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Abstract. Widespread application of uninterpretable machine learning systems for 
sensitive purposes has spurred research into elucidating the decision making pro-
cess of these systems. These efforts have their background in many different disci-
plines, one of which is the feld of AI & law. In particular, recent works have ob-
served that machine learning training data can be interpreted as legal cases. Under 
this interpretation the formalism developed to study case law, called the theory of 
precedential constraint, can be used to analyze the way in which machine learning 
systems draw on training data – or should draw on them – to make decisions. These 
works predominantly stay on the theoretical level, hence in the present work the 
formalism is evaluated on a real world dataset. Through this analysis we identify 
a signifcant new concept which we call landmark cases, and use it to characterize 
the types of datasets that are more or less suitable to be described by the theory. 
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1. Introduction 

Much present-day research is focussed on making artifcial intelligence (AI) more trans-
parent. This is partially in response to mounting concerns that uninterpretable algorithms, 
so-called ‘black box’ AI, are making high-impact decisions, such as those with legal, so-
cial, or ethical consequences, in an unfair or irresponsible manner. A prominent example 
of such a system is the proprietary software Correctional Offender Management Profling 
for Alternative Sanctions (COMPAS), developed by Northepointe, Inc. for automatic risk 
assessment of various forms of recidivism, which has seen nationwide use in the United 
States [1]. Allegations by [1] that COMPAS racially discriminates in its decision making 
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process have led to a host of followup research and discussions. The COMPAS developers 
have published a response [2] and others have pointed to faws in the original analysis by 
ProPublica [3,4], but as [3] points out, regardless of the veracity of the allegations, the 
situation is symptomatic of the larger problem that the black box nature of these systems 
is obstructing independent assessment of bias. 

Many different kinds of solutions have been proposed, among which those to make 
the AI inherently more transparent [5], to formulate appropriate regulations [6], and to 
monitor the systems and measure bias [7]. The line on which the present work builds is 
that of post hoc interpretability methods, in which the black-box system is analysed after 
it has been trained and little to no access to the way it functions is assumed [8,9,10]. 

There are in turn many types of post hoc explanation methods. We will focus on 
a particular branch originating from the intersection of AI & law, based on case-based 
reasoning (CBR). The idea of a CBR explanation of a decision is to provide an analogy 
between it and relevant training examples. Proponents of this approach, such as [11], 
argue that explanations of this form are natural to humans as we are well acquainted with 
reasoning by analogy, are simple in form, and draw on real evidence in the sense that 
in most applications the training examples serve as a gold standard that the black box 
adheres to. Two recent examples of this approach from AI & law are [12] and [13]. 

The method of [13] is based on the theory of precedential constraint, introduced by 
Horty in [14], which is a formal framework developed to describe the a fortiori reasoning 
process underlying case law, i.e., to which extent does a body of precedents constrain a 
decision in a new case? The key idea of [13] behind applying this theory is that the train-
ing data used by most modern machine learning systems for binary classifcation, which 
consists of rows of data for a set of features together with a binary target variable, can 
be interpreted as the fact situations of legal cases together with their verdicts. Using this 
‘training examples as cases’ interpretation [13] uses the theory of precedential constraint 
as the theoretical foundation for building a post hoc explanation algorithm. 

In this work we test the degree to which training examples can be thought of as le-
gal cases, by instantiating the model of precedential constraint on the COMPAS dataset 
published in [1] and subsequently evaluating various statistics. This data is of interest 
to us for two reasons. First of all it concerns real world data rather than fctional data. 
Secondly, it is highly relevant to the concerns that drive explainable AI research, as auto-
mated decisions may be made on the basis of such data which have a big social impact. 
As such it is representative of the situations to which our explanation methods may be 
applied. For the evaluation we are interested in the consistency percentage, which can be 
thought of as the degree to which the data obeys the precedent set by other examples. 
Through this analysis we fnd that an important role is played by what we shall refer to as 
landmark cases; those cases that set a new precedent with respect to the other cases. We 
fnd that in the case of the COMPAS data, a relatively small number of these landmarks 
force the decision of almost all other cases. 

The rest of this work is structured as follows. We begin in Section 2 by summarising 
the theory of precedential constraint, to the extent that we will need it to do our analysis. 
In Section 3 we introduce the concept of a landmark case in this setting. Then, in Section 
4, we apply the theory to a selection of the COMPAS dataset, and some variations upon 
it. We discuss the results of this analysis in Section 5, and conclude with a summary and 
some closing thoughts in Section 6. 



2. The Formalism of Precedential Constraint 

In [14,15] a framework was introduced to formally describe the a fortiori reasoning 
process underlying case law. This is the type of law arising from the rules or principles 
used in deciding previous cases called precedents. Since courts must decide similarly in 
similar situations, we can say precedents constrain future decision making. This theory 
underlies the explanation method introduced in [13], and is what we will be evaluating 
on a recidivism dataset in Section 4. As such we summarise it here before proceeding. 

2.1. Dimensions, Preferences, and Cases 

In order to describe the fact situation of a case we use what are called dimensions in the 
AI & law literature, which are formally just partially ordered sets, i.e. a set together with 
a refexive, antisymmetric, and transitive relation. The idea is that we specify a situation 
as we would a point in space: by specifying its values, the coordinates, in each of the 
dimensions. The partial order of a dimension serves to indicate the preference which its 
elements have towards a particular outcome. 

Formally a dimension (d,⪯) is as a set d with a partial order ⪯ on d. The model 
assumes there is a set D of dimensions {(d1,⪯1), . . . , (dn,⪯n)}, and a fact situation is 
then a choice function on {d1, . . . ,dn}, i.e. a function F such that F(di) ∈ di for 1 ≤ i ≤ n. 
A fact situation can be decided for either of two outcomes, or, sides, 0 or 1. We will 
denote an unspecifed side with the variable s, and its opposite outcome by s̄ := 1 − s. A 
case is now a fact situation F together with an outcome s, written as F :s. When we want 
to refer to the value of a case c = F :s in a dimension d ∈ D we may write c(d) instead 
of F(d). A set of cases CB is called a case base. 

The order ⪯ of a dimension d specifes the relative preference the elements of d 
have towards a particular outcome. More specifcally, if v ≺ w for v,w ∈ d this means w 
prefers outcome 1 relative to v, and conversely v prefers outcome 0 relative to w. Usually 
we want to compare preference towards an arbitrary outcome s, so to do this we defne 
for any dimension (d,⪯) the notation ⪯s := ⪯ if s = 1 and ⪯s := ⪰ if s = 0. Note that 
by defnition we have ⪯s = ⪰s̄. 

Example 2.1. To give some intuition for these defnitions we consider a running ex-
ample of recidivism data. For the sake of continuity we will describe the dimensions 
as they appear in the data in Section 4. Convicts are described along three dimensions: 
age (dAge,⪯Age), the number of prior offenses (dPriors,⪯Priors), and sex (dSex,⪯Sex). 
Age and number of priors have the natural numbers as possible values, so dAge := N and 
dPriors := N. The values for sex are dSex := {M,F}. The outcome for this domain is a 
judgement of whether the person is at high (1) or low (0) risk of recidivism. The associ-
ated orders are as follows; for age it is the ‘greater-than’ order on the natural numbers; 
for the number of priors we take the ‘less-than’ order; and for sex we take F ≺Sex M: 

(dAge,⪯Age) := (N, ≥), 
(dPriors, ⪯Priors) := (N, ≤), 

(dSex,⪯Sex) := ({M,F},{(F,F), (M,M),(F, M)}). 

Beware of the confusion that can arise when the order is the opposite of what one would 
expect from the symbol, for instance we have 40 ⪯Age 20 because 40 ≥ 20. 



2.2. The Forcing Relation 

The principle of stare decisis states that similar cases must be decided similarly, and so 
the outcome of any particular case will set a precedent which future decision making 
should abide by. Put differently, precedent constrains future decision making. This is the 
phenomenon which the theory of precedential constraint tries to model, and it does so 
principally through the forcing relation, introduced in [15, Defnition 12]. 

Defnition 2.1. Given fact situations F and G we say G is at least as good as F for an 
outcome s, denoted F ⪯s G, if it is at least as good for s on every dimension d: 

F ⪯s G if and only if F(d) ⪯s G(d) for all d ∈ D. 

If moreover c = F :s is a previously decided case we say that c forces the decision of G 
for s. A case base CB forces the decision of G for s if it contains a case that does so. 

This relation models a fortiori reasoning: if a fact situation F has been decided for 
s and we encounter a new situation G ⪰s F , then G should also be decided for s. To 
illustrate this we consider our running example. Suppose that we have classifed a female, 
30 years of age, with a total of 5 priors, as being high-risk. Then, certainly, a 24 year-old 
male with 10 prior offenses should be classifed high-risk as well, according to the way 
we ordered these dimensions. 

Since the forcing relation is defned componentwise on the dimensions, and all the 
dimensions are partially ordered, the forcing relation is a partial order as well. 

2.3. Consistency 

In addition to making decisions about new fact situations on the basis of a case base and 
the forcing relation, we can consider the degree to which the cases within a case base are 
consistent or inconsistent with each other, relative to the forcing relation. For instance, if 
a case base CB contains two cases F :s, G : t, such that F ⪯s G we can have either s = t, 
in which case the decision of G for t is consistent with that of F for s, or we can have 
s ̸= t, in which case the decision of G for t is inconsistent with that of F for s. 

Defnition 2.2. A case F :s is said to be inconsistent with respect to a case base CB when 
deciding F for s̄ is forced by CB, and consistent otherwise. A case base is said to be 
consistent when all of its cases are, and inconsistent otherwise. 

The notion of consistency defned here is a strong criterion on case bases, and can 
be expected to fail for an actual case base. It is therefore more interesting to consider 
consistency of a case base as the relative frequency of consistent cases within it. 

3. Landmark Cases 

We now focus on a special kind of cases that we call landmark cases, a notion that to the 
best of our knowledge is new in the literature. The motivating idea is that when a case 
has its outcome forced by another, it is – by transitivity of the forcing relation – rendered 
superfuous as a precedent. As such the most salient cases are those that do not have their 
outcome forced by another case; these are what we call landmarks. 



Defnition 3.1. Cases in a case base CB which are minimal with respect to the forcing 
relation ⪯s are called landmark cases; those that are not are called ordinary. 

This formal notion is connected to the informal idea of a landmark case, in the sense 
that a formal landmark case does not have its decision forced by another precedent. In 
that sense it represents new legal ground, and the decision maker has used its discretion, 
going beyond what is decided by other cases. In the following, we show how our formal 
notion of landmark cases can be applied to the analysis of an actual data set of cases. 

Among landmarks we can further quantify impact by the number of cases of which 
they force the outcome. This leads us to defne two sets that are of particular interest. 

Defnition 3.2. Given a case base CB and an outcome s we defne the set Ls of cases 
with outcome s that force the outcome of the greatest number of other cases in CB: 

Ls := argmax |{G : t ∈ CB | F ⪯s G}|. (1) 
F : s ∈ CB 

When Ls is a singleton we write ls for its sole element. 

It follows from transitivity of the forcing relation that the cases in L0 and L1 are 
landmarks as in Defnition 3.1, but in general they will not contain all landmarks. 

4. Evaluating the Model on Recidivism Data 

As an application and evaluation of the theoretical framework we use the COMPAS re-
cidivism dataset from [1], which contains information on convicts and whether they re-
cidivated within two years after being arrested for an initial charge. The idea behind 
our evaluation is as follows. We frst preprocess the data to extract the features that will 
correspond to dimensions in our formal sense. Then, we determine the orders for these 
dimensions by ftting a logistic regression model on the data and looking at the signs of 
the resulting coeffcients; positive means the order for that dimension is the usual one 
on the number line; negative means the order is the reverse of what it usually is. Having 
assigned the dimension orders we look at the resulting consistency percentages of the 
COMPAS data and two variations on it, as well as information on the landmark cases. 

Our investigation will be similar to the one in [13, Section 6]. However there are 
two important differences. Firstly, we use real world data which is representative of the 
intended domain of the explanation methods that we wish to develop. In contrast, the 
data used in [13] appears to be largely synthetic; the mushroom dataset [16] is listed as 
containing hypothetical samples of mushrooms; the churn dataset [17] is described as 
data about a fctional telecommunications company; and the admission dataset [18] had 
values “entered manually with no specifc pattern. It was random assignment.”2 Sec-
ondly, we use logistic regression coeffcients instead of Pearson correlation coeffcients 
in order to determine the dimension orders. These different approaches can result in very 
different orders, and we will argue why logistic regression seems to be the better choice. 

2See the comments of the admission dataset’s author at https://archive.fo/yIvUN. 

https://archive.fo/yIvUN


Table 1. An overview of the COMPAS features of interest. A comprehensive overview of the meaning of all 
the features is lacking in [1], hence this is only our best attempt at an interpretation. 

Feature Description Order 

Age 

Sex 

ChargeDegree 

DaysInJail 

DaysInCustody 

Priors 

Label 

Age of the convict at the time of the COMPAS assessment. 
Gender as specifed when the convict was arrested, can take 
on the values ‘Male’ or ‘Female’. 
Indicates whether the charge that led to the assessment was a 
felony (F) or a misdemeanor (M). 
The number of days the convict spend in jail for the crime, 
computed by comparing (and rounding down) the number of 
days between the c jail in and c jail out felds. 
The number of days the convict spend in custody, computed 
in the same way as DaysInJail but with the c custody in 
and c custody out felds. 
The number of offenses committed prior to the one that led 
to the COMPAS assessment. This is computed as the sum of 
the juv fel count, juv misd count, juv other count, 
and priors count felds in the original dataset. 
The label, indicating whether there was “a criminal offense 
that resulted in a jail booking and took place after the crime 
for which the person was COMPAS scored . . . within two years 
after the frst” [1]. 

Descending. 
Female ≺ Male. 

M ≺ F. 

Ascending. 

Ascending. 

Ascending. 

N/A. 

4.1. Data Preprocessing 

Before analyzing the COMPAS data we preprocess it. In particular, we discard features 
that are not of interest, delete rows that do not have values for the remaining features, 
create new features on the basis of old ones, and fnally delete duplicate rows. Below 
follows a more detailed description of the steps taken. 

First we discard features that are not of interest. For instance, many of the features in 
the original dataset pertain to the COMPAS system, but presently we are only interested in 
the data describing the convicts and whether they recidivated or not, not in the COMPAS 

system itself. Some features are of interest to us but are not in the right format. For 
instance, the two columns c jail in and c jail out together tell us how many days 
the convict spend in prison, but are represented in a date format, so we replace them 
with a new DaysInJail feature holding the number of days spend in prison. A complete 
overview of the resulting features and their meaning can be found in Table 1. 

Lastly we remove any rows that do not have values for any of the relevant features, 
or which occur more than once in the data. This last step is necessary for our landmark 
analysis; a case c may be a landmark, but if there is a second case d with exactly the same 
fact situation and outcome as c but not equal to c, then neither c nor d are landmarks. 

We are then left with a total of 5873 rows and we will henceforth refer to that set 
when we say ‘COMPAS dataset’. In addition we will look at two variations on that set. 
The frst we will call the ‘small COMPAS dataset’, which is obtained from the COMPAS 

dataset by omitting all features except Age and Priors, and then deleting all duplicates. 
The second we call the ‘CORELS dataset’, and is obtained by changing the labels in the 
small COMPAS dataset according to the recidivism prediction rule found by CORELS as 
described in [19, Figure 1]. 



4.2. Determining the Preference Orders 

The main diffculty with making a precedential constraint model for a particular domain 
lies in determining the orders for the dimensions. For instance, in our example with re-
cidivism data we have an age dimension, and to determine its respective order is to say 
whether the elderly are more likely to recidivate than the young, or vice versa. Knowl-
edge engineering techniques and statistical methods can be used for this purpose. For 
instance, for the age dimension, much has been written on the interplay between age 
and recidivism, the conclusion of which is summarized by the adage that “people age 
out of crime,” meaning that as people age they become decreasingly likely to recidivate. 
Another option is to look at statistical trends in the data, for instance, by considering the 
sign of the Pearson correlation between age and recidivism. If it is positive, we say that 
likelihood of recidivism increases with age, and if it is negative, we say it decreases. 

For our evaluation we apply the statistical method. We will use the same underlying 
idea as used by [13], which is to use a function c that associates each numerical feature x 
with a coeffcient c(x) indicating the degree to which the values of x favour outcome 1. If 
c(x) is positive we order the values of x with the usual ‘less-than’ order ≤ on the number 
line, and if it is negative we order it using the ‘greater-than’ order ≥; so more precisely 
⪯ := ≤ if c(x) ≥ 0 and ⪯ := ≥ if c(x) < 0. 

If x is categorical we cannot apply c directly so we use dummy variables. More 
specifcally, if x is a categorical feature which can take the possible (unordered) values 
v1, . . . ,vn, then we introduce for each value vi a dummy variable dvi which is a binary 
feature indicating whether x = vi. Then we defne vi ⪯ v j if and only if c(dvi ) ≤ c(dv j ). 

For the present work we defne c using logistic regression. Supposing we have fea-
tures x1, . . . ,xn the logistic model has parameters β0, . . . ,βn, and models the probability 
that a given sample belongs to class 1 by the formula 

1 
p(x1, . . . ,xn) = . (2)

1 + e−(β0+∑ βixi) 

We fnd appropriate values for the β parameters using the scikit-learn implementation of 
a maximum likelihood estimation with default parameters [20], and after this is done we 
can simply put c(xi) := βi. The resulting orders on the features are listed in Table 1. 

4.3. The Pearson Correlation of Dummy Variables 

In [13] the function c is defned using the Pearson correlation. However this approach 
seems to work poorly with categorical features, and we will now look at why this is. This 
will involve some mathematical details that are not relevant to the further analysis of the 
COMPAS data, so the reader may skip ahead to Section 4.4. 

Given n samples (x1,y1), . . . ,(xn,yn) of binary variables x and y, the estimate of the 
Pearson correlation r(x,y) between x and y is given by 

n1xy − 1x1yr(x,y) = p p , (3) 
n1x − 12 n1y − 12 

x y 

where 1x is the number of times x takes value 1 in the samples, 1y the number of times y 
takes value 1, and 1xy the number of times x and y both take value 1. 



n/2 n

1x

0

n/4

n/2

1xy

−1

0

1

r(x,y)

Figure 1. A plot of Eq. (3), the Pearson correlation coeffcient for binary vectors x and y, for a fxed value of 
n := 400, and with 1y := n/2. Note the constraints that 1x + 1y − n ≤ 1xy ≤ 1x. 

In order to get a sense of how this function behaves we plot its values for a fxed 
n and with 1y := n/2, see Figure 1. This plot shows that when 1x is relatively low, or 
relatively high, the range of r(x,y) (as a function of 1xy) is not [−1,1] but some restricted p
interval near 0. More precisely, writing s(x) := n1x − 12 

x , we can calculate that for 
0 ≤ 1x ≤ n/2 the range of r(x, y) is [−1x/s(x), 1x/s(x)] ≈ [−1x/(n/2),1x/(n/2)]. This is 
undesirable when x is a dummy variable, as then 1x simply indicates the number of times 
the original categorical feature took the value which the dummy variable represents, i.e. 
the number of samples we have of that class. 

Example 4.1. Let us consider an example to illustrate this point. The original COMPAS 
data includes a Race variable, with possible values including ‘Asian’ and ‘Caucasian’. 
The value Asian occurs much less often than Caucasian (0.4% against 34%), meaning 
that the value of 1x for the dummy variable for Race = Asian is much lower than that for 
the Race = Caucasian variable. As a result, its Pearson correlation must land in a very 
small interval around 0, while the one for Caucasian has almost the full range available. 
Indeed, the order for the Race dimension on the basis of the Pearson correlation method 
puts Caucasian in the last position (i.e. comparatively least prone to recidivate), and 
Asian a little over halfway in the order. To compare this with a measure that does not 
place such great importance on the number of samples that we have of each race, we 
consider the relative frequency 1xy/1x of recidivism within that class. The picture is now 
the opposite of what we see with Pearson correlation, with Asian ending lowest in the 
ranking (at 28% prevalence) and Caucasian a little over halfway (at 40% prevalence). 

As mentioned we opt to use logistic regression rather than the Pearson correlation or 
some other function f (x,y) such as the relative frequency 1xy/1x. There are two reasons 
for this. Firstly, logistic regression does not consider the vectors x and y in isolation but 
also takes into account the other variables in the data. Secondly, this method of deter-
mining the orders comes with a decision boundary which (if the dimensionality is low 
enough) can be visualized, and we will make use of this later on. 
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Table 2. On the left is a summary of the forcing relation on the COMPAS dataset, and the impact of the 
landmarks l0 and l1 defned in Defnition 3.2. On the right is a concrete description of l0 and l1. Notice that 
they are archetypal examples of the opposite class that they belong to; l0 is a young male with many priors, yet 
did not recidivate; while l1 is an older female with no priors, but did recidivate. 

d l0(d) l1(d)
Label 0 Label 1 Total 

Consistent 
Inconsistent 
Forced by l0 

Forced by l1 

Landmarks 

76 397 473 
2783 2617 5400 
2271 1765 4036 
2296 2700 4969 

70 18 88 

Age 23 49 
Sex Male Female 
ChargeDegree F M 
DaysInJail 70 0 
DaysInCustody 70 0 
Priors 11 0 

4.4. Results 

Having selected the dimensions, assigned their orders, and constructed the case base, we 
can now evaluate various statistics. Keep in mind that all the results that follow are stated 
relative to the orders that we have assigned; different orders result in different statistics. 

4.4.1. On the COMPAS Data 

We start by looking at the consistency percentage, i.e. the relative frequency of cases 
which do not have their outcome disputed by the forcing relation on the case base. We 
fnd the COMPAS dataset is only 8% consistent, see Table 2. This low percentage is caused 
by a small number of landmarks, outliers in the data that one would expect to have the 
opposite label of the one they received. Of those landmarks the l0 and l1 cases defned by 
Defnition 3.2 are most impactful. They are shown in Table 2. In Figure 2 an overview of 
the collective impact of the landmarks is shown. 
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Figure 2. A visualization of the impact of the landmarks in the COMPAS data. Each vertical bar represents one 
landmark and shows the number of cases of which it forces the decision. The green area depicts the portion of 
those cases that have the same outcome as that landmark, and the red area the portion of cases which do not. 
Note that the leftmost bars are – by defnition – the l0 and l1 cases of Defnition 3.2, respectively. 
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Figure 3. An illustration of the small COMPAS dataset and its l0 and l1 landmarks (Defnition 3.2), indicated 
by the enlarged circles. The green dots indicate cases with outcome 0 and the red dots those with outcome 1. 
The dotted line is the decision boundary associated with the logistic regression coeffcients. 

Remark 4.1. The notions of landmark and outlier, while similar, are not the same; a 
landmark need not be an outlier (cf. Figure 4) and an outlier need not be a landmark (for 
instance when there is an outlier even further across the best ft decision boundary). 

4.4.2. On the Small COMPAS Data 

High dimensional data is diffcult to visualize, so in order to get a better view of these 
results we repeat our analysis on a subset of the data with only the two most predictive 
variables – Age and Priors. We dub the resulting data the small COMPAS dataset. The 
resulting order on the variables remains the same as in the larger version. This lets us 
visualize the data, the decision surface of our logistic model, and the landmarks l0 and 
l1, see Figure 3 for the resulting plot. The l0 and l1 cases highlight the cause for the 
inconsistency: there are many cases that lie on the opposite side of the decision boundary 
for their class, and so their ‘forcing cones’ contain many cases of the opposite class. 

4.5. On the CORELS Data 

The preceding results have shown that the model of precedential constraint is a poor ft 
on the COMPAS data. This makes sense intuitively, because when someone of a certain 
age and with some number of priors recidivates, we cannot expect this to set a precedent 
which future convicts will abide by. For example, when an elderly lady with no prior of-
fenses recidivates, this will have very little infuence on the behaviour of convicts there-
after. In other words, the process underlying recidivism does not respect precedence. 

This type of reasoning should be more suited to our running example from Section 
2 in which we judge risk of recidivism. When a person is assigning low or high risk of 
recidivism, we would expect this assignment to obey the a fortiori principle, if it agrees 
with our notion of what makes someone more or less likely to recidivate. 
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Figure 4. The small COMPAS dataset from Section 4.4.2, but with its labels replaced according to the CORELS 

rule shown in Eq. (4). The data is now better linearly separable. As a result the landmarks are close to the 
decision boundary and do not cause inconsistency. 

To test this hypothesis we change the labels of the small COMPAS data according to 
a sensible risk assessment rule, listed in [19, Figure 1]. It was mined from the original 
COMPAS data using the Certifably Optimal Rule Lists (CORELS) algorithm, introduced 
in [19]. This rule is listed below, with the only modifcation being that we omit the 
clause that x.Sex = Male from the frst case distinction, since we have omitted the Sex 
dimension for the sake of visualizability:  

1 if 18 ≤ x.Age ≤ 20,1 if 21 ≤ x.Age ≤ 23 and 2 ≤ x.Priors ≤ 3, 
x.Label := (4)

1 if 3 < x.Priors,
0 otherwise. 

Changing all labels according to this rule, and then removing duplicates, results in a new 
dataset that will be referred to as the CORELS data. 

Now we can again ft our model to this data and visualize the l0 and l1 landmarks 
of Defnition 3.2, along with the decision boundary, see Figure 4 for the resulting plot. 
As expected this rule does satisfy the a fortiori principle, and as a result the consistency 
is very high (in fact the dataset is fully consistent). The l0 and l1 landmarks give a good 
sense of where the decision boundary is located. 

5. Discussion 

In all, these results suggest that we can think of the phenomenon of inconsistency in 
two ways. The frst is the mathematical view that the theory of precedential constraint 



contains a linearity assumption, and that the consistency percentage is a measure of the 
degree to which the data is linearly separable. Of each class, the landmarks are then 
those cases which lie furthest in the direction of the best ft linear decision boundary, and 
the farther they cross it the more inconsistency they cause. The second is the semantic 
view that it tells us to what degree the labelling process relies on a fortiori reasoning, or 
the degree to which we can expect precedent to be obeyed. If this is the case, then the 
landmarks are those cases that most reveal the nature of the underlying labelling process. 

Our results suggest that the presence of a small number of landmarks that force the 
decision of the rest is what we can expect of an average dataset, because in general a 
partial order will have far fewer minimal elements than that it will have elements in total. 
Two factors that can infuence this is the number of dimensions, and the way in which 
we order them. For instance if we have a dimension with more than two values and we 
order them so that they are all incomparable, it will immediately become impossible for 
any case to force the outcome of another, and so every case becomes a landmark. 

6. Conclusion 

In the recent work [13] an explainable AI method was developed on the basis of the theory 
of precedential constraint. In the present work we evaluated how suitable this theory is to 
model the kind of data we might encounter in cases that require explainability methods. 
As an example of such a situation we chose the COMPAS data from [1]. We ftted the 
model on this data and some variations upon it, and analysed the results in the sense that 
we measured their consistency percentages, and looked at the structure of the forcing 
relation on cases. Through this analysis, and the use of the concept of landmark cases, we 
extrapolate from these results an informal characterization of the type of datasets that are 
ft to be described by the theory of precedential constraint. This characterization can be 
viewed mathematically, as consistency indicating the degree of linear separability of the 
data; or viewed semantically, as consistency indicating the degree to which the process 
generating the data respects precedence, or depends on a fortiori type reasoning. 

These results raise several questions which may be addressed in future research. 
Firstly, there is the question to what degree our results are relative to the method we used 
to determine the dimension orders. In the framework as outlined by [15] these orders may 
be partial but in our case we only use linear orders. What are the situations in which we 
might want to make elements of a dimension incomparable, and how would the presence 
of incomparable pairs affect our fndings regarding consistency? Closely related is a 
second question regarding the method of determining these orders. In this work we used 
logistic regression, but other ways of doing this are conceivable. What are the differences 
between these approaches, and what should the measure of success be? Especially in 
a setting where the theory of precedential constraint underlies an explanation method, 
as is the case for the method developed in [13], it might be better to use the black box 
that is under examination to determine these orders, because in that case we are not so 
interested in what we think the orders should be but what the black box thinks they should 
be. Thirdly, since the theory of precedent is in some sense itself a data-driven model, we 
can ask how it compares to other such models. The model on the CORELS data, shown 
in Figure 4, suggests it functions as a type of decision tree, but an obvious difference is 
that it is not always capable of classifying an arbitrary unseen case, and that it may give 
conficting classifcations (even if the case base is consistent). 
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