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Abstract Recent developments in the forensic sciences have confronted
the field of legal reasoning with the new challenge of reasoning under
uncertainty. Forensic results come with uncertainty and are described
in terms of likelihood ratios and random match probabilities. The legal
field is unfamiliar with numerical valuations of evidence, which has led
to confusion and in some cases to serious miscarriages of justice. The
cases of Lucia de B. in the Netherlands and Sally Clark in the UK are
infamous examples where probabilistic reasoning has gone wrong with
dramatic consequences. One way of structuring probabilistic information
is in Bayesian networks(BNs). In this paper we explore a new method to
identify legal arguments in forensic BNs. This establishes a formal con-
nection between probabilistic and argumentative reasoning. Developing
such a method is ultimately aimed at supporting legal experts in their
decision making process.
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Introduction

In recent years the rise of forensic sciences has posed the legal domain with the chal-
lenge of dealing with numerical, probabilistic evidence. Bayesian Networks (BNs)
have become popular as a tool for modelling forensic evidence, and even complete
legal cases [7,14,16,15,23,24]. Although Bayesian reasoning may come naturally
to forensic experts familiar with mathematics and statistics, non-mathematical
experts are prone to reasoning fallacies with statistics [8]. Moreover, the graphical
structure of a BN, though intuitive for those familiar with the formalism, is often
interpreted incorrectly [4]. Legal experts are often more familiar with argumen-
tative models of proof. The different backgrounds of legal and forensic experts
create a communication gap between them, which may lead to miscarriages of
justice when undetected. Earlier attempts to explain probabilistic inferences have
focussed on visual or textual explanation [13,12,5].

Different kinds of approaches to modelling legal evidence have been identi-
fied [9]. The field of argumentation offers formalisms to describe the chains of



inference in legal arguments and studies the ways in which arguments support
and attack each other. Secondly, narrative models of legal proof have been devel-
oped that study how evidence can be organised in scenarios or stories. Thirdly,
probabilistic models have been introduced to provide very precise descriptions of
uncertainty, probability of findings and (in-)dependencies between variables.

The present research is part of a research project' aiming for the integration
of the three kinds of approaches [22]. In this paper we explore a method to extract
arguments from BNs. This method offers the possibility of integrating BNs and
argumentation, in order to ultimately bridge the communication gap between
legal and forensic experts. An initial attempt at such a system was introduced in
[21] but this had a number of serious shortcomings. Rules were given a strength
that was not determined in the context of the given evidence. It is a well known
fact from probability theory that the influence between variables heavily depends
upon surrounding observations. It also did not allow rules to have more than
one premise. In reality premises often corroborate to achieve a certain conclusion.
Thirdly, and most importantly, no rules were extracted to capture synergistic
effects among variables. As a result we were not able to capture some important
aspects of Bayesian reasoning such as explaining away. By neglecting this inference
a serious aspect of Bayesian reasoning was left out. We strongly improve on this
result with a method that finds inference rules in a BN and ranks those rules using
a probabilistic measure of strength. Those rules are then combined into arguments
and formalised in an argumentation framework.

The rest of this paper is organised as follows. After some preliminaries in
Section 1 we present our main contribution in Section 2 which is a method to
extract rules and undercutters to those rules from a BN. In Section 3 we illustrate
this using an example that shows the connection between the BN phenomenon of
explaining away and the argumentation phenomenon of argument attack. Section 4
contains discussions and suggestions for future work.

1. Preliminaries
1.1. Bayesian networks

Bayesian networks (BNs) are a well-known tool in the analysis of complex proba-
bilistic systems [19]. A BN models a probability distribution Pr(V') over a number
of discrete random variables V. For our purposes we restrict our attention to
Boolean variables. BNs exploit conditional independences between variables to
efficiently represent the full joint probability distribution. More specifically, a BN
captures the (in)dependences between variables in a directed acyclic graph in
which every random variable is associated with a node. Every node specifies the
conditional probabilities of the outcome of that variable given any configuration of
its parents in the graph. Observations (e from here onwards) of values for variables
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can be entered into the network and the posterior probability distribution Pr(V|e)
of all the other nodes conditioned on this evidence can be computed.

We want to highlight one important aspect of BN reasoning. Through a
head-to-head connection (two incoming arcs on an undirected path) an interaction
between the parents can occur. Such a situation often models two causes of a
shared effect. Observing the effect raises the belief in either of the causes. If then
one of the parents is observed this explains away the other cause, again decreasing
its probability. The example that we will show further on is a minimal case in
which this kind of reasoning is present.

1.2. Argumentation

In this paper we choose to use an instantiation of the ASPIC+ framework [17] for
structured argumentation, which allows us to deal with defeasible rules that can
be argued against with undercutters. It also enables us to reason with preferences.
ASPIC+ specifies how arguments attack and defeat each other. It is a special case
of a Dung argumentation framework [6]. The following definitions summarize the
parts of an argumentation system as described in [17].

Definition 1 (Argumentation System). An argumentation system is a tuple AS =
(LR, n) where:

e L is a logical language

e “is a contrariness function from L to 2%

e R=RsUTRy is a set of strict (Rs) and defeasible (Ry) inference rules of
the form ¢1,...,0n — @ and ¢1,..., ¢, = @ respectively (where ¢, p; are
meta-variables ranging over wff in L), and Ry N Rq = .

e 1 is a naming convention (n: Rq — L)

An argumentation system in ASPIC+ consists of a logical language (£) that
describes the basic elements that can be argued about. A contrariness function
maps elements to a set of incompatible elements. As opposed to strict rules
R, defeasible rules R4 can have exceptions [20]. A naming function n(r) maps
defeasible rules to elements of the language. This means that defeasible rules
themselves can be argued about to determine the exceptions to those rules. The
contrariness function captures a generalization of negation that does not need to
be symmetric.

To reason with an argumentation system, a knowledge base K = IC,, UK,
is required for which KC,, N K, = 0. The knowledge base differentiates between
certain knowledge K,, and presumed knowledge KC,.

Definition 2 (Arguments). ASPIC+ defines arguments as one of the following
constructs:

1. ¢ ifp e Ky UK.

2. Ay,..., A, =Y if Ay, ..., A, is an argument such that
Conc(A41),...,Conc(A4,) = ¢ is a strict rule in Rs.

3. Ay,..., A, = if Ay, ..., A, s an argument such that
Conc(41),...,Conc(A,) = ¢ is a defeasible rule in Rq.



Here Conc(A) is the conclusion of an argument A. For the first type of argument
its conclusion is simply the element itself. For the latter two types of argument, the
conclusion is the consequent of the rule. The intuitive understanding of arguments
is that they form a graph of subarguments. Elementary arguments are elements
from the knowledge base. Composite arguments are constructed by the application
of a rule. The immediate subarguments of a composite argument must together
satisfy all antecedents of the rule. In ASPIC+, three modes of attack are possible.
Arguments can attack each other by negating a premise or a conclusion from
another argument which is called undermining and rebutting respectively. The
third way of attack is to negate the applicability of a rule thereby undercutting the
conclusions that were derived using that rule. Attack can be resolved into defeat
using the weakest argument ordering strategy that relies on an ordering of rules.

The ASPIC+ framework is abstract in the sense that it specifies (or requires)
very little of the actual instantiation of the argumentation system. The instan-
tiator is free to choose a language to represent domain knowledge and the actual
implementation of contrariness and rules has no further restrictions than the ones
mentioned above. Different instantiations of the framework can exist for specific
argumentation tasks. In the next section we will introduce an instantiation of
ASPIC+ tailored to reasoning about evidence in BNs.

1.3. Ezxzample: explaining away and argument attack

In order to illustrate our approach we use the example BN displayed in Figure 1.
The observed evidence nodes have a double outline. The main evidence (on the
lower left in Figure 1) is some trace of a crime. Besides the crime there is another
explanation for this evidence, namely that there is a conspiracy against the suspect
and that he is being framed. Either explanation could bring about the evidence.
If one of the two causes is observed the other is explained away by this fact. If we
enter evidence for a conspiracy in the BN this explains the evidence and the belief
in the guilt of the suspect drops. This is exactly the phenomenon of explaining
away that we mentioned earlier.

Probabilistic inference and explaining away can be related to an argumentation
setting. We can show this in the example. There are two pieces of evidence that
can be represented by information in the knowledge base of the argumentative
approach. Both evidence variables are probabilistically correlated to the variable for
which they are evidence so we expect to find some rules that can be used to derive
from that knowledge base an argument for the guilt of the suspect and an argument
for a conspiracy. In the BN there is the typical explaining away effect from the
conspiracy to the guilt of the suspect. In an argumentation system this can be
modelled by undercutting the argument for guilt. All of this is shown in the form of
a small argument graph in Figure 2. It shows two straightforward inferences (from
evidence to a corresponding conclusion) where the second conclusion undercuts
the first by giving an alternative explanation for the evidence.



Guilty Conspiracy

true | 0.1 true | 0.01
V A V
E1: Evidence E2: Evidence
for Crime for Conspiracy

false | 0.9 false | 0.99
- Evidence for Crime Evidence for Conspiracy
Guilty true false
Conspiracy | true | false | true | false
true 0.9 0.9 0.8 0.001
false | 0.1 0.1 0.2 | 0.999

Conspiracy | true | false
true 0.9 0.1
false | 0.1 0.9

Figure 1. An example BN.

Guilty

Evidence
for crime

Evidence for
Conspiracy

Figure 2. Inferences in argument graphs are displayed as normal arrows and the undercutting
attack is visualised by a cross-headed arrow.

2. Argument Extraction
2.1. Rules and rule strengths

The first step in constructing arguments is to define which inference rules apply
and how they are ordered. We extract inference rules from a BN by looking at a
measure of strength that is based on conditional probabilities. Evidence entered
in the BN is maintained and used during the extraction of rules, which guarantees
that the strengths of the rules are calculated in the context of the available proof.
Due to the dynamic nature of BNs, dependencies and independences (and therefore
also the measure of inferential strength that we propose) may change with every
new observation. Therefore it is important to assess the strength of rules in the
context of the available evidence.

As elements (antecedents and consequent) of our rules we take propositions
that are simply assignments A = a; of values to variables from the BN; Candidate
rules for every consequent A = a are identified by enumerating value assignments
to non-empty subsets of parents, children and parents of children of A in the
BN graph. Parents and children can have a direct effect on the consequent node
because there is a statistical correlation between those nodes. Parents of children
can explain away the consequent. This means that they often, but not necessarily,
have a negative effect on that node. These nodes together (parents, children and
parents of children) form the minimal set that suffices to explain statements about



the node. For each candidate rule we compute its strength using the so-called
normalised likelihood [3]. The strength of a candidate rule py,...,p, = c is
evaluated in a particular context €, which is a set of assignments.

Definition 3 (strength). A rule is defined to have strength:

Pr(c|pi....pahe)
Pr(c| €)

strength (p1,...,pn = c|€) =

in the evidential context € = e\ {p1,...,pn,C}.

When the strength of a rule is tested it may be that an antecedent was already
set as an observed variable. As a result, this premise is present in the conditions
for both the numerator and the denominator. This means that we can no longer
measure the actual influence of this premise on ¢. The same applies when c is
among the observed values. To resolve this issue, we temporarily remove any
evidence in the BN for antecedent variables or the consequent variable of the
rule under consideration. We do this by removing those assignments from the
context. All actual evidence in the BN is thus considered during the calculation of
the strengths, excluding assignments to the variables that occur in the rule itself.
Various measures of probabilistic strength exist, but typically result in the same
ordering of rules, despite numerical differences [3].

2.2. Ezceptions to rules

Since we extract defeasible rules, we wish to know under which circumstances
there are exceptions to those rules. In a BN setting, inferences can often be undone
or weakened by observing further evidence, particularly in the case of explaining
away. Therefore, we identify undercutting variable assignments by checking if the
measure of strength drops below one given a potentially undercutting variable
assignment.

Definition 4 (undercutter). An undercutter to a rule p1,...,p, = ¢ in the context
€ is a variable assignment u such that strength(p,...,p, = cle,u) <1

Note that we abuse terminology when we use the term undercutter for a variable
assignment that invalidates a rule rather than an argument that uses such an
assignment to attack another argument, which is also called undercutting.

2.8. ASPIC+ instantiation

We now construct an instantiation of ASPIC+ that uses knowledge represented
as a BN.

Definition 5 (Rule extraction). Given a BN with variables V and evidence e, let

e ¢ be an assignment to some variable C € V in the BN
e p be a set of assignments to parents, children and parents of children of C.



Ra consists of all rules of the following form:
r=(p=c) iff strength(rle)>1

Definition 6 (BN Argumentation System). Suppose a BN is given with nodes V.
Let vals(V;) denote the values that variable V; € V' can take on and let e denote
the evidential context defined by the available evidence. We define the following
instantiation of ASPIC+:

L = < U U v ZUij}> U{n(r)lr € Ra}

VieV v;€vals(Vs)
T for all x € L such that:

Vi=vij ={Vi=vi|j # k}
n(r) = {ulu € L\ Rq,u undercuts r as in Definition 4}

Rs =0
Rq as in Definition 5
K, =0

Kn ={Vi=v4|(V =v;) € e}
< s.t. 11 < 1o iff strength(r;) < strength(ry)

Informally, the language consists of variable assignments together with rule names.
The contraries of a variable assignment are other assignments to the same variable
and the contraries to rules are the undercutters as described above. Furthermore
we have modelled observed variable instantiations as necessary knowledge. The
preference ordering on arguments can very conveniently be defined in terms of
preordering < on rules R4 using the weakest-link[17] principle. This ordering
prefers argument A over B iff at least one rule in B is weaker than all rules in A
and at least one premise in B is weaker than all premises in A.

There is one caveat with the method as described so far. In a BN two parents
(say V; and Vj) of a node V;, are independent of each other unless a descendant of
Vi is observed. If the latter is the case the composite effect of the inference from V;
to V; and V; to Vi does not follow logically from the two separate inferences. We
have already discussed the possibility of explaining away in such circumstances.
To prevent reasoning errors in such cases we have to exclude any chain of inference
that passes through a head-to-head node. Even if a descendant is observed, we will
find the correct influence because there is a rule possible directly from V; to V.
Excluding these arguments that do use a head-to-head connection can be done in
a post-processing step or on the fly by labelling all intermediate conclusions that
have already made one inference along the direction of an edge in a way similar to
Pearl’s CE-Logic [18]. In the latter case we know that if we never apply a rule
against the direction of an edge to a premise that was derived with a rule along
the direction of an edge we exclude exactly these fallacious reasoning steps.
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Figure 3. Part of the argument graph resulting from the network in Figure 1. Sub arguments are
linked with regular arrows whereas defeat is displayed by cross-headed arrows. The C() and E()
notations can be ignored, these are a detail of the CE-logic that we applied to filter rules that
pass through head-to-head connections.

3. Application of the method: explaining away and argument attack

Applying the method as described above to our example, we find among others
the arguments as presented in Figure 3. Recall that we had two pieces of evidence
for a crime and a conspiracy. From these observations, two basic arguments from
knowledge can be constructed (150 and 151 in Figure 3). Our rule extraction
method yields a number of rules which include the rule “Evidence for Crime =
Guilty” with a strength of 5.79 and “Evidence for Crime = Conspiracy” with
a slightly lower strength of 5.37. The lower strength is explained by the slightly
lower probability of finding the evidence given that there was a conspiracy (0.8)
than that the suspect is actually guilty (0.9). These rules can be applied to the
premises that we just established which we can see as arguments 153 and 156 in
the figure. This means that we do indeed find the arguments that we anticipated
in Figure 2. To be precise, the four arguments from that figure correspond directly
to the four arguments in the dashed trapezoid in Figure 3.

We can also see that argument 156 attacks argument 153. This is an under-
cutting attack. In ASPIC+ an undercutting attack is targeted at the applying
argument rather than the inference rule, so the attack from Conspiracy to Guilty
corresponds to the undercutter of the rule that we anticipated. This means that
not just the arguments but also the attack relation is exactly as we would expect.
The conspiracy explains away the crime and in the argumentation setting this is
captured by the undercutting attack between the two corresponding arguments.

In the figure we can observe that these are not the only arguments that can
be constructed. We find, for instance, that evidence for a crime also supports a
conspiracy (argument 152). This is logical if we consider that the evidence of a
crime can indeed be a sign of a conspiracy. Furthermore, we see that arguments for
a conspiracy can support arguments against guilt (160 and 159) and arguments for
guilt support an argument against a conspiracy (158). This can be explained by the
fact that these conclusions are probabilistically strongly correlated. If there was a
crime, then there probably was not a conspiracy and vice versa. The arguments
that have opposite conclusions also show rebutting attack in both directions. This
corresponds exactly to the intuition of rebutting arguments.



4. Conclusions
4.1. Related research

The current research is part of a project in which three approaches to legal reasoning
are combined [22]. In previous work Bex has investigated how argumentation and
narrative models can be integrated [2,1]. Currently research is also targeted at
integrating narrative and Bayesian models [24,23] and in this paper we introduce
a method that combines BNs with argumentation.

Earlier attempts to explain probabilistic inferences have focussed on visual
or textual explanation. See for instance the work of Lacave and Diez [13,12],
Koiter [11] and Druzdzel [5]. All of these methods try to make Bayesian networks
easier to interpret by visualising correlations or by verbally presenting the relations
between variables. However, none of these methods provide (structured) arguments.
In our method we obtain formally well-defined arguments from the Bayesian
network. Vreeswijk [25] has proposed a similar but much simpler method to
construct rules from BNs to form arguments. His approach, however, only respects
the independence properties of a BN under a number of limiting constraints on
the design of the network that make explaining away impossible.

Another approach to formalise BN reasoning was taken by Keppens [10] who
extracts Argumentation Diagrams from BNs. An Argumentation Diagram is a
graphical structure that informally represents support between statements, but
does not allow one to identify possible counter-arguments. In Argumentation
Diagrams, therefore, only one side of the story is highlighted. In a persuasive
setting such as legal reasoning, the argumentation approach can be more expressive
because it allows for reasoning about the other parties’ arguments as well. Attacking
the opponent’s counterargument may reinstate your own argument which is a
well-known concept in argumentation.

4.2. Discussion

A problem that arises with any automated approach is the computational com-
plexity of combining inference rules. There are numerous ways in which rules can
be combined. Doing probabilistic inference in BNs is already computationally
hard. However, we find that combining rules in all possible ways is in practice
far more time consuming than calculating the probabilities required to identify
the rules. To make the process more feasible on large scale networks is subject of
future research.

We have formally defined how to extract ASPIC+ arguments from BNs. By do-
ing so we establish a formal connection between concepts from Bayesian reasoning
and argumentative reasoning. In particular we have shown the connection between
explaining away and argument attack. By extracting rules and undercutters from
BNs we were able to construct arguments that support and attack each other. With
an example we showed that the characteristic features of probabilistic inference
and explaining away are captured by argumentative inference and undercutters.
This methodology enables further investigation of how argumentation can deal
with probabilities which also opens possibilities for future investigation.
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