
43

Automated Argument Assistance for Lawyers
Bart Verheij

Department of Metajuridica, Universiteit Maastricht
P.O. Box 616, 6200 MD Maastricht, The Netherlands

bart.verheij@metajur.unimaas.nl, http://www.metajur.unimaas.nl/~bart/

ABSTRACT
The ArguMed-system is presented, which is an example of an
argument-assistance system. Its goal is to assist the user while
making statements, adducing reasons, inferring conclusions and
providing exceptions.

Automated argument assistance should be distinguished from
automated reasoning: while automated reasoning systems replace
the reasoning of the users, argument-assistance systems do not
reason themselves, but are tools assisting the users' reasoning.

ArguMed is the successor of the Argue!-system. Argue!'s
graphical interface was considered too unfamili ar for the intended
users, and its underlying argumentation theory was not
suff iciently transparent.

The system as described here is the second version of the
ArguMed-system. Two drawbacks of the previous version have
been solved. First, though the arguments were presented
graphically, argument attack was not. It was graphically shown
that an argument was defeated by an attacking argument, but not
by which argument. Second, in the argumentation theory
underlying ArguMed's first version, it was not possible to put at
issue that a particular statement was a reason for another
statement, or that a statement was an exception.

Solving the first of these two drawbacks has led to a new
graphical representation of the arguments, in which argument
attacks are shown, and to a change in the argumentation theory,
viz. the introduction of a novel notion of an argument, viz. that of
a dialectical argument. Briefly, a dialectical argument is an
argument in which attacks (and counterattacks) are incorporated.
Solving the second drawback has led to the introduction of step
warrants and undercutter warrants into the argumentation theory.
The resulting notion of a warranted dialectical argument is the
analog for defeasible argumentation of the notion of a (Hilbert-
style) proof of classical logic.

The present version of the ArguMed-system is put in context
by a brief comparison with selected other systems, viz. Loui's
Room 5, Gordon and Karacapili dis' Zeno, ArguMed's precursor
Argue! and the previous version of ArguMed.

1. ASSISTING LEGAL ARGUMENT
1.1 Argument assistance systems
In recent research in legal information technology, a number of
experimental argument assistance systems have been presented,
i.e., systems that can assist the argumentation of one or several

users. One can think of a lawyer who uses an argument-assistance
system in order to draft his pleading in court. Such a system could
be part of the lawyer's word processing package, and provide
assistance, e.g., by helping the lawyer to structure his unpolished
arguments, and by providing tools for analyzing the arguments.
Argument-assistance systems can also serve in a context of more
than one user: so-called argument-mediation systems can be used
to keep track of the diverging positions with regards to a public
issue, and assist in the evaluation of the opinions.1

More specifically, argument-assistance systems are aids to
draft and generate arguments, e.g., by

- administering and supervising the argument process,
- keeping track of the issues that are raised and the assumptions

that are made,
- keeping track of the reasons adduced, the conclusions drawn,

and the counterarguments that have been adduced,
- evaluating the justification status of the statements made, and
- checking whether the users of the system obey the pertaining

rules of argument.

Marshall (1989) speaks in a similar vein of tools to support the
formulation, organization and presentation of arguments.

Argument-assistance systems must be distinguished from the
more common automated reasoning systems. The latter
automatically perform reasoning on the basis of the information in
their 'knowledge base'. In this way, an automated reasoning
system can do (often complex) reasoning tasks for the user.
Argument-assistance systems do not (or not primarily) reason
themselves; the goal of assistance systems is not to replace the
user's reasoning, but to assist in the reasoning process of the user.

The different nature of argument-assistance systems and
automated reasoning systems has two consequences. First,
argument-assistance systems are more passive than automated
reasoning systems. Several of their functions are implicitly
available, or operate 'in the background'. For instance, the
evaluation of argument data, such as the currently justified
statements, can occur in the background, much like the spelli ng
checks of recent word processing systems: after each action by the
user, the argument-assistance system automatically updates
previous evaluations.

Second, in the development of argument mediation systems,
the notorious diff iculties of the inherent complexities of the law
(such as its open and dynamic nature) are less intense than for

1 Previously, e.g., [Verheij , 1998a], I used the term 'argument-
mediation systems' as the generic term for both single and multi -
user argument-assistance systems. Examples of the latter are
Room 5 by Loui et al. [1997] and Zeno by Gordon and
Karacapili dis [1997]. Since mediation suggests that several users
are involved, I now prefer the term 'argument-assistance systems'.
The name of the ArguMed-system, that I would no longer call an
argument-mediation system, but a single-user argument-
assistance system, was chosen before the change of terminology.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ICAIL-99 Oslo, Norway Copyright (c) 1999 ACM 1-58113-
165-8/99/6 $5.00

44

automated reasoning systems, since they can to a large extent be
left to the user.

Several experimental systems for legal argument assistance
have been developed (e.g., Room 5 by Loui et al. [1997], Zeno by
Gordon and Karacapili dis [1997], and the Argue!-system by
Verheij [1998a]).2 The systems differ in their goals, the
underlying argumentation theories, and the user interfaces.

It should be noted that, for now, the development of
argument-assistance systems is still mainly in an experimental
phase. A first diff iculty is the lack of a canonical theory of legal
argumentation. However, in the recent abundance of research on
legal argumentation,3 a slow convergence of opinions seems to
arise. A second diff iculty is that argument-assistance systems
require the design of user interfaces of a new kind. There is littl e
experience with the way arguments can be sensibly and clearly
presented to the users, or with the way argument moves should be
performed by the user. Diff iculties such as these could be the
cause of the striking differences between the argumentation
theories and user interfaces of argument-assistance systems (cf.
section 4).

1.2 The ArguMed-system
In this paper, an experimental system for legal argument
assistance is described, the ArguMed-system. The ArguMed-
system has been developed as the successor of an earlier
experimental argument-assistance system, the Argue!-system4.
The latter system has a graphical interface, in which the user
'draws' the argument data on the screen. A sample screen of a
session with the Argue!-system is shown in Figure 1. The screen
is intended to depict that the (prima facie) reason that Peter has
violated a property right does not imply its conclusion that Peter
has committed a tort, as a result of the exception5 that there is a
ground of justification for Peter's act.

During the development of the Argue!-system, it became clear
that the graphical interface was too unfamili ar for the intended
users, and that its underlying argumentation theory was not
suff iciently transparent.

In order to enhance both the famili arity of the user interface
and the transparency of the argumentation theory, the newly
developed ArguMed-system presented here, has a template-based

2 This is only a selection, guided by three criteria: 1. the system
must be meant for argument assistance (including argument
mediation), 2. argumentation must be defeasible, and 3. the
systems must be developed with a (semi-)legal context in mind.
Not mentioned are, for instance, Nute's [1988] d-Prolog, Pollock's
[1987, 1995] OSCAR, Gordon's [1993, 1995] Pleadings Game,
IACAS by Vreeswijk [1995], DiaLaw by Lodder [1998], Tarski's
World by Barwise and Etchemendy (see http://csli -
www.stanford.edu/hp/), and HUGIN (http://www.hugin.dk/).
3 For an overview of argument models in law, see, e.g., Bench-
Capon [1995] and the special issue of Artifi cial Intelli gence and
Law, Vol. 4, Nos. 3/4, 1996, edited by Prakken and Sartor.
4 Verheij [1998a] most extensively describes the Argue!-system.
Lodder and Verheij [1998] and Verheij and Lodder [1998]
present Lodder's DiaLaw and Verheij 's Argue!-system as
examples of the verbal and the visual approach to argument
presentation, respectively.
5 In this paper, exceptions are of Pollock's [1987] undercutter-
type, i.e. they block the connection between a reason and its
conclusion.

user interface: the user gradually constructs arguments, by filli ng
in templates, each corresponding to an argument move, such as
making a statement. It is expected that in this way the user
interface becomes more famili ar since filli ng in templates is
common in present-day, window-style interfaces, and that the
argumentation theory underlying the system becomes more
transparent since the possible argument moves are restricted to a
small number of common argument patterns, each accessible by a
different, dedicated template.

In fact, the system described in this paper is the second
version of the ArguMed-system - the first version has recently
been described by Verheij [1998b].

There are two significant differences between the first and
second versions of the system. First, the present system uses a
novel notion of an argument, viz. that of a dialectical argument.
Briefly, a dialectical argument is an argument in which
counterarguments (based on undercutting exceptions) are
incorporated. Second, the present system allows warrants, both
for argument steps, i.e., the reasons that support conclusions, and
for undercutters, i.e., for the exceptions that block the connection
between a reason and a conclusion. Step warrants express that a
particular statement can be adduced as a reason for another
statement. They are similar to Toulmin's [1958] warrants, and
play a role that is analogous to that of the material implication in
the classic rule of inference Modus ponens. Undercutter warrants
express that a particular statement provides an exception that
breaks the connection between a reason and a conclusion. They
are a new notion, and are specific for dialectical arguments.

These two novelties in the argumentation theory have led to
corresponding adaptations of the interface. First, a way had to be
found to present dialectical arguments to the user. Second, the
user had to be given the opportunity to make the warrants of an
argument explicit (both for the steps and for the undercutters in
the argument).

The novelties in the second version of ArguMed solve two
drawbacks of the previous version. First, though the arguments
were presented graphically, argument attack was not. It was
graphically shown that an argument was defeated by an attacking
argument, but not by which argument. Second, since the
argumentation theory underlying ArguMed's first version did not
have step and undercutter warrants, it was not possible to put at
issue that a particular statement was a reason for another
statement, or that a statement was an exception.

The three systems (Argue!, ArguMed 1.0 and ArguMed 2.0)
can be downloaded at http://www.metajur.unimaas.nl/~bart/aaa/.

Figure 1: a sample screen of the Argue!-system,
ArguMed's precursor

45

In section 2, ArguMed's underlying argumentation theory is
described, and in section 3 its interface. Section 4 contains a brief
comparison with selected other argument-assistance systems.

2. ARGUMENTATION IN ARGUMED
In this section, the argumentation theory underlying the
ArguMed-system is informally explained. Connections and
differences with related argumentation theories are discussed in
section 2.5. The notion of dialectical arguments and warrants, and
the distinction of assumptions and issues are new or occur in an
innovative way. Example arguments based on Dutch tort law
serve as ill ustrations.

2.1 Reasons, conclusions, exceptions
The simplest form of an argument (in ArguMed's argumentation
theory) is a statement, e.g.:

Peter has committed a tort.

In an argument, reasons can be given for other statements, e.g.:

Peter has committed a tort, since he has violated a property
right.

The converse of adducing reasons is inferring conclusions:

Peter has committed a tort. Therefore he has the duty to pay
for the damages.

In defeasible argumentation, it can be the case that a conclusion is
not justified though there is a prima facie justifying reason for it.
For instance, an exception (of Pollock's [1987] undercutter-type,
cf. note 5) can break the 'connection' between a reason and a
conclusion:

Peter has violated a property right. As a result, at first sight,
he has committed a tort. However, there is a ground of
justification for Peter's act. As a result, on second thoughts,
Peter's violation of a property right does not justify that he has
committed a tort.

It is characteristic of an undercutter-type exception that the prima
facie conclusion is not replaced by its opposite, viz. that Peter has
not committed a tort: there could be a another reason justifying
the conclusion that Peter has committed a tort, even though the
reason that Peter has violated a property right, does not justify that
conclusion.

In Figure 2, the reason/conclusion/exception-structure of an
argument is graphically depicted. In the argument there are two
reasons for the statement that Peter has committed a tort, viz. that
he has violated a property right, and that he has acted against
proper social conduct. Only the first of these reasons is blocked
by an exception, viz. that there is a ground of justification.

Reason/conclusion/exception-structures, as in Figure 2, are
(unwarranted) dialectical arguments. They can be thought of as
structures of argument steps, i.e., the directed connections of a
reason with its conclusion, and argument undercutters, i.e., a step
with an exception breaking the connection between the step's
reason and conclusion. The argument in Figure 2 consists of three
steps, and one undercutter that encompasses one of the steps. A

reason for a conclusion can itself be supported by a reason
(subordination), a conclusion can be supported by more than one
reason (coordination), a step can be undercut by more than one
exception (multiple attack), and reasons for undercutters can
themselves be undercut (counterattack).

2.2 Warr ants
It is not the case that any statement is a reason for any other
statement. If such a connection between a reason and a conclusion
exists, the corresponding argument step is said to be warranted.
That some statement implies another statement, in the sense that it
can be adduced as a reason for the statement, is itself a statement,
and can, e.g., be expressed as follows:

As a rule, if Peter has violated a property right, then he has
committed a tort.

Any step in an argument (i.e., any connection of a reason with a
conclusion) has a corresponding step warrant (or rule) that can be
attached to it. An example is shown in Figure 3.6

Step warrants play a role that is analogous to that of the
material implication in the classical rule of inference Modus
ponens (from P and P → Q, infer Q).

Analogously, it is not the case that any statement is an
exception, breaking the connection between any reason and
conclusion. Just as steps, undercutters need to be warranted. That
some statement is an undercutting exception, is itself a statement.
Such 'excepting statements' provide the warrants of undercutters.
An undercutter warrant can, e.g., be expressed as follows:

That there is a ground of justification for Peter's act, is an
exception to the rule that, if Peter has violated a property
right, then Peter has committed a tort.

In Figure 4, an undercutter is shown with its warrant.

6 The use of uppercase characters in the 'step warrant statement' in
the figure are meant to suggest that AS A RULE, IF ..., THEN ...
should be considered as a two-place logical connective. A more
'logical' notation expressing a step warrant would, e.g., be p � q.

Figure 4: A warranted undercutter

Figure 2: A dialectical argument (without warrants)

Figure 3: A warranted step

46

Figure 5: A reason for a step warrant

Any undercutter in an argument (i.e., any exception 'crossing
out' the connection between a reason and a conclusion) has a
corresponding undercutter warrant that can be attached to it.7

The reason/conclusion/exception-structures with warrants
attached to each step and each undercutter, as discussed above,
are warranted dialectical arguments, or arguments, for short.
They are recursively constructed as follows (for brevity, using the
logic-style notation of notes 6 and 7):

1. A statement is an argument (containing one statement, no
steps and no undercutters). Its conclusion and only premise
are the statement itself.

2. Any argument containing a statement ψ can be extended with
a step ϕ // ψ by adding statements ϕ � ψ and ϕ to the
argument. In the resulting argument, ϕ is a reason for ψ. The
resulting argument's conclusion is that of the original
argument; its premises are ϕ � ψ, ϕ and those of the original
argument, minus ϕ.

3. Any argument containing a step ϕ // ψ can be extended with
an undercutter by adding statements χ � (ϕ � ψ) and χ (for
some χ) to the argument. In the resulting argument, χ is an
exception to the step ϕ // ψ. The resulting argument's
conclusion is that of the original argument; its premises are χ
� (ϕ � ψ), χ and those of the original argument.

There can be more than one reason for a conclusion and more
than one exception to a step.8

It may be thought that step warrants and undercutter warrants
add littl e to an argument, and only make explicit what is already
in the example steps and undercutters themselves. However,
warrants can themselves be the subject of argumentation. An
example is shown in Figure 5. In this argument, a reason is
adduced for the step warrant that, as a rule, if Peter has violated a
property right, then he has committed a tort. This reason is that,
according to art. 6:162.2 of the Dutch civil code, violations of
property rights are torts.

7 Sentences expressing undercutter warrants are obtained by a
combination of other sentences, using the three-place logical
connective THAT ..., IS AN EXCEPTION TO THE RULE
THAT, IF ..., THEN A more 'logical' notation expressing an
undercutter warrant would, e.g., be e � (p � q). Cf. note 6.
8 To avoid unnecessary technicaliti es, all arguments in this paper
are assumed to be finite. Looping steps (as, e.g., in the argument
'P. Therefore Q. Therefore P') and looping attacks are allowed.

Similarly, the argument in Figure 6 shows an argument
containing support for an undercutter warrant.

Note that the arguments shown in Figures 5 and 6 are strictly
speaking not warranted since not all steps and undercutters in the
arguments are warranted. For instance, in the argument of
Figure 5, there is a step without its corresponding warrant: the
step from the reason that, according to art. 6:162.2 of the Dutch
civil code, violations of property rights are torts, to the step-
warrant statement ('As a rule, if ..., then ...'), is itself not
warranted.

Any dialectical argument that is not or not completely
warranted can easily be extended to a warranted dialectical
argument, simply by attaching the appropriate warrant statement
to any step and undercutter that does not yet have a warrant
attached to it. (Note that the sentences expressing step warrants
and undercutter warrants are the result of a formal combination of
other sentences by an appropriate logical connective. Cf. notes 6
and 7.) In practice, it is convenient to leave all warrants implicit
that are not themselves the subject of further argumentation.

2.3 Justification
Warranted dialectical arguments are the analog for defeasible
argumentation of the proofs of classical logic: a warranted
dialectical argument determines whether its conclusion is justified
assuming its premises (i.e., the statements at the 'roots' of the
argument 'tree'). In contrast with classical proofs, that are always
justifying, a warranted dialectical argument is, as explicated
below, either justifying, or not justifying, e.g., as a result of an
exception occurring in the argument. Moreover, it will become
clear that extending a warranted dialectical argument (e.g., by
adding an exception) can change its justification status. Whether a
dialectical argument justifies its conclusion depends on the
structure of the argument, i.e., on the reasons, conclusions,
exceptions and warrants that occur in it, and on the way they are
related.

The justification status of an argument is here made dependent
on given assumptions, that not necessarily include the premises of
the argument. This allows that arguments have 'hanging' premises,
i.e., premises that are not assumed, but an issue for further
argumentation, which is convenient in practical argumentation
(see below).

For dialectical arguments with the simplest structure, viz.
statements, the justification status with respect to the given
assumptions is trivial. If the statement is itself an assumption, the
justification status of the statement (considered as an argument
with trivial structure) is justifying. The 'conclusion' of the
argument, i.e., the statement itself, is justified. If the statement is

Figure 6: A reason for an undercutter warrant

Figure 7: An issue and an assumption

47

Figure 12: A step warrant that is not justified

not an assumption - in which case it is called an issue -, the
statement is (as an argument) not justifying and (as a statement)
not justified. In the figures, assumptions are marked with an
exclamation mark, issues with a question mark. Statements that
are justified, are shown in a bold font, statements that are not, in
an italic font. For instance, in Figure 7, the statement that Peter
has committed a tort, is an issue, while the statement that he has
violated a property right, is an assumption.

In an argument with no exceptions and no explicit step
warrants, an issue is justified if there is a justified reason for it.
For instance, the dialectical argument shown in Figure 8 is
justifying, and the issue that Peter has committed a tort, is
justified.

A justifying dialectical argument with a slightly more
complicated structure is shown in Figure 9. In this argument, the
issue that Peter has the duty to repair the damages, is justified by
the (justified) reason that he has committed a tort. The issue that
Peter has committed a tort, is justified since one of the reasons is
justified, viz. the assumption that Peter has violated a property
right. The issue that Peter has acted against proper social conduct,
has no effect on the status of the issue that Peter has committed a
tort, since it is itself not justified, and therefore is not a justifying
reason. It is an example of a hanging premise in an argument: a
premise of an argument that is not assumed, but an issue for
further argumentation. Hanging premises do not affect the
justification status of the argument. In the dynamic practice of
argumentation (cf. section 2.4), a hanging premise can become
justifying once it is itself justified.

Exceptions have the effect that a reason does not justify its
conclusion, even if it is itself justified. For instance, the argument

in Figure 10 is not justifying, since the only reason for its
conclusion is undercut by the exception that there is a ground of
justification for Peter's act. The exception itself is trivially
justified since it is an assumption.

If an exception is itself not justified, it has no undercutting
effect. For instance, the argument in Figure 11 is justifying.

Until now, the warrants of the steps and undercutters have
been left implicit (cf. the discussion at the end of section 2.2). As
long as the warrants of a dialectical argument are not at issue (but
are instead implicitly assumed), they do not influence the
justification status of the argument. If the warrants are at issue,
they have effect on the justification status, as follows. If a step
warrant statement is not justified, the conclusion of the step is not
justified by the step's reason. Similarly, if an undercutter warrant
is not justified, the corresponding undercutter has no effect (i.e.,
the undercutter's exception does not block the connection between
reason and conclusion).

For instance, in Figure 12 an argument is shown that is not
justifying because one of its steps is not warranted (in the sense
that one of its step warrants is not justified). The argument is
based on the opinion in the literature on Dutch tort law that bare
violations of property rights are not torts by themselves. The fact
that the step is unwarranted, is visualized by the use of a dotted
arrow.

As said, an exception has no undercutting effect if the
corresponding undercutter warrant is not justified. For instance, in
the argument shown in Figure 13, the statement that Peter is not

Figure 13: An undercutter warrant that is not justified

Figure 8: An issue justified by a justified reason

Figure 9: A hanging premise

Figure 10: An exception making a reason non-justifying

Figure 11: An exception that is not justified

48

held culpable for his act, occurs as an exception to the argument
that Peter has committed a tort because of his violation of a
property right. However, it has no effect since the corresponding
undercutter warrant is an (unjustified) issue. In fact, justifying the
undercutter warrant in this argument would be in conflict with
actual Dutch tort law: the lack of culpabilit y does not exclude that
one has committed a tort, but can have effect on the duty to repair
the damages arising from the tort.

To summarize, whether a statement is justified, a reason is
justifying, or an exception is undercutting, depends on the
(recursive) structure of the argument in which they occur (cf.
section 2.2), and on the assumptions, as follows:

A statement is justified if
1. the statement is of assumption-type, or
2. the statement is of issue-type, and there is a reason

justifying the statement.
Otherwise, the statement is not justified.

A reason justifies a conclusion if
a. the reason is justified, and
b. the corresponding step warrant statement is justified (or

not made explicit), and
c. there is no exception undercutting the corresponding

argument step.
Otherwise, the reason does not justify its conclusion.

An exception undercuts an argument step if
a. the exception is justified, and
b. the corresponding undercutter warrant statement is

justified (or not made explicit).
Otherwise, the exception does not undercut an argument step.

This definition suff ices for finite arguments (recall note 8).

2.4 Argumentation as a process
Argumentation is a dynamic process. During argumentation, new
reasons and exceptions are adduced and new conclusions are
drawn. Step and undercutter warrants can be put at issue. As a
result, a statement that is justified can become unjustified, and
vice versa. Premises are not fixed during argumentation, since
new statements can be adduced as reasons for the premise of an
argument.

The arguments above provide examples. A line of
argumentation can start with the two statements of Figure 7.
Argumentation can continue by turning one of the statements into
a reason for the other (Figure 8). The arguments in Figures 9, 10,
12 and 13 are each possible continuations of the argument in
Figure 8. In Figure 9, an additional conclusion is drawn, viz. that
Peter has the duty to repair the damages, and a new (unjustified)
reason is adduced, viz. that he has acted against proper social
conduct.

If the argument in Figure 8 is extended to that in Figure 10, a
status change occurs because of a new undercutting exception: the
issue that Peter has committed a tort, that at first was justified,
becomes unjustified. If argumentation proceeds, resulting in the
argument of Figure 11, the statement is reinstated: it again
becomes justified. Note also that the statement that there is a
ground of justification for Peter's act, is first an assumption (in
Figure 10), but has been turned into an issue (in Figure 11) for
which a (non-justifying) reason is adduced.

In Figures 12 and 13, respectively, a step and undercutter
warrant of the argument in Figure 8 have been made explicit. In

both cases, the warrant is not justified. In the case of the
unjustified step warrant of Figure 12, the effect is that the
statement that Peter has committed a tort, is no longer justified by
the (justified) reason that Peter has violated a property right. In
the case of the unjustified undercutter warrant, the (justified)
exception that Peter is not held culpable for his act, does not
actually undercut the argument that Peter has committed a tort.

In section 2.3, it was explained how hanging premises are
convenient in dynamic argumentation.

2.5 Related argumentation theor ies
In this subsection, the informally presented argumentation theory
underlying ArguMed, is briefly compared to selected other
theories of defeasible argumentation. Knowledge of those theories
is assumed.

As a start, Toulmin's [1958] argument scheme is discussed.
Toulmin's notions of datum, conclusion, warrant and backing are
respectively similar to the notions of reason, conclusion, step
warrant and reason for a step warrant of the present paper.
Toulmin's scheme contains rebuttals9, that just as the exceptions
in the present paper, make argumentation defeasible. The modal
quantifier in Toulmin's scheme does not occur in the
argumentation theory presented here. The present paper's
undercutter warrants have no counterpart in Toulmin's scheme,
since it is not possible to argue that some statement is a rebuttal.
Toulmin does not give an explicit characterization of the
justification status of statements. Toulmin's scheme is not put in a
procedural context, and does not distinguish between assumptions
and issues.

Next, Reiter's [1980] default logic deserves discussion, as a
theory of defeasible argumentation avant-la-lettre. A difference
between Reiter's default logic and the present argumentation
theory is that the former uses a first-order language with variables
and quantifiers, whereas the language of the latter only uses
sentence connectives. The prerequisite α, the justification β and
the consequent γ of a default α : β / γ, correspond closely to a
reason, the negation of an exception, and a conclusion,
respectively. Step warrants and undercutter warrants are lacking in
Reiter's default logic, resulting in the (for long recognized)
drawback that defaults cannot be derived. Reiter's system
definition of extensions can be interpreted as the definition of the
sets of statements that are justified with respect to fixed
assumptions.10 Reiter's default logic is not put in a procedural
context, and does not distinguish between issues and assumptions.

Pollock's [1987, 1995] theory of defeasible argumentation has
already been mentioned. Pollock's logical system is richer than the
one presented here, e.g., since Pollock models not only
undercutting, but also rebutting exceptions, and adds numerical
weights that measure the strengths of reasons. Pollock discusses
expressions of the form 'P wouldn't be true unless Q were true',
that are closely related to the step warrants of the present paper.
Pollock characterizes undercutters as reasons for the negation of

9 Toulmin [1958] does not yet make Pollock's [1987] distinction
between undercutting and rebutting exceptions, that is by now
standard.
10 In this paper, Reiter's lacking or multiple extensions (that are
the analog of the unevaluable or ambiguous justification statuses
of statements in current argument-based formalisms) are excluded
from the discussion. Technically, this is achieved by only
considering finite dialectical arguments (cf. note 8).

49

these expressions. Apparently, there is no discussion of (an analog
of) undercutter warrants in Pollock's work. Pollock's inference
graphs (extended with his 'defeat links') are related to the
dialectical arguments of the present paper, but are not considered
as the analog of classical proofs of a conclusion. Pollock's central
use of inference graphs is in the definition of justification. Formal
differences are that Pollock considers the set of defeat links as a
graph, whereas the undercutters in a dialectical argument are
recursively ordered, as in a tree, and that Pollock's defeat links are
a relation on sequents (a supposition-conclusion pair), while the
present paper's undercutters in a dialectical argument connect a
statement and an argument step. Pollock's notion of interests
seems to be related to that of issues in the present paper.

In Vreeswijk's [1993, 1997] abstract argumentation systems,
the tree-like reason-conclusion structure of arguments (but lacking
the coordination of reasons) is studied in relation to defeat.
Vreeswijk uses an (almost) unstructured language with one
distinguished sentence that denotes contradiction, and therefore
does not include step warrants in his main argumentation theory.11

Vreeswijk considers inconsistency-triggered defeat (a term used
by Verheij [1996]): an argument can only be defeated if there is
an undefeated argument with conflicting conclusion. In
Vreeswijk's argumentation theory, support and attack are
considered separately, viz. in the definition of arguments, and in
the definition of the 'in force' arguments, whereas in the
argumentation theory of the present paper, support and attack
occur side by side in dialectical arguments. Vreeswijk puts
argumentation in a procedural context, but his argumentation
sequences have fixed assumptions. Issues are not distinguished.

The arguments of Prakken and Sartor's [1996] argumentation
theory are formed by chaining rules together. Prakken and Sartor's
rules are the conditionals of logic programming, and cannot be
nested. They are not comparable to step warrants since there can
be no support for the rules themselves. There are no undercutter
warrants. Support (by reasons) and attack (by exceptions) are
treated separately, and not simultaneously as in the dialectical
arguments here. Prakken and Sartor discuss a rebutting and an
undercutting type of defeat, where it should be noted that the
latter is unrelated to Pollock's [1987, 1995] standard distinction.
A naming technique is used for argumentation about priorities.
Argumentation is put in a procedural context by the definition of
dialogues.

In CumulA [Verheij , 1996], arguments are tree-like structures
of reasons and conclusions. An unstructured language is used, so
that CumulA does not have notions of step warrant or undercutter
warrant. Support and attack are separated. CumulA includes
several types of defeat (including defeat by parallel strengthening
and by sequential weakening), and not just the present paper's
undercutting defeat. In CumulA, argumentation stages are chained
in lines of argumentation, as a representation of the process of
argumentation. Premises can change during a line of
argumentation, and are comparable to the assumptions of the
present paper. Issues are not distinguished.

Reason-Based Logic, as initiated by Hage, and further
developed in cooperation with Verheij [Hage, 1996, 1997;
Verheij , 1996], can be characterized as a theory of rules and
reasons. It does not have a notion of an argument, but focuses on

11 In an appendix, Vreeswijk [1997, p. 275ff .] uses a richer
language, including defeasible conditionals, comparable to step
warrants, in a brief discussion of Pollock's undercutters.

types of sentences related to rules and reasons, and on the states of
affairs expressed by sentences of these types. It is of relevance
here, since the argumentation theory presented in this paper, has
resulted from my attempts to bridge the unsatisfactory gap
between Reason-Based Logic and CumulA, as it occurred in my
dissertation [Verheij , 1996]. Reason-Based Logic's sentences
expressing the validity of a rule are comparable to the step warrant
sentences of the present paper. Sentences expressing undercutter
warrants do not occur in Reason-Based Logic, but are related to
the validity of a rule with the exclusion of another rule as its
conclusion. The definition of Reiter-style extensions in Reason-
Based Logic can be regarded as a definition of the statements
justified with respect to a set of assumptions. Issues are not
distinguished.

Summarizing, the present paper's notions of dialectical
arguments and of step and undercutter warrants are innovations.
Limitations of the present paper's argumentation theory are the
constrained expressiveness of the logical language, and the
restriction of attack and defeat to undercutter-type exceptions.

3. ARGUMED'S INTERFACE
The ArguMed-system is an argument-assistance system with a
template-based interface. The user gradually constructs
arguments, by filli ng in templates that correspond to argument
patterns. The system keeps track of the constructed arguments and
of the justification status of the statements made. A sample screen
of a session with ArguMed is shown in Figure 14.

3.1 Moves
There are three basic argument moves: making a statement,
adding a reason and its conclusion, and providing an (undercutter-
type) exception blocking the connection between a reason and its
conclusion.

Each of the three 'Argue'-buttons (see Figure 14) gives access
to one of the three argument templates, provided by the ArguMed-
system, each corresponding to one of the argument moves of the
system. To perform an argument move, the user fill s in a template.
The first template is the statement template (Figure 15). It allows
the input of a statement: the user can type a sentence and choose
the statement's type. Statements can be of two types, viz. of issue-
type and of assumption-type, cf. the distinction between issues
and assumptions, as discussed in section 2.3. For new statements,
the issue-type is selected by default. The template can also be
used to change the type of a statement added at a previous stage.

The second is the reason/conclusion template. It allows the
input of a reason, and a conclusion supported by the reason. Both

Figure 14: A sample screen

50

the reason and the conclusion can be new statements, or can be
selected from statements added at a previous stage.

For a new conclusion, the issue-type is selected by default, for
a new reason, the assumption-type. The intuition behind the latter
default choice is that a reason is normally given as the immediate
justification of a conclusion, and only a justified reason, such as a
reason of assumption-type, can provide such support. If a reason
is itself of issue-type, it can only indirectly justify its conclusion,
viz. if the reason is supported by another (justified, non-blocked)
reason.

By default, the step warrant corresponding to the
reason/conclusion-move is not made explicit. By selecting the
appropriate box, the user can choose to add the step warrant as an
issue or as an assumption.

The third is the exception template. It allows the input of an
(undercutter-type) exception, and the reason and the conclusion,
the connection of which is blocked by the exception. The user

provides three statements, viz. the exception, the reason and the
conclusion. Each can be new, or selected from the previously
added statements.

For a new exception, the assumption-type is selected by
default. The intuition behind this choice is that an exception
normally is meant as an immediate block of the connection
between the reason and the conclusion, and only a justified
exception is such a block. If the exception is of issue-type, it only
blocks the connection between the reason and the conclusion if it
is itself supported by a justified, non-blocked reason. For a new
conclusion and reason, the default types are the same as in the
reason/conclusion template.

By default, the undercutter warrant corresponding to the
exception-move is not made explicit. By selecting the appropriate
box, the user can choose to add the undercutter warrant as an
issue or as an assumption.

3.2 Views
The ArguMed-system provides three views, providing information
about the current argumentation session. Each view is accessible
by one of the three 'View'-buttons (see Figure 14). In the 'line of
argumentation'-view, the argument moves as performed by the
user are listed in the order in which they have been performed by
the user (Figure 16).

Figure 16: The 'line of argumentation'-view
and the 'statements'-view

Figure 15: The three argument templates

51

In the 'statements'-view, all statements made by the user are
presented. The type of the statements is visualized as follows: a
question mark indicates a statement of issue-type, an exclamation-
mark a statement of assumption-type. Whether a statement is
(currently) justified is shown by the use of colored boxes and
arrows, and different fonts (bold/italic).

In the 'arguments'-view, the arguments that can be constructed
on the basis of the current user input, are shown. The arguments
are shown as in the figures of section 2.3. Optionally, only the
structure of the arguments is shown, as in the figures of
section 2.2.

3.3 Algor ithms
The ArguMed-system has two basic algorithms. The first
computes dialectical arguments, based on the argument moves
performed by the user. The second computes which statements are
justified, with respect to the computed dialectical arguments.

The algorithm computing dialectical arguments,
straightforwardly constructs dialectical arguments using the
statements, reasons, conclusions, exceptions and warrants, that are
available by the user's moves. The recursive definition of
arguments in section 2.2 is used.

Each computed dialectical argument makes maximal use of
the available data; a restriction is that loops in (any branch of) a
dialectical argument (as, e.g., in the argument 'P. Therefore Q.
Therefore P') are not further developed.12 The algorithm depends
on the order in which the moves have been performed: e.g., the
order in which statements have been adduced has effects on the
order in which they are shown on the screen.

The algorithm computing which statements are justified,
follows the discussion in section 2.3.

4. A COMPARISON OF ARGUMENT-
ASSISTANCE SYSTEMS
In order to put the ArguMed-system in context, it is briefly
compared to other systems, viz., Room 5 by Loui et al. [1997] and
Zeno by Gordon and Karacapili dis [1997]. Room 5 is called a
testbed for public interactive semi-formal legal argumentation.
Zeno is meant to create advanced support for complex multi -
party/multi -goal decision-making. The ArguMed-system is also
compared to its precursors, i.e., the Argue!-system [Verheij ,
1998a] and the first version of the ArguMed-system [Verheij ,
1998b].13 The two versions of the ArguMed-system are referred to
as ArguMed 1.0 and ArguMed 2.0, respectively. First, the
underlying argumentation theories are discussed; second, the user
interfaces.

4.1 The underlying argumentation theor ies
In the underlying argumentation theories of all systems
argumentation is dynamic. Statements can be made, and reasons
can be adduced. In Room 5 and Zeno, argumentation is issue-
based (as in Rittel's well -known Issue-Based Information System
(IBIS) [Rittel and Webber's, 1973]). No new conclusions can be
drawn, since these systems focus on the justification of an initial
central issue. In Argue! and both versions of ArguMed,
argumentation is free, in the sense that there is no central issue,
and both inference (i.e., 'forward' argumentation, drawing
conclusions from premises) and justification (i.e., 'backward'

12 Also 'attack loops' (see, e.g., Verheij [1998a; 1996, pp. 146-
151]) are not further developed.
13 See note 2.

argumentation, adducing reasons for issues) are allowed. Also
connecting previously made arguments (e.g., by turning the
conclusion of one argument into a reason for a premise of another
argument) is only possible in these three systems.

In all systems, reasons can be chained (subordination) and
support a conclusion in parallel (coordination). In Room 5 and
Zeno, a distinction is made between reasons for and against a
conclusion. The arguments in ArguMed 2.0 incorporate
counterarguments by means of undercutting exceptions. Only
ArguMed 2.0 has a notion of the warrants underlying argument
steps. It also adds undercutter warrants.

All systems model a notion of defeasibilit y of argumentation.
In Zeno, weighing the conflicting reasons determines which
conclusions are justified. In Argue! and both versions of
ArguMed, undercutter-type exceptions can block the justification
of a conclusion by a reason for it. Argue! has composite-type
defeat, such as defeat by sequential weakening (terms used by
Verheij [1996]).

In Room 5 and Zeno, argumentation is considered as a game
with participants. In Room 5 and Zeno, the game character is left
implicit, but obtained by the distributed access to the systems, on
the World-Wide Web. Argue! and the two versions of the
ArguMed-system, all three designed as single-user systems, have
no explicit notion of game participants, but can be considered as
one-participant games.

Zeno, Argue! and the two versions of the ArguMed-system
are evaluative: the status of statements and arguments can be
determined by the system. In Zeno and the ArguMed-systems,
evaluation occurs automatically in the background. In Argue!, the
user asks the system to update the evaluation of the statements
and arguments.

4.2 The user interfaces
All systems have a window-style interface. Room 5 and Zeno are
web applications, Argue! and the two versions of ArguMed are
PC applications (downloadable from the author's web site).
Argue! has a graphical interface, in the sense that the user draws
the argumentation data on the screen using a pointing device.
Room 5, Zeno and the ArguMed-systems have a template-based
interface: users fill i n forms to perform an argument move. The
ArguMed-systems innovates this type of interface by using
different templates for different types of moves.

All systems present arguments in a visual manner. Zeno,
Argue! and the ArguMed-systems use a tree-li ke presentation.
Room 5 uses a clever system of boxes-in-boxes in an attempt to
avoid 'pointer-spaghetti'.

In Room 5 and Zeno, counterarguments (based on reasons
against conclusions) are grouped together in the visual argument
structure. In Argue!, counterarguments are shown by a special
visual structure. In ArguMed 1.0, counterarguments (based on
undercutting exceptions) are not directly shown; the exceptions
are presented with their corresponding argument steps in a special
viewing window. In ArguMed 2.0, counterarguments are
incorporated in the arguments themselves, which is possible by
the new concept of dialectical arguments.

In the ArguMed-systems, the dynamic aspect of
argumentation is shown by a view on the sequence of moves. In
Room 5, Zeno and Argue!, only a view on the current stage of the
argumentation process is visible. In Room 5 and the ArguMed-
systems, it is possible to switch between different views showing
different types of information.

52

5. CONCLUDING REMARKS
In this paper, the notion of automated argument assistance has
been introduced. It extends the notion of automated argument
mediation. Whereas argument-mediation systems, such as Zeno
and Room 5, aim to be used in a public context, e.g., in order to
structure the public discussion concerning an issue, argument-
assistance systems in general also have private uses, e.g., the
drafting and testing of court pleadings.

Automated argument assistance should be distinguished from
automated reasoning: while automated reasoning systems replace
the reasoning of the users, argument-assistance systems do not
reason themselves, but are tools assisting the users' reasoning.

Elsewhere [Verheij , 1998a, 1998b], I have argued that even in
this experimental phase the development of argument-assistance
systems is relevant. I distinguished four ways in which the
development of argument-assistance systems is worthwhile: first,
such systems can serve as realizations of (formal) argumentation
theories, which is especially relevant because of the (well -
recognized) technical diff iculties of many theories; second, they
are test beds for argumentation theories, technically,
philosophically and in practice; third, argument-assistance
systems can be showcases, giving the argumentation theories
more credibilit y; and, finally, they can be practical aids, with
applications in, e.g., legal decision making, planning and
education. Currently developed systems are already worthwhile in
the first two, more theoretically oriented ways, and are starting to
become so in the second two, more practically oriented ways.

During the gradual maturing of argument-assistance systems,
the growing value of these systems in legal practice will go hand
in hand with a deeper understanding of legal argumentation.

ACKNOWLEDGMENTS
The author gladly acknowledges the financial support by the
Dutch National Programme Information Technology and Law
(ITeR) for the research reported in this paper (project number
01437112).

The author thanks Jaap Hage and Bram Roth for comments
and discussion.

REFERENCES
Bench-Capon, T. (1995). Argument in Artificial Intelli gence and

Law. Legal knowledge based systems. Telecommunication
and AI & Law (eds. J.C. Hage, T.J.M. Bench-Capon, M.J.
Cohen and H.J. van den Herik), pp. 5-14. Koninklij ke
Vermande, Lelystad.

Eemeren, F.H. van, Grootendorst, R., and Kruiger, T. (1981).
Argumentatietheorie. Uitgeverij Het Spectrum, Utrecht.

Eemeren, F.H. van, Grootendorst, R. and Kruiger, T. (1987).
Handbook of Argumentation Theory. A Critical Survey of
Classical Backgrounds and Modern Studies. Foris
Publications, Dordrecht. Translation of van Eemeren et al.
(1981).

Gordon, T.F. (1993). The Pleadings Game. An Artifi cial
Intelli gence Model of Procedural Justice. Dissertation.

Gordon, T.F. (1995). The Pleadings Game. An Artifi cial
Intelli gence Model of Procedural Justice. Kluwer Academic
Publishers, Dordrecht.

Gordon, T.F., and Karacapili dis, N. (1997). The Zeno
Argumentation Framework. The Sixth International
Conference on Artifi cial Intelli gence and Law. Proceedings of
the Conference, pp. 10-18. ACM, New York (New York).

Lodder, A.R. (1998). DiaLaw – on legal justifi cation and dialog
games. Dissertation, Universiteit Maastricht.

Lodder, A.R., and Verheij , B. (1998). Opportunities of computer-
mediated legal argument in education. Proceedings of the
BILETA-conference. March 27-28, 1998, Dublin.

Loui, R.P., Norman, J., Altepeter, J., Pinkard, D., Craven, D.,
Lindsay, J., and Foltz, M. (1997). Progress on Room 5. A
Testbed for Public Interactive Semi-Formal Legal
Argumentation. The Sixth International Conference on
Artifi cial Intelli gence and Law. Proceedings of the
Conference, pp. 207-214. ACM, New York (New York).

Marshall , C.C. (1989). Representing the structure of a legal
argument. The Second International Conference on Artifi cial
Intelli gence and Law. Proceedings of the Conference, pp.
121-127. ACM, New York (New York).

Nute, D. (1988). Defeasible reasoning: a philosophical analysis in
Prolog. Aspects of Artifi cial Intelli gence (ed. James H.
Fetzer), pp. 251-288. Kluwer Academic Publishers,
Dordrecht.

Pollock, J.L. (1987). Defeasible reasoning. Cognitive Science,
Vol. 11, pp. 481-518.

Pollock, J.L. (1995). Cognitive Carpentry: A Blueprint for How to
Build a Person. The MIT Press, Cambridge (Massachusetts).

Rittel, H.W.J., and Webber, M.M. (1973). Dilemmas in a general
theory of planning. Policy Sciences 4.

Toulmin, S. E. (1958). The uses of argument. University Press,
Cambridge.

Verheij , B. (1996). Rules, Reasons, Arguments. Formal studies of
argumentation and defeat. Dissertation Universiteit
Maastricht.

Verheij , B. (1998a). Argue! - an implemented system for
computer-mediated defeasible argumentation. NAIC '98.
Proceedings of the Tenth Netherlands/Belgium Conference on
Artifi cial Intelli gence (eds. Han La Poutré and Jaap van den
Herik), pp. 57-66. CWI, Amsterdam

Verheij , B. (1998b). ArguMed - A Template-Based Argument
Mediation System for Lawyers. Legal Knowledge Based
Systems. JURIX: The Eleventh Conference (eds. J.C.Hage,
T.J.M. Bench-Capon, A.W. Koers, C.N.J. de Vey Mestdagh
and C.A.F.M. Grütters), pp. 113-130. Gerard Noodt Instituut,
Nijmegen.

Verheij , B., Hage, J.C., and Lodder, A.R. (1997). Logical tools
for legal argument: a practical assessment in the domain of
tort. The Sixth International Conference on Artifi cial
Intelli gence and Law. Proceedings of the Conference, pp.
243-249. ACM, New York (New York).

Verheij , B., Hage, J.C., and Herik, H.J. van den (1998). An
integrated view on rules and principles. Artifi cial Intelli gence
and Law, Vol. 6, No. 1, pp. 3-26.

Verheij , B., and Lodder, A.R. (1998). Computer-mediated legal
argument: the verbal vs. the visual approach. Proceedings of
the 2nd French-American Conference on AI and Law. June
11-12, 1998, Nice.

Vreeswijk, G. (1995). IACAS: an Implementation of Chisholm’s
Principles of Knowledge. Dutch/German Workshop on
Nonmonotonic Reasoning. Proceedings of the Second
Workshop, pp. 225-234. Delft University of Technology,
Universiteit Utrecht.

