a) Rock-paper-scissors (b) Elemental rock-paper-scissors (c) Rock-paper-scissors-lizard-Spock

Figure 4: Performance of a ToM4 agent playing the three games against a ToM3 opponent.

Although agent performance in the game of ERPS is almost identical to agent performance in the game of RPS,
the results show that the smaller action space of RPS limits the performance of a ToM3 agent in RPS. Figure 3a shows
that, when playing the RPS game against an opponent with zero learning speed, a ToM3 agent has an average negative
score when his own learning speed is 1. In this case, the ToM3 agent cannot distinguish correctly between an opponent
that is playing a stationary mixed strategy and a ToM2 opponent. Figure 3b shows that this is no longer the case in
ERPS.

5.3 Rock-paper-scissors-lizard-Spock
Figure 1c shows the performance of a ToM1 agent playing the game of RPSLS against a ToM0 opponent. As the Figure
shows, performance of the ToM1 agent decreases when the best response to an action is no longer unique. Best-case
performance of a ToM1 agent playing against a ToM0 opponent decreases from 0.9 in RPS to 0.3 in RPSLS.

The decrease in performance in RPSLS also applies to theory of mind agents of higher orders. Whereas a ToM2

agent is guaranteed an average positive score when playing RPS or ERPS against a ToM1 opponent, Figure 2c shows
that this not true for RPSLS. When playing against a ToM1 opponent with low learning speed, a ToM2 agent with
learning speed λi > 0.5 is unable to consistently win the RPSLS game. Moreover, Figure 3c shows that a ToM3 agent
that learns too quickly will on average lose the RPSLS game when facing a ToM2 opponent that learns at a low rate.

Although Figure 4c shows that the ToM4 agent is not guaranteed an average positive score when playing RPSLS
against a ToM3 opponent, the ToM4 agent will not lose the RPSLS game on average to a ToM3 opponent if his learning
speed λ is high enough. In fact, the ToM4 agent has the advantage when his ToM3 opponent learns quickly enough.
However, this advantage may be related to the specific problems faced by a ToM3 agent that learns too quickly.

6 Discussion and conclusion
According to the Machiavellian intelligence hypothesis [33], opponent modeling through theory of mind presents
individuals with a competitive advantage. In the present study, we have investigated whether such a competitive
advantage for theory of mind is present through agent-based simulations. In our approach, agents are limited in their
ability to explicitly represent nested beliefs. For example, a first-order theory of mind agent knows that his opponent
may have beliefs about his behaviour, but is unable to represent the possibility that his opponent has beliefs about his
own beliefs. This approach is similar to iterated best-response models such as the cognitive hierarchy model [9] and
level-n theory [2]. In iterated best-response models, players are categorized according to the number of iterative steps
of reasoning they are able to perform before making a decision. However, although our approach is similar to iterated
best-response models, there are a number of differences.
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Iterated best-response models generally deal with player responses in unrepeated simultaneous-choice games. The
least sophisticated step 0 or level-0 player is assumed to play according to some known probability distribution. Players
of higher levels of iterated reasoning, say level k, form beliefs about the relative distributions of players of levels 0 to
k−1. This results in an expected distribution of actions, to which players of level k play the best response. In contrast,
the approach in this paper is focused on predicting an opponent’s future behaviour over repeated games. An agent has
no information on the order of theory of mind his opponent is playing at, but attempts to model her behaviour through
repeated interaction, and adjust his own behaviour accordingly. However, in our approach the opponent is trying to
model the agent as well, and changes the behaviour that the agent is trying to model.

Using agent-based simulations, we determined whether the competitive advantage suggested by the Machiavellian
intelligence hypothesis are present in the repeated RPS game, perhaps the most transparent non-trivial setting in which
the role of theory of mind can be investigated. Our results from the RPS game show that first-order and second-order
theory of mind agents clearly outperform opponents that are more limited in their ability to model others in the game of
RPS, while performance of a third-order theory of mind agent playing against a second-order theory of mind opponent
is poor in comparison. Qualitatively, our results in the repeated single-shot RPS game are equivalent to those obtained
in the dynamic game setting of Limited Bidding [11]. Additionally, in the settings we investigated, the ability to make
use of fourth-order theory of mind allowed agents to obtain little to no advantage over third-order theory of mind
opponents.

Our results in the ERPS game suggest that the advantage of higher-order theory of mind, and the diminishing
returns on higher orders of theory of mind found in RPS are not related to the number of actions available to the
agents. When agents choose from five instead of three possible actions, performance of first-order and second-order
agents is comparable to their performance then playing RPS, while third-order theory of mind agents only improved
when playing against an opponent with a stationary mixed strategy.

We also found that the effectiveness of theory of mind is dependent on the existence of a unique best response. In
the game of RPSLS, each opponent action can be defeated by two other actions. As a result, performance of theory
of mind agents in the game of RPSLS is greatly reduced compared to performance in the games of RPS and ERPS.
One possible explanation for the low performance in the game of RPSLS is that when an agent is indifferent between
two actions, he chooses either one with equal probability. It is possible that a slight asymmetry, such that one option is
preferable over the other, would benefit higher-order theory of mind. One direction of future research is to determine
whether such asymmetries create a focal point [26] for agents with a lower order of theory of mind, resulting in more
predictable behaviour.

Our findings provide further support for the Machiavellian intelligence hypothesis. In the competitive games we
presented, first-order and second-order theory of mind provide a clear advantage over an opponent of a lower order,
while deeper levels of recursion help less, and show that the results reported in [11] are not exclusive to the specific
game setting studied there, but are generalizable to competitive games of different designs. In future research, we
aim to determine the advantage of the ability to make use of theory of mind in cooperative settings, for example in
teamwork, and in mixed-motive settings such as negotiations.
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