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ABSTRACT
Scenario-based Bayesian networks (BNs) have been proposed as a

tool for the rational handling of evidence. The proper evaluation

of existing methods requires access to a ground truth that can be

used to test the quality and usefulness of a BN model of a crime.

However, that would require a full probability distribution over

all relevant variables used in the model, which is in practice not

available. In this paper, we use an agent-based simulation as a proxy

for the ground truth for the evaluation of BN models as tools for

the rational handling of evidence. We use fictional crime scenarios

as a background. First, we design manually constructed BNs using

existing design methods in order to model example crime scenarios.

Second, we build an agent-based simulation covering the scenarios

of criminal and non-criminal behavior. Third, we algorithmically

determine BNs using statistics collected experimentally from the

agent-based simulation that represents the ground truth. Finally, we

compare the manual, scenario-based BNs to the algorithmic BNs by

comparing the posterior probability distribution over outcomes of

the network to the ground-truth frequency distribution over those

outcomes in the simulation, across all evidence valuations. We

find that both manual BNs and algorithmic BNs perform similarly

well: they are good reflections of the ground truth in most of the

evidence valuations. Using ABMs as a ground truth can be a tool to

investigate Bayesian Networks and their design methods, especially

under circumstances that are implausible in real-life criminal cases,

such as full probabilistic information.
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1 INTRODUCTION
The goal of evidential reasoning in the courtroom is to find reasons

for or against believing the factual circumstances that determine

the guilt of a defendant. In a criminal trial, evidence is established.

Evidence can support unobserved hypotheses that relate to a defen-

dant’s possible offence [3]. This inference is traditionally presented

as an argument: ‘Evidence 𝑥1, 𝑥2 supports the claim that the sus-

pect committed act 𝑋 ’. However, in such an argument, it is unclear

how much a piece of evidence should ultimately change the judge’s

belief in a defendant’s guilt: should it have a large or a small effect?

How should we weigh contradictory evidence? How is this process

influenced by the prior beliefs of the judge?

Such questions could be answered using a Bayesian Network

(BN) model of that criminal case. A Bayesian Network is a joint

probability distribution over a set of relevant variables. It is a nor-

mative standard for reasoning with evidence: for a given set of evi-

dence, the BN calculates the probability of the hypothesis. However,

creating an acceptable Bayesian Network is not trivial. Bayesian

Networks require full probabilistic information, yet, the events in

criminal cases are typically very specific, hence it is hard to em-

pirically determine all required probabilities. For events such as

motive and opportunity, it is unclear how a probability estimate

should be established at all. Hence subjective methods for creating

BNs have been proposed [6], which cannot guarantee an accurate

representation of an actual joint probability distribution over all

events represented, and hence also the inferred probability of guilt

is based on subjective elements.

The lack of full probabilistic information is visible in existing

methods for building Bayesian Networks in law. When proposing

a method for building Bayesian Networks on limited data in the

criminal domain, the method is often illustrated by creating a BN

that is based on a scenario of a (simplified) criminal case or fictional

story [11, 24, 27]. These scenarios do not include probabilistic data;

they are only descriptions of events over time. This means that

modellers have to elicit subjective probability estimates for every

event in the scenario in order to create a BN with no access to any

ground truth. The resulting BN can hence not be properly evaluated

because there is no objective ground truth distribution to compare

the BN distribution to.

In this paper, our aim is to test the scenario idiom method as

established by [26]. We construct a Bayesian Network according to

the scenario idiom as well as as a control network that is learned

from data collected in a simulation, without the use of the scenario

idiom. Then we evaluate whether the scenario-based BN represents

the ground truth and how it compares to the algorithmically gen-

erated network. We can evaluate the BNs because we create an

artificial ground truth that includes full probabilistic information,

https://doi.org/https://doi.org/10.1145/3594536.3595125
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in the form of an agent-based model (ABM). In the ABM, we model

alternative scenarios of criminal and non-criminal behaviour, and

we record the frequency for each event in the simulation. Hence,

we can go beyond the current approach of evaluating Bayesian

Networks by including the possibility to evaluate whether the net-

works, or parts of them, correspond to the probabilistic ground

truth. In Section 2, we introduce background on reasoning with

evidence, Bayesian Networks and agent-based simulations. Section

3 explains the ABM and how we construct Bayesian Networks.

Section 4 compares the performance of the Bayesian Networks as

compared to the ground truth. Section 5 evaluates the scenario

idiom and limitations and Section 6 presents the conclusion with

suggestions for future work.

2 BACKGROUND
2.1 Reasoning with evidence
There exist three main approaches to reasoning with evidence

within law [7, 25]: argumentation, scenarios and probabilities. In

the argumentation approach, hypotheses and evidence are repre-

sented as propositions that attack or support each other (going

back to [30]). In the scenario approach, coherent hypotheses are

combined into stories [22, 28] that are supported by evidence. Evi-

dence needs to be anchored, which means that the evidence needs

to be grounded in common-sense rules. The extent to which this is

successful determines our belief in the entire story. In the third, prob-

abilistic approach, hypotheses and evidence are assigned probabili-

ties and the relation between hypothesis and evidence, and hypoth-

esis and hypothesis, is represented as conditional probability (e.g.,

[4]). Bayesian Networks can model criminal cases [11, 12, 17, 24]. A

Bayesian Network can also represent specific (forensic) aspects of a

case, such as DNA or blood-spatter evidence; for methods see [20].

In this paper, we focus on the design method proposed in [26].

2.2 Bayesian Networks
A Bayesian Network 𝐵 = ⟨𝑉 , 𝐸, P⟩ is a compact representation of a

joint probability distribution P over a set of variables 𝑉 [21]. The

tuple ⟨𝑉 , 𝐸⟩ is a directed acyclic graph that represents the inde-

pendence relation of the variables 𝑉 as nodes and directed edges

𝐸. Every variable 𝑉𝑖 in the network has a conditional probabil-

ity table (CPT) that captures the probability distributions Pr(𝑉𝑖 |
𝑝𝑎𝑟𝑒𝑛𝑡𝑠 (𝑉𝑖 )) over𝑉𝑖 conditioned on the combinations of values for

the parents 𝑉𝑗 of 𝑉𝑖 in the graph. 𝑉𝑗 is a parent of 𝑉𝑖 if the nodes

are connected by an edge 𝐸 𝑗,𝑖 ; 𝑉𝑖 is then the child of 𝑉𝑗 .

We can find the joint probability distribution P of a network

through the chain rule: P =
∏𝑛

𝑖=1 = Pr(𝑉𝑖 |𝑝𝑎𝑟𝑒𝑛𝑡𝑠 (𝑉𝑖 )), where 𝑛 is

the number of nodes in the network. We assume that all variables

are boolean, with possible outcomes 𝑇𝑟𝑢𝑒 and 𝐹𝑎𝑙𝑠𝑒 .

Figure 1 shows a BN that represents a shooting 𝑆 leaving evidence

in the form of bullet casings on the ground 𝐵. We might not be

able to observe the shooting directly, but we can observe the bullet

casings 𝑏 or ¬𝑏. This network is hence an example of an evidence

idiom [11]: the observation serves as a piece of evidence for an

unobserved hypothesis.

The evidence idiom reflects a causal relationship between vari-

ables in the direction of the arc: the hypothesised event causes the

observable evidence. We can specify a prior probability distribution

(S) Suspect shot victim with gun

True 0.05

False 0.95

(B) Bullet casings found S=True S=False

True 0.8 0.01

False 0.2 0.99

Figure 1: A Bayesian Network with two nodes, where the
evidence is the child node and the hypothesis the parent.

in 𝑆 , and in 𝐵 we specify conditional probabilities: the probability

distribution over 𝐵 when 𝑆 is true, and the probability distribu-

tion over 𝐵 when 𝑆 is false. The edges in a Bayesian Network do

not necessarily need to point in a causal direction; they describe

probabilistic relationships only [5].

To reason with evidence in our example, let us say that we found

𝐵 = 𝑇𝑟𝑢𝑒 , or 𝑏: there are bullet casings on the ground. We want to

know what this new evidence will do to our belief in 𝑆 = 𝑇𝑟𝑢𝑒 , or 𝑠 .

This means that we are updating our belief in 𝑆 = 𝑇𝑟𝑢𝑒 , or finding

the posterior of 𝑆 = 𝑇𝑟𝑢𝑒 , based on the evidence 𝐵 = 𝑇𝑟𝑢𝑒 that we

found. We can update out belief in 𝑠 given 𝑏 using Bayes’ Law:

𝑃 (𝑠 |𝑏) = 𝑃 (𝑏 |𝑠) · 𝑃 (𝑠)
𝑃 (𝑏)

This requires us to find the probabilities 𝑃 (𝑏 |𝑠), 𝑃 (𝑠) and 𝑃 (𝑏). In
the case of our network in Figure 1, these are specified in the CPTs.

𝑃 (𝑏 |𝑠) = 0.8, 𝑃 (𝑠) = 0.05, 𝑃 (𝑏) = 0.8 · 0.05 + 0.01 · 0.95

From this information, we can calculate 𝑃 (𝑠 |𝑏):

𝑃 (𝑠 |𝑏) = 0.8 · 0.05
0.8 · 0.05 + 0.01 · 0.95 = 0.81

We find that our belief in 𝑆 = 𝑇𝑟𝑢𝑒 has increased from its prior

probability of 0.05 to a posterior probability of 0.808, given evidence

𝐵 = 𝑇𝑟𝑢𝑒 . On the other hand, if we do not find bullet casings on

the ground, using the same calculation but now for 𝐵 = 𝐹𝑎𝑙𝑠𝑒 , our

belief in 𝑆 = 𝑇𝑟𝑢𝑒 decreases from 0.05 to 0.012.

Hence, we can exactly specify how our belief in a hypothesised

event changes, given that we have added some piece of evidence:

either 𝐵 = 𝑇𝑟𝑢𝑒 or 𝐵 = 𝐹𝑎𝑙𝑠𝑒 . Before we found this evidence, we

could not say either 𝐵 = 𝑇𝑟𝑢𝑒 or 𝐵 = 𝐹𝑎𝑙𝑠𝑒 , as we did not have

evidence either way: we did not even look for bullets. This is the

simplest form of a Bayesian update, with one piece of evidence

and one hypothesis. In real-life situations, we are reasoning with

many pieces of evidence that might be conditioned on more than

one hypothesis, resulting in tedious and error-prone calculations

if we would do them manually. To construct networks, we can

build them manually in (proprietary) software with a GUI like Age-

naRisk or Hugin. They can also be built, by hand, or automatically

constructed from datasets in PyAgrum [8], a free Python software

package, or with the R package bn.learn.
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2.3 Building Bayesian Networks for crimes
Bayesian Networks can represent evidence in crime cases by inte-

grating aspects of argumentation [1, 29] or scenario theory, through

the use of idioms. An idiom is a systematic and consistent way of

modelling a pattern that occurs in a criminal case. Examples of

idiom based-approaches are the evidence-idiom [11] (Figure 1) and

the scenario-idiom [26]. Here we focus on a method developed by

Vlek et al. [26] for creating Bayesian Networks using the scenario id-

iom, which represents mutually exclusive and exhaustive scenarios

within one BN. In this idiom, separate hypotheses within a scenario

are children of a scenario node, which is mutually exclusive with

all other possible scenarios, as set using a constraint node [10]. The

hypothesis nodes within one scenario are ordered temporally or

causally. Adding positive evidence to one part of a scenario makes

the entire scenario more probable and other scenarios less prob-

able. The main focus of this method is on the structural aspects

of the BNs, and there is less focus on assigning the probabilities.

The resulting networks are evaluated in two ways: either assessing

robustness with sensitivity analysis [12], or assessing the change

in posteriors for a given set of evidence valuations [26]. However,

neither of these methods can answer the question we are interested

in: Does the BN reflect the ground truth? Therefore in this paper

we create a ground truth using agent-based models.

2.4 Agent-Based Models
Agent-based models (ABM) allow researchers to study models

in which agents interact with their environment and with other

agents [15]. Agents can perceive (part of) the simulation, as well

as perform actions that are permitted by their behavioural rules.

ABMs can be spatially and temporally specified: the agents can be

placed on a grid and exist over a given number of epochs called

a run. The modeller has access to an ABM’s complete state-space,

and has full control over the simulation.

Agent-based models have been used to model crimes. They can

be based (partially) on empirical data [32] and model specific crimes

in areas, or be based on sociological theories of criminal behaviour,

as in [14] or theoretical mechanisms of crimes [2]. For agent-based

models to be useful in modelling criminal behaviour, they should

adhere to certain standards: themodels should be based on empirical

data, the model should be replicable and the modeller’s choices

should be transparent [16].

Agent-based simulations have been combined with Bayesian

Networks before [19] for modelling probabilistic events with a spa-

tial aspect, yet not as a ground-truth for design method evaluation

and not in the domain of law. Agent-based and Bayesian Network

models have a lot to gain from each other: an agent-based model

makes spatial and temporal relationships between events explicit

and gives meaning to the variables in the BN. On the other hand,

a BN is an abstracted summary of the relationships at play in an

ABM, that a user can interact with [13].

3 METHOD
This section describes the agent-based simulation and the construc-

tion of the four networks.
1
Note that the ABM in this work is

meant only to test the method for constructing Bayesian Networks,

1
Code available at https://github.com/aludi/evaluatingScenarioBNs2023

and is not meant as something approaching an empirical ABM of

any real crime case.

3.1 Scenarios
We start our process with one or more written scenarios. These sce-

narios can be obtained from abridged or simplified case descriptions

of a crime, or they can be wholly fictional (such as in this paper,

where the focus is on the evaluation of the BN design method [26],

and not on the modeling of an actual crime). The scenarios should

contain all and only those hypotheses and evidence that are rele-

vant to the case. Both the prosecution and the defence should be

able to select relevant events and their evidence.

3.1.1 Running example. We establish three different scenarios of

criminal and alternative behaviour. A scenario is true only when all

parts of the scenario are true. The central part of the scenario is the

theft of, accidental loss of, or nothing happening to, some valuable

object. In all scenarios, there are two people walking around the

Grote Markt, the main square in Groningen. One person is young,

and the other person is old and carries a valuable object.

In scenario 1 (𝑠𝑐𝑛1), the young person sees the old person carry-

ing an object. They assess whether the object is valuable enough

to risk stealing. Then, they consider whether the old person is vul-

nerable enough to steal from; this establishes motive. If and only if

the young person has a motive, they will attempt to sneak up on

the old person. If and only if they are able to get close to the old

person, they steal from them.

In scenario 2 (𝑠𝑐𝑛2), the young person might still be doing all of

the above (or they might not), however, before they can steal, or if

they decide that they are not stealing after all, the old person drops

the object accidentally.

In scenario 3, neither scenario 1 Steal nor that of scenario 2 Drop
happens. Both people walk around at Grote Markt and then go

home and the object is neither dropped nor stolen. This is 𝑠𝑐𝑛3 and

is equivalent to ‘neither scenario 1 nor scenario 2’.

For our evidence, we have a psychological evaluation of the

young person, which assesses whether they are psychologically

capable of stealing from the old person. We also have cameras at

Grote Markt that show whether the young person was seen at all,

or was seen stealing. Additionally, we know whether the object is

gone from the potential victim.

3.2 Simulation
We can think of the agent-based model as having two parts: 1) a

model of the scenarios, by first identifying and operationalising

all relevant agents, objects and environments; and 2) a way of

observing the model by identifying and operationalising all relevant

events. In this paper, the model of the scenarios is an agent-based

simulation and the observation procedures are random variables

that map specified in-simulation events to truth values.

3.2.1 Agent-based model. The agent-based model is a simulation

that includes all events for all the scenarios as outlined in step 1 as

well as being spatially and temporally defined. It contains agents,

objects and an environment. The agents traverse the environment,

interact with each other and use objects to perform interactions

(like stealing an object).

https://github.com/aludi/evaluatingScenarioBNs2023
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Figure 2: Map of the Grote Markt, Groningen, as spatial envi-
ronment in the model. Dark grey represents roads, light grey
represents open space; agents can traverse both. Mid-tone
grey represents buildings; agents cannot move through them.
Agents are yellow circles, with names attached. Camera lo-
cations are randomly initialised. Blue circles represent the
camera vision radius.

3.2.2 Running example. The simulation was run 10,000 times. One

run took 100 epochs, or until both agents were in their goal location

at the edge of the simulation (with or without theft).

The environment of the simulation is a discrete grid of size

𝑥 = 75, 𝑦 = 50 that represents the geography of the Grote Markt in

Groningen. In real life, the area of interest is approximately 425m x

280m. This means that one cell in the simulation is equivalent to

a square of 5.6m x 5.6m in real life. An agent can move 1 cell per

epoch, which means that, given an average human walking speed

of 1.4m/s,
2
one epoch is equivalent to 4 seconds in real life. For the

purposes of this simulation, this spatial and time resolution is high

enough.

To simulate which parts of the Grote Markt were accessible to

the agents, we converted a map image
3
of the Grote Markt into an

agent-readable world by overlaying a grid on the map image. Cells

that were filled with solid structures such as buildings were coded

as inaccessible, while other cells representing roads or open spaces

were coded as accessible. The resultingmapwas shared by all agents

and constrained their possible movements as well as their vision,

additionally it was used to calculate sight lines for both cameras

and agents. An agent or a camera can only see another agent if

there are no inaccessible grid cell on the sight line between the two

and the other agent is within their visual range. The environment

is shown in Figure 2.

We populate this environment with agents. The agents in this

model are created from the base MESA agent class [18], with addi-

tional features that are relevant for representing the three scenarios.

This means that there are always exactly two agents in the simula-

tion, one older victim-agent and one younger potential thief. These

agents have the following attributes:

2
https://en.wikipedia.org/wiki/Preferred_walking_speed

3
http://maps.stamen.com/terrain/#18/53.21618/6.57225

role Either thief or victim.

id The thief has ID 1, the victim has ID 0.

object The thief has an object with a value of 0, the victim’s ob-

ject has a value drawn from a uniform distribution between

500 and 1000.

goal location Once the thief has a motive, the thief’s goal

location is the current location of the victim. For the victim

and thief without motive, it is a random accessible location

at the edge of the map.

age The thief’s age is 25, the victim’s age is drawn from a

uniform distribution between 60 and 90.

risk threshold The risk threshold for the thief is randomly

drawn from a uniform distribution between 800 and 1200.

age threshold The age threshold signifies at what age an agent

considers another agent vulnerable: older agents are more

vulnerable than younger agents. The thief’s age threshold

is randomly drawn from a uniform distribution between 50

and 100. The victim’s age threshold is set to 100, older than

an agent can be, so the victim never steals.

steal state The possible steal states that the agents could be

in, are described as follows:

N Initial state, failed to steal

MOTIVE Selected a target (vulnerable and valuable)

SNEAK Moves towards target’s position

STEALING Attempts to steal

SUCCESS Successfully stolen object

DONE Reached initial goal location

LOSER Stolen from

All agents can perform the following actions:

hang-around agents move around randomly.

walk agents move 1 cell in Moore neighbourhood towards

goal location by minimising the distance between goal and

self, as measured by Euclidean distance (this does not take

buildings into account).

escape agents can get trapped in tight corners of the spatial en-

vironment when they are moving towards their goal. There

is an epoch tracker that counts when agents get stuck, then

moves the agent into the hang-around state of randommove-

ment, for a given time. This means that eventually the agent

will randomly move away from being stuck.

see agents detect all objects within a radius of 10 cells, as cal-

culated based on line-of-sight. Bresenham’s line algorithm

was used to select a list of the relevant cells that lie on the

grid between the agent and the object that it is seeing. For

every cell on the straight path between the two objects, we

check whether it is accessible or inaccessible. Agents and

light (vision) cannot pass through inaccessible cells. If there

is at least one inaccessible cell in the list, then the agent is

not able to see the object.

decide valuable once the thief sees the victim, the thief knows

the value of the object of the victim. If the value of the object

is larger than the risk threshold of the agent, then the object

is deemed valuable.

decide vulnerable once the thief sees the victim, the thief

knows the age of the victim. If the age of the victim is older

https://en.wikipedia.org/wiki/Preferred_walking_speed
http://maps.stamen.com/terrain/#18/53.21618/6.57225
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than the thief’s age threshold, then the thief considers the

victim vulnerable.

motive if an agent decides that the victim is vulnerable and

carries a valuable item, the agent has a motive.

sneak once an agent has a motive, agent moves to the position

of the victim. It can move with a radius of 2 instead of 1,

which simulates a higher speed.

steal whenever the thief is in the same cell as the victim, the

victim still has their object, and they are both present within

the model (so the victim has not reached its goal yet), the

thief steals successfully.

drop agent drops the object accidentally.

There are two types of objects in this model, namely, the valuable

object and the cameras. In the scenario, an object is described as

being in the possession of an agent, or accidentally dropped. In

this model, the object was operationalised as being a feature of the

agent, and not as an individual thing by itself. There are 5 cameras

in the simulation. They are placed randomly on the accessible cells

on the map. Every camera has a visual radius of 5, corresponding

to a range of 28m, which is about equivalent to the visual range of

real-life security cameras.
4

3.2.3 Observation Procedures. An observation procedure is a ran-

dom variable that reports the outcome of a relevant event in the

simulation. The procedures are embedded in the code. If an event

happens (or does not happen) during a run, the observation proce-

dure reports that the event is true (or false). In essence, the obser-

vation procedure (𝑅) is a random variable (RV) that maps an event

(𝑒) to a truth value: 𝑅 : 𝑒 → {0, 1}. For every run of the simulation,

every random variable 𝑅 that is defined, is given a value. The ran-

dom variables that are defined are at the modeller’s discretion. The

random variables and their outcomes are stored for every run of

the simulation.

3.2.4 Running example. We define observation procedures 𝑅 for

events that happen in the simulation. There are two types of 𝑅:

evidence (E) or hypothesis (H). Every random variable 𝑅 assigns

either a 1 or a 0 to the event that it represents, hence all variables

are binary variables. We have 𝑅1, ..., 𝑅8, described below:

𝑅1 (H) motive_1_0 agent 1’s steal state is MOTIVE, targeting

agent 0.

𝑅2 (H) sneak_1_0 agent 1’s steal state is SNEAK, targeting

agent 0.

𝑅3(H) stealing_1_0 agent 1’s steal state is STEALING, target-

ing agent 0.

𝑅4 (H) object_dropped_accidentally_0 agent 0 drops the ob-

ject. At every epoch, there is a 1/500 probability that agent 0

drops the object.

𝑅5 (E) E_psych_report_1_0 agent 1 has the capacity to steal

from agent 0. If the thief does not have a motive, no psych

report is established: the observation procedure results in 0.

If the thief has a motive, there is a 0.9 probability that the

psych report indicated that the thief is capable of stealing

and a 0.1 probability that the thief could not have stolen the

object from agent 0. In this second case, the psych report

4
https://securitycamcenter.com/how-far-can-security-cameras-see/

is incorrect. This observation procedure is not represented

spatially in the simulation.

𝑅6 (E) E_camera_1 agent 1 is seen on the same camera as

agent 0.

𝑅7 (E) E_camera_seen_stealing_1_0 agent 1 is seen on the

same camera as agent 0 when agent 1’s steal state is STEAL-

ING, targeting agent 0.

𝑅8 (E) E_object_gone_0 agent 0 does not have the object any-

more (hence, object is dropped accidentally, or if the object

has been stolen).

A run of the simulation in which the thief stole the object and

all the evidence pointed in this direction would be represented as

𝑟 = (1, 1, 1, 0, 1, 1, 1, 1). If we only consider the evidence-events, we

would represent this run as (1, 1, 1, 1). We run the simulation 10,000

times, hence we have 10,000 entries: 𝑟1, . . . , 𝑟10000.

There are 16 evidence valuations in total, 𝑣1 . . . 𝑣16. Some evi-

dence valuations cannot occur in the simulation due to its internal

rules. These are the 6 states 𝑣11 . . . 𝑣16: (1, 1, 1, 0), (1, 0, 1, 1), (1, 0, 1,

0), (0, 1, 1, 0), (0, 0, 1, 1) and (0, 0, 1, 0). There are two reasons why

these valuations are impossible. First, it is not possible that the thief

was not seen on the camera, yet the camera saw the thief stealing

(as in the combination (·,0, 1, ·) for 𝑣12, 𝑣13, 𝑣15, 𝑣16). Second, it is not
possible that the camera saw the thief stealing, yet the object was

not gone ((·, ·, 1,0), for 𝑣11, 𝑣13, 𝑣14, 𝑣16). Hence, these valuations do
not occur in the simulation and have a frequency of 0.

3.3 Construction
We create four Bayesian Networks by combining 2 ways of drawing

edges (manual construction 𝐸ℎ𝑢𝑚 and algorithmic construction

𝐸𝑎𝑙𝑔) with 2 ways of assigning probabilities (probabilities drawn

from the entire unit interval 𝑃𝑢𝑛𝑖𝑡 and drawn from Table 1’s finite

constrained set 𝑃𝑐𝑜𝑛𝑠 ). The networks are shown

3.3.1 Structure: Themanual method (𝐸ℎ𝑢𝑚). For themanualmethod,

we follow the 5 step process as described by Vlek et al. [26]. The

network structure was created using Hugin.

(1) Represent We add three parent nodes: 𝑠𝑐𝑛1, 𝑠𝑐𝑛2, 𝑠𝑐𝑛3 that

are not explicitly represented in the simulation. For each sce-

nario, we select a scenario scheme idiom that the scenario

fits. For all scenarios, this would be a temporal ordering of

the nodes. For scenario 1: [motive_1_0→ sneak_1_0→ steal-
ing_1_0], as in the simulation, a motive comes before sneak-

ing, which comes before stealing. For scenario 2: [dropped_0].
For scenario 3, no events are included. We connect every

event as a child to its parent scenario. All scenarios are com-

plete and consistent, which we know due to these being the

only events possible in the simulation.

(2) Unfold For each scenario, unfold for more detailed subsce-

narios. Since no event needs to be further unfolded, this step

is completed.

(3) Merge We use the merged scenarios idiom to combine 𝑠𝑐𝑛1,

𝑠𝑐𝑛2, and 𝑠𝑐𝑛3 by using the constraint node. This means that

we have an additional four nodes in the manual networks as

opposed to the algorithmic networks: three scenario nodes

and one constraint node.

(4) Include evidence nodesWe use the evidence idiom from

Fenton et al. [10]. For each event, we consider one or more

https://securitycamcenter.com/how-far-can-security-cameras-see/
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Figure 3: The four networks that are created based on the simulation. From left to right, top to bottom: the BN with manual
structure with full probabilities (𝐵𝑁ℎ𝑢𝑚−𝑢𝑛𝑖𝑡 ); BN with manual structure with constrained probabilities (𝐵𝑁ℎ𝑢𝑚−𝑐𝑜𝑛𝑠 ). the BN
with algorithmic structure with full probabilities (𝐵𝑁𝑎𝑙𝑔−𝑢𝑛𝑖𝑡 ); the BN with algorithmic structure with constrained probabilities
(𝐵𝑁𝑎𝑙𝑔−𝑐𝑜𝑛𝑠 ). The manual networks have soft evidence entered on the constraint node. (*): The posterior for 𝐵𝑁ℎ𝑢𝑚−𝑐𝑜𝑛𝑠 does
not add up to 1 due to limitation in imaging software.

sensible causes that could be the reason for finding the

evidence. E_psych_report_1_0 relates to motive_1_0 only,

E_object_gone_0 relates to both stealing_1_0 and dropped_0.
Finally, the node E_camera_seen_stealing_1_0 has as parents
both stealing_1_0 and E_camera_1.

(5) Specify probabilityWe specify the probabilities in the next

step. In this paper, we can extract probabilities exactly from

the simulation. In cases without a ground truth, probabilities

need to be elicited or estimated.

3.3.2 Structure: The algorithmic method (𝐸𝑎𝑙𝑔). We use a structure

learning algorithm on the 10,000 run output of the simulation over

variables 𝑅1 . . . 𝑅8. We generate a network structure by using a

score-based hillclimbing method, using the Bayesian Information

Criteria (BIC), as implemented in the R package bn.learn. This

results in a set of edges over the 8 variables 𝐸𝑎𝑙𝑔 .

3.3.3 Assigning probabilities (𝑃𝑢𝑛𝑖𝑡 and 𝑃𝑐𝑜𝑛𝑠 ). We use two ways

of assigning probabilities.

The first way is to fill the CPTs with generated probabilities. As

the manual network has four more nodes than the algorithmically

generated network, this requires extra information. Hence, for ev-

ery run in the simulation, it was calculated whether scenario 1,

scenario 2 or scenario 3 occurred. These are the mutually exclu-

sive and exhaustive options. The scenarios are defined as follows:

𝑠𝑐𝑛1 = 𝑇 ↔𝑚𝑜𝑡𝑖𝑣𝑒_0_1 = 𝑇 ∧ 𝑠𝑛𝑒𝑎𝑘_0_1 = 𝑇 ∧ 𝑠𝑡𝑒𝑎𝑙𝑖𝑛𝑔_0_1 = 𝑇 ,

𝑠𝑐𝑛2 = 𝑇 ↔ 𝑜𝑏 𝑗𝑒𝑐𝑡_𝑑𝑟𝑜𝑝𝑝𝑒𝑑_𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑎𝑙𝑙𝑦_0 = 𝑇 , 𝑠𝑐𝑛3 = 𝑇 ↔
𝑠𝑐𝑛1 = 𝐹 ∧ 𝑠𝑐𝑛2 = 𝐹 . The constraint node is defined as to result

in mutual exclusivity and exhaustivity by setting the probability
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Probability value Explanation

0 impossible

0.01 near impossible

0.25 uncertain

0.5 fifty-fifty

0.75 expected

0.99 near certain

1 certain

Table 1: The constrained set of probabilities with their ex-
planation. We follow [23, 31], but have added 0.99 and 0.01,
which are introduced to avoid rounding to 1 or 0.

of combinations of any two or more scenarios, or of no scenario,

to 0. For all other nodes, the probabilities were generated by the

bn.fit method with as argument the given network structure and

all 10,000 runs of the simulation. The resulting numbers are in the

interval Punit = [0, 1].
The second way is to use a constrained set of probabilities

Pcons = [0, 0.01, 0.25, 0.5, 0.75, 0.99, 1] that correspond to a nat-

ural language interpretation of a degree of certainty (Table 1). The

use of this set corresponds to the lower precision of a human expert

who has to estimate probabilities subjectively and cannot distin-

guish between small differences. Finding the probabilities for 𝑃𝑐𝑜𝑛𝑠
was done by rounding the values for 𝑃𝑢𝑛𝑖𝑡 to the nearest value that

is allowed in 𝑃𝑐𝑜𝑛𝑠 . For example, a value of 0.57 in 𝑃𝑢𝑛𝑖𝑡 would

become 0.5 in 𝑃𝑐𝑜𝑛𝑠 .

3.3.4 The four networks. In sum, we created 4 Bayesian Networks

(Figure 3) with different assumptions about structure and precision

in probability assignment:

𝐵𝑁𝑎𝑙𝑔−𝑢𝑛𝑖𝑡 = ⟨𝐺𝑎𝑙𝑔, 𝑃𝑢𝑛𝑖𝑡 ⟩ with algorithmic graph structure and

full precision;

𝐵𝑁ℎ𝑢𝑚−𝑢𝑛𝑖𝑡 = ⟨𝐺ℎ𝑢𝑚, 𝑃𝑢𝑛𝑖𝑡 ⟩ with manual graph structure and full

precision;

𝐵𝑁𝑎𝑙𝑔−𝑐𝑜𝑛𝑠 = ⟨𝐺𝑎𝑙𝑔, 𝑃𝑐𝑜𝑛𝑠 ⟩ with algorithmic graph structure and

constrained precision;

𝐵𝑁ℎ𝑢𝑚−𝑐𝑜𝑛𝑠 = ⟨𝐺ℎ𝑢𝑚, 𝑃𝑐𝑜𝑛𝑠 ⟩ with manual graph structure and

constrained precision.

4 RESULTS
We determine to what extent the joint posterior distribution over

the three scenarios 𝑠𝑐𝑛1, 𝑠𝑐𝑛2, 𝑠𝑐𝑛3 as predicted by each network

corresponds to the frequencies of these scenarios in the agent-based

simulation. In the manual networks, we can read the posterior

probabilities from each scenario from the value in the constraint

node. In the algorithmically generated networks and in the ground

truth, we need to calculate the posterior probability or frequency

of each conjunction. We calculate the joint posterior distribution

using the exact inference algorithm LazyPropagation in PyAgrum.

We enter soft evidence on the constraint node to ensure that the

NA option cannot occur, as the scenarios are mutually exclusive

and exhaustive, according to Vlek’s method [26].

Figure 4 presents the frequency distribution over the three sce-

narios in the simulation as well as the probability distribution

structure CPTs 𝑣1 . . . 𝑣16 distance 𝑣1 . . . 𝑣10 distance

𝐺ℎ𝑢𝑚 𝑃𝑢𝑛𝑖𝑡 0.141 0.025

𝐺ℎ𝑢𝑚 𝑃𝑐𝑜𝑛𝑠 0.046 0.074

𝐺𝑎𝑙𝑔 𝑃𝑢𝑛𝑖𝑡 0.137 0.021

𝐺𝑎𝑙𝑔 𝑃𝑐𝑜𝑛𝑠 0.140 0.026

Table 2: For all Bayesian Networks, the absolute Euclidean
distance over all evidence valuations (𝑣1 . . . 𝑣16 distance) and
over only possible evidence valuations (𝑣1 . . . 𝑣10 distance).

over scenarios as predicted by every BN for all evidence valu-

ations for 𝑣1 . . . 𝑣16. The first bar, frequency, is the ground fre-

quency of scenarios in the simulation for the given evidence valua-

tion. The other bars correspond to the joint posterior probability

of each scenario, given the evidence valuation, as predicted by

the four Bayesian Networks 𝐵𝑁𝑎𝑙𝑔−𝑢𝑛𝑖𝑡 , 𝐵𝑁𝑎𝑙𝑔−𝑐𝑜𝑛𝑠 , 𝐵𝑁ℎ𝑢𝑚−𝑢𝑛𝑖𝑡 ,
𝐵𝑁ℎ𝑢𝑚−𝑐𝑜𝑛𝑠 . Qualitatively, a network predicts the posterior proba-

bility of a scenario well when its posterior distribution looks like

the frequency distribution in the left column. In general we see

in Figure 4 that the performance of the networks is quite high for

possible evidence valuations 𝑣1 . . . 𝑣10. Only for evidence valua-

tions 𝑣9 = (0, 1, 1, 1), 𝑣6 = (1, 1, 0, 1), 𝑣5 = (1, 0, 0, 1) there is a visible
difference between F and a given network. In contrast, in the im-

possible valuation state 𝑣15 = (0, 0, 1, 1), both manually constructed

BNs correctly predict that this evidence valuation is impossible,

yet both algorithmic BNs predict a high probability of the stealing

scenario. For 𝑣11 and 𝑣14, 𝐵𝑁ℎ𝑢𝑚−𝑢𝑛𝑖𝑡 predicts a drop, yet these

evidence states should be impossible.

We compare the difference between the network performance

and the ground truth frequency with the Euclidean distance for all

16 evidence valuation 𝑣1 ...𝑣16. The scenarios are mutually exclusive,

so we can read P(𝑠𝑐𝑛1|𝑣𝑖 ) as P(𝑠𝑐𝑛1 ∧ ¬𝑠𝑐𝑛2 ∧ ¬𝑠𝑐𝑛3|𝑣𝑖 ):

16∑︁
𝑖=1

1

16

√√√√√√√√√(F(𝑠𝑐𝑛1|𝑣𝑖 ) − P(𝑠𝑐𝑛1|𝑣𝑖 ))2+
(F(𝑠𝑐𝑛2|𝑣𝑖 ) − P(𝑠𝑐𝑛2|𝑣𝑖 ))2+
(F(𝑠𝑐𝑛3|𝑣𝑖 ) − P(𝑠𝑐𝑛3|𝑣𝑖 ))2

A low distance means that the posterior probability of the scenario

as reported by the network is close to the observed frequency of

the event in the ground truth (Table 2). The average prediction per-

formance of the interval manual network (0.141) is similar to the

average performance of the algorithmically constructed networks

(0.137, 0.140). The manual network with constrained probabilities

even has the best performance in the table, in particular because it

is the only one that correctly responds to the impossible evidence

valuations in all such cases. Once we take the performance over all

possible evidence valuations, we see that constraining the probabil-

ities results in a higher distance from the ground truth, compared

to the algorithmically generated networks: 0.074 compared to 0.025

for the other networks.

5 DISCUSSION
We compare the manual and algorithmic BNs, the effect of con-

strained and unconstrained probabilities, and the use of ABMs to

evaluate BNs.
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Figure 4: For all 16 evidence valuations, we show 5 distributions over the three scenarios scn1, scn2 and scn3: the frequency
distribution frequency in the ground truth and the posterior probability distributions in 𝐵𝑁𝑎𝑙𝑔−𝑢𝑛𝑖𝑡 , 𝐵𝑁𝑎𝑙𝑔−𝑐𝑜𝑛𝑠 , 𝐵𝑁ℎ𝑢𝑚−𝑢𝑛𝑖𝑡 and
𝐵𝑁ℎ𝑢𝑚−𝑐𝑜𝑛𝑠 . When no distribution is defined, the evidence state is inconsistent.

5.1 Evaluating the Manual Network
We find that Vlek’s method for creating Bayesian Networks with

scenario idioms is successful. The performance of the manual net-

works is similar to the performance of the algorithmic networks,

which means that we can use the scenario idiom to structure the

BNs without it resulting in a worse performance.

We see that the manual network represents several useful aspects

of reasoning explicitly, in contrast to the algorithmic networks: The

scenario idiom organizes scenarios and represents them explicitly

in the network; mutual exclusivity and exhaustiveness of scenarios

are ensured through the constraint node, and we can read the

posterior probabilities for every scenario in one glance from the

constraint node. Another advantage is that we do not need any data

to construct the structure of the manual BNs. This is not possible

for the algorithmic BNs.

However, the use of the scenario idiom requires extra nodes

beyond the evidence and hypothesis nodes that are used in the

algorithmic network. This means, in turn, that there are more pa-

rameters to be specified. Specifically, we need to enter the prior

probabilities of all three scenarios explicitly into the network as

well as parameters for the arcs between the scenario node and

the hypotheses that make up the scenario: the manual network

has 14 arcs, while the algorithmic network only has 8 arcs. Hence,

the manual networks have a higher complexity and require more

probabilities to be elicited.

Hence, by following Vlek’s method, we find that we can represent

scenarios in a more organized and understandable way compared to

an algorithmic network, with a similar performance on predicting

the ground truth. However, this comes at a cost of a greater com-

plexity in the form of a higher number of arcs, and the necessity of

specifying prior probabilities over entire scenarios.

5.2 Evaluating the Algorithmic Network
The algorithmic networks perform similarly to the 𝐵𝑁ℎ𝑢𝑚−𝑢𝑛𝑖𝑡
network and they take advantage of data. However, as we see in
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Figure 4, these networks were unable to correctly predict the joint

posterior distribution over outcomes for 𝑣12 = (0, 0, 1, 1), 𝑣15 =

(1, 0, 1, 1). It could be that 10,000 runs is an insufficient number

for the algorithm to be able to distinguish impossible evidence

valuations from implausible evidence valuations. The algorithm

does allow for 0 and 1 in the CPTs and this shows in other evidence

valuations, yet the algorithm misrepresents these two valuations.

However, since the algorithmic network was based on a greedy hill-

climbing algorithm, it could be that a correct network was possible,

yet this network was excluded early: there might be a network

structure that results in a better performance.

5.3 Evaluating Constrained and Unit
Probabilities

We see something unexpected: the manually constructed network

𝐵𝑁ℎ𝑢𝑚−𝑐𝑜𝑛𝑠 , with the constrained values in the CPT, outperforms

all other networks when we consider all evidence valuations. A key

reason that this network corresponds to the ground truth so well, is

because it responds correctly to all inconsistent evidence valuations:

it then does not predict anything, in the sense that the posterior

probability, conditioned on an impossible evidence combination,

is undefined. It is unexpected that the 𝐵𝑁ℎ𝑢𝑚−𝑐𝑜𝑛𝑠 has a high per-

formance, because the probabilities in its CPTs are constrained.

This means that in theory, it would not be able to fit the frequency

data exactly. Hence, we would expect a lower performance and a

higher distance between 𝐵𝑁ℎ𝑢𝑚−𝑐𝑜𝑛𝑠 and frequency. However, the
constrained CPTs are the reason that this network performs so well.

Since this network has more 0’s in its CPTs than the unconstrained

network, it is able to exclude inconsistent evidence valuations.

This is not the case for all other networks. For the 𝐵𝑁ℎ𝑢𝑚−𝑢𝑛𝑖𝑡
network, these are 𝑣11, 𝑣14; for the algorithmic networks, these are

𝑣12, 𝑣15. The constrained manual network is able to correctly re-

spond to valuations 𝑣11, 𝑣14. It is able to do this because, in the

node stealing_1_0, the network 𝐵𝑁ℎ𝑢𝑚−𝑐𝑜𝑛𝑠 has 0 and 1 in its CPTs

where the 𝐵𝑁ℎ𝑢𝑚−𝑢𝑛𝑖𝑡 network has 0.0004 and 0.9995. The 0 in

the CPT of the constrained network results in an inconsistent evi-

dence valuation, and the network breaks down. For the algorithmic,

constrained network, this does not occur: In 𝐵𝑁𝑎𝑙𝑔−𝑐𝑜𝑛𝑠 , the CPT
contains 0.99 and 0.01, instead of 0 and 1. This allows for the prop-

agation of evidence that should be inconsistent, namely, evidence

that is inconsistent in the ground truth in the ABM.

Hence, BNs with constrained probabilities are sometimes bet-

ter when we set evidence in the network that is inconsistent or

mutually exclusive, given the domain model. This suggests that

when modelling evidence in a crime, we need to consider when

certain pieces of evidence are, or should be, mutually exclusive.

This qualitative information can then inform the parameters that a

modeller enters into a BN. This could guide elicitation.

5.4 Evaluating Bayesian Networks with ABMs
Our ABM approach allows us to investigate methods for creating

Bayesian Networks, such as the scenario idiom. We can investigate

this idiom based not just on features of structure as in [26], but

instead test its probabilistic performance over all evidence states.

Hence, we find that, given that we have the data available, the

network is able to correctly represent the ground truth for most

evidence valuations.

Since we have the ground truth, we find that one of the limiting

factors for reasoning with evidence with Bayesian Networks is the

availability of conclusive evidence. For example, for the evidence

valuations 𝑣5 = (1, 0, 0, 1), 𝑣6 = (1, 1, 0, 1) in the ground truth, there

is room for reasonable doubt: 𝐹 (𝑠𝑐𝑛1) = 0.9, so the suspect is

probably guilty, yet 𝐹 (𝑠𝑐𝑛2) = 0.1. If we consider the threshold for

reasonable doubt to be at 0.99, we should not convict. Hence, this

Bayesian Network, with these 4 evidence nodes, is in this case not

able to conclude whether a suspect is guilty: Uncertainty remains,

as it would in real life. When we consider this fact in a real-life

context, we should consider gathering more evidence, so that, given

a certain valuation over this evidence, we would be able to, on the

new evidence set, convict the suspect beyond a reasonable doubt.

The 0.99 threshold as a guideline could help us to know when we

have to look for new evidence, and when we have to stop looking.

One advantage of usingABMs in particular to ground the Bayesian

Network, compared to other methods of combining scenarios and

probabilities, is that ABMs require explicit and specific definitions

of the events in simulation that correspond to given variables in the

BN. In the real world, some proposition 𝑝 can have many different

interpretations, hence the meaning of the random variable 𝑅𝑉 (𝑝) is
difficult to define: what events are we measuring and when do they

count? However, in the ABM, we know exactly what proposition 𝑝

means, because it is whatever is triggered in the code, which means

that events are always explicitly defined [13]. Operationalising

some of the variables in the BN in the legal domain is difficult.

The ABM rests on many assumptions that do not reflect reality

and on features that cannot be empirically established. Hence, the

ABM is only suitable for creating a ground truth on which to test

modelling methods, not an accurate reflection of human behaviour.

Whether we can implement realistic criminal patterns of behaviour

in an ABM is an open question. For one, this depends on the scale

of the behaviour: Modelling complex and more realistic agent be-

haviour means modelling at a higher resolution in order to include

more events. This would, in turn, result in a Bayesian Network with

many more nodes. When we only look at the evaluation method,

we know that this method has a complexity of 2
𝑒
, where 𝑒 is the

number of evidence nodes; it is implausible that we would be able

to use it on very large networks that model granular behaviour.

In our setting, 𝑒 equals 4, resulting in 16 combinations, just about

manageable (cf. Figure 4). Hence it is unlikely that we could use

this approach to evaluate entire Bayesian Networks that are created

for real criminal cases, because these networks would become too

complex.

6 CONCLUSION AND FUTURE RESEARCH
We have shown how ABMs can provide a ground truth for the

evaluation of BN methods for modelling of evidence in crime cases,

over all evidence states. We saw that the manual networks con-

structed following [26] perform similarly to, and in some respects

better than, Bayesian Networks that are constructed from structure-

learning algorithms on an artificial ground truth as represented by

an agent-based simulation.
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However, our findings do not directly generalise to real-life crime

investigation settings, since our setting is relevantly different from

a realistic crime investigation. In particular: In real situations, we

do not know whether the scenarios we are considering are actually

mutually exclusive and exhaustive, which is a requirement of the

scenario idiom. We do not know whether all relevant evidence is

included in the network. We do not have full probabilistic infor-

mation. Even if we can construct the scenario-based BN, we might

not be able to get a good performance, because we do not know

the relevant probabilities for an evidence node, a hypothesis node,

or a scenario node. This final problem is especially the case for

elicitation of open-ended events that can be modeled in various

ways, such as motive and opportunity.

We have shown that BNs constructedwith the scenario idiom can

model a ground truth about crime scenarios, given sufficient access

to such a ground truth. We have used ABMs to evaluate the scenario

idiom in this work. In future work, we could use the ABM approach

to evaluate other methods for structuring networks or establishing

probabilities, such as the Opportunity Prior [9]. The Opportunity

Prior is one proposed method for establishing the prior probability

of the guilt of a defendant, as based on their proximity to the

crime scene. Since proximity to a crime scene can be modelled with

ABMs, we can investigate whether the Opportunity Prior provides

a sensible, responsible approach to establishing probabilities in a

BN with our method. Additional further research would be needed

to investigate the relation of posterior probabilities to reasonable

doubt and the stopping criterion, i.e., when to stop looking for

further evidence.
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