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Abstract. Qualitative and quantitative systems to deal with uncer-
tainty coexist. Bayesian networks are a well known tool in probabilistic
reasoning. For non-statistical experts, however, Bayesian networks may
be hard to interpret. Especially since the inner workings of Bayesian
networks are complicated they may appear as black box models. Ar-
gumentation approaches, on the contrary, emphasise the derivation of
results. Argumentation models, however, have notorious difficulty dealing
with probabilities. In this paper we formalise a two-phase method to
extract probabilistically supported arguments from a Bayesian network.
First, from a BN we construct a support graph, and, second, given a
set of observations we build arguments from that support graph. Such
arguments can facilitate the correct interpretation and explanation of the
evidence modelled in the Bayesian network.
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1 Introduction

Reasoning about probabilities and statistics, and independence in particular, is a
difficult task that easily leads to reasoning errors and miscommunication. For
instance in the legal or medical domain the consequences of reasoning errors can
be severe. Bayesian networks, which model probability distributions, have found
a number of applications in these domains (see [9] for an overview). However,
the interpretation of BNs is a difficult task, especially for domain experts who
are not trained in probabilistic reasoning. Argumentation is a well studied topic
in the field of artificial intelligence (see chapter 11 of [12] for an overview).
Argumentation theory provides models that describe how conclusions can be
justified. These models closely follow the same reasoning patters present in
human reasoning. This makes argumentation an intuitive and versatile model
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for common sense reasoning tasks. This justifies a scientific interest in models of
argumentation that incorporate probabilities. In this paper we formalise a new
method to extract arguments from a BN, in which we first extract an intermediate
support structure that guides the argument construction process. This results in
numerically backed arguments based on probabilistic information modelled in a
BN. We apply our method to a legal example but the approach does not depend
on this domain and can also be applied to other fields where BNs are used.

In previous work [10] we introduced the notions of probabilistic rules and
arguments and an algorithm to extract those from a BN. However, exhaustively
enumerating every possible probabilistic rule and argument is computationally
infeasible and also not necessary because many of the enumerated antecedents
will never be met, and many arguments constructed in this way are superfluous
because they argue for irrelevant conclusions. In a report [11] we proposed a new
method that solves these issues. We proposed to split the process of argument
generation into two phases: from the BN we construct a support graph at first,
from which argument can be generated in a second phase. We introduced an
algorithm for the first phase but the second phase has only been described
informally. In the current paper we show a number of properties of the support
graph formalisms and we fully formalise the argument generation phase.

In Section 2 we will present backgrounds on argumentation and BNs. In
Section 3 we formally define and discuss support graphs. Using the notion of a
support graph we present a translation to arguments in Section 4. One of the
advantages of this method is that the support graph presents a dynamic model
of evidence because when observations are added to the BN it does not need to
be recomputed. Only the resulting argumentation changes.

2 Preliminaries

2.1 Argumentation

In argumentation theory, one possibility to deal with uncertainty is the use of
defeasible inferences. A defeasible (as opposed to strict) rule can have exceptions.
In a defeasible rule the antecedents do not conclusively imply the consequence
but rather create a presumptive belief in it. Using (possibly defeasible) rules,
arguments can be constructed. Figure 1, for instance, shows (on the left) an
argument graph with a number of arguments connected by two rules. From a
psychological report it is derived that the suspect had a motive and together
with a DNA match this is reason to believe that the suspect committed the
crime. Different formalisation of such systems exist [5,7,8,14]. In this paper we
will construct an argumentation system where the rules follow from the BN.
Since a BN captures probabilistic dependencies the inferences will be defeasible.
Figure 1 also shows a possible counter-argument. Undercutting and rebutting
attacks between arguments with defeasible rules have been distinguished [7]. A
rebuttal attacks the conclusion of an argument, whereas an undercutter directly
attacks the inference (as in this example). An undercutter exploits the fact that
a rule is not strict by posing one of the exceptional circumstances under which
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it does not apply. Using rebuttals and undercutters, counter-arguments can be
formulated. Arguments can be compared on their strengths to see which attacks
succeed as defeats. Then Dung’s theory of abstract argumentation [1] can be
used to evaluate the acceptability status of arguments.

Crime took place

Suspect had motive DNA matches

Psychologists confirms

Suspect has identical twin

Fig. 1. An example of complex arguments and an undercutting counter-argument.

2.2 Bayesian networks

A Bayesian network (BN) contains a directed acyclic graph (DAG) in which nodes
correspond to stochastic variables. Variables have a number of mutually exclusive
and collectively exhaustive outcomes: upon observing the variable, exactly one of
the outcomes will become true. Throughout this paper we will consider variables
to be binary for simplicity.

Definition 1 (Bayesian network). A Bayesian network is a pair 〈G,P 〉 where
G is a directed acyclic graph (V,E), with variables V as the set of nodes and
edges E, and P is a probability function which specifies for every variable Vi the
probability of its outcomes conditioned on its parents Par(Vi) in the graph.

We will use Cld(Vi) and Par(Vi) to denote the sets of children and parents
respectively of a variable Vi in a graph. Cld(V′) (and Par(V′)) will likewise
denote the union of the children (and parents respectively) of variables in a set
V′ ⊆ V.

Given a BN, observations can be entered by instantiating variables; this update
is then propagated through the network, which yields a posterior probability
distribution on all other variables, conditioned on those observations. A BN
models a joint probability distribution with independences among its variables
implied by d-separation in the DAG [6].

Definition 2 (d-separation). A trail in a DAG is a simple path in the un-
derlying undirected graph. A variable is a head-to-head node with respect to a
particular trail iff it has two incoming edges on that trail. A variable on a trail
blocks that trail iff either (1) it is an unobserved head-to-head node without ob-
served descendants, or (2) it is not a head-to-head on that trail and it is observed.
A trail is active iff none of its variables are blocking it. Subsets of variables VA
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and VB are d-separated by a subset of variables VC iff there are no active trails
from any variable in VA to any variable in VB given observations for VC .

If, in a given BN model, VA and VB are d-separated by VC , then VA and VB

are probabilistically independent given VC . An example of a BN is shown in
Figure 2. This example concerns a criminal case with five variables describing
how the occurrence of the crime correlates with a psychological report and a
DNA matching report. The variables Motive and Twin model the presence of a
criminal motive and the existence of an identical twin. The latter can result in a
false positive in a DNA matching test. In the following we will also require the
notions of a Markov blanket and Markov equivalence [13].

Definition 3 (Markov blanket). Given a BN graph, the Markov blanket
MB(Vi) of a variable Vi is the set Cld(Vi) ∪ Par(Vi) ∪ Par(Cld(Vi)). I.e., the
parents, children and parents of children of Vi.

Definition 4 (Markov equivalence). Given a BN graph, an immorality is
a tuple 〈Va, Vc, Vb〉 of variables such that there are directed edges Va Vc and
Vb Vc in the BN graph but no edges Va Vb or Vb Va. Given two BN
graphs, they are Markov equivalent if and only if they have the same underlying
undirected graph, and they have the same set of immoralities.

Psych report

Motive true false

true 0.6 0.1

false 0.4 0.9

Crime

Motive true false

true 0.5 0.01

false 0.5 0.99

Twin

true 0.01

false 0.99

Motive

true 0.05

false 0.95

DNA match

Crime true false

Twin true false true false

true 1.0 1.0 1.0 10−6

false 0.0 0.0 0.0 1− 10−6

Fig. 2. A small BN concerning a criminal case. The conditional probability distributions
are shown as tables inside the nodes of the graph.

3 Support graphs

We will split the construction of arguments for explaining a BN in two steps. We
first construct a support graph from a BN, and subsequently establish arguments
from the support graph. In this section we define the support graph and its
construction.
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Given a BN and a variable of interest V ?, the support graph is a template for
generating explanatory arguments. As such, it does not depend on observations
of variables but rather models the possible structure of arguments for a particular
variable of interest. This means that it can be used to construct an argument
for any variable of our choice given any set of evidence, as we will show in the
next section. When new evidence becomes available the same support graph can
be reused. This means that the support graph should be able to capture the
dynamics in d-separation caused by different observations. To enable this, each
node in the support graph (which we will refer to as support nodes from here
on) will be labelled with a forbidden set of variables F . Moreover, since one BN
variable can be represented more than once in a support graph, a function V is
used to assign a variable to every support node. The support graph can now be
constructed recursively. Initially a single support node N? is created for which
V(N?) = V ? and F(N?) = {V ?}.

Definition 5 (Support graph). Given a BN with graph G = (V,E) and a
variable of interest V ?, a support graph is a tuple 〈G,V,F〉 where G is a directed
graph (N,L), consisting of nodes N and edges L, V : N 7→ V assigns variables
to nodes, and F : N 7→ P(V) assigns sets of variables to each node, such that
G is the smallest graph containing the node N? (for which V(N?) = V ? and
F(N?) = {V ?}) closed under the following expansion operation:

Whenever possible, a supporter Nj with variable V(Nj) = Vj is added as
a parent to a node Ni (with Vi = V(Ni)) iff Vj ∈ MB(Vi) \ F(Ni). The
forbidden set F(Nj) of the new support node is

– F(Ni) ∪ {Vj} if Vj is a parent of Vi

– F(Ni) ∪ {Vj} ∪ {Vk ∈ Par(Vj)|〈Vi, Vj , Vk〉is an immorality}
if Vj is a child of Vi

– F(Nj) ∪ {Vj} ∪ (Cld(Vi) ∩ Cld(Vj)) otherwise

If a support node with this forbidden set and the same V(Nj) already
exists, that node is added as the parent of Ni, otherwise a supporting
node Nj is created.

To be able to represent d-separation correctly the forbidden set of variables
assigns to every support node a set of variables that cannot be used in further
support for that node. This forbidden set is inherited by supporters such that
ancestors in the support graph cannot use variables from F either. Figure 3
shows the three cases of the forbidden set definition. The forbidden set of a
new supporter Ni for variable Vi always includes the variable Vi itself which
prevents circular reasoning. In a BN, parents of a common child often exhibit
intercausal-interactions (such as explaining away) which means that the effect of
one parent on the other is not the same as the combined effect from the parent
to the child and then to the other parent. To support a variable Vi with one of
its children and then support this child by a parent would incorrectly chain the
inferences through a head-to-head node even though an intercausal-interaction
is possible. Therefore we forbid the latter step by including any other parents
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that constitute immoralities in the second case. A reasoning step that uses the
inference according to the intercausal-interaction is allowed by the third case.

Vj

Vi

first case

Vj F = F ′ ∪ {Vj}

Vi F ′

Vj

ViP1 P2

second case

Vj F = F ′ ∪ {Vj , P1, P2, . . .}

Vi F ′

Vj Vi

C1 C2

third case

Vj F = F ′ ∪ {Vj , C1, . . .}

Vi F ′

Fig. 3. Visual representation of the three cases in Definition 5. A support node for
variable Vi can obtain support in three different ways from a variable Vj , depending on
its graphical relation to Vi.

Now let us consider the example BN from Figure 2 and take Crime as the
variable of interest. The initial support graph contains just one node with this
variable and the forbidden set {Crime}. As can be seen in Figure 4, all of the
three cases for F apply exactly once in this example. The Crime node can be
supported by one parent (Motive), one child (DNA match) and one parent of
a child (Twin). In the first case the forbidden set leaves room to support the
Motive node even further by adding a node for the Psych report variable. This
graph represents all possible dependencies in the BN model, where the actual
dependencies will depend on the instantiation of evidence.

Property 1. Given a BN with G = (V,E), the constructed support graph contains
O(|V| ∗ 2|V|) nodes.

Proof (sketch). Variables can occur multiple times in the support graph but
never with the same F sets (see the definition). This set contains subsets of other
variables and therefore 2|V| is a strict upper bound on the number of times any
variable can occur in the support graph. The total number of support nodes is
therefore limited to |V| ∗ 2|V|. ut

Property 2. In a given BN with a singly connected graph G = (V,E), every
variable occurs exactly once in the support graph and the size of the support
graph is |V|.
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Crime

{Crime}

Motive{
Crime

Motive

} Twin
Crime

Twin

DNA match


DNA match
Crime

DNA match

Twin


Psych report

Crime

Motive

Psych report


Fig. 4. The support graph corresponding to the example in Figure 2. For every node
Ni we have shown the variable name V(Ni) togehter with the forbidden set F(Ni).

Proof (sketch). A variable can in theory occur multiple times in the support
graph, but this only happens when the graph is loopy (multiply connected). ut

Theorem 1. Given two Markov equivalent BN graphs G and G′, and a variable
of interest V ?, the two resulting support graphs are identical.

Proof (sketch). Consider the BN graph G and the corresponding support graph.
In a Markov equivalent graph G′ an arbitrary number of edges may be reversed
but not if this would create or remove immoralities. Following the three possible
support steps we see that every supporter follows an edge from the skeleton
(which stays the same) or an immorality (which also stays the same). What
remains to be shown is that the forbidden sets will also be equal. Let us consider
the three cases of the F update from Definition 5 (see also Figure 3). Suppose
that in the support graph of G, Ni for variable Vi is supporting Nj for variable
Vj :

– In the first case, reversal of the edge between Vi and Vj would change this to
the second case in which variables Vk with an immorality 〈Vi, Vj , Vk〉 would
be added to F . However, since no immoralities are created those variables
either do not exist, or the reversal is not allowed by the Markov equivalence.

– In the second case, reversal of any of the incoming edges of Vj is not allowed
if Vj is involved in an immorality 〈Vi, Vj , 〉. If that is the case, reversal is
allowed and we end up in the first case but the forbidden set will be exactly
the same.

– In the third case, there is no immorality between Vi and Vj through any
of the shared children because if there were, a direct edge exists and either
of the former cases would have taken precedence. None of these edges may
therefore be reversed in G′.

ut
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What this theorem shows is that Markov equivalent models are mapped to the
same support graph, which means that they will receive the same argumentative
explanation. This takes one of the confusing aspects of BNs away, which is that
the directions of edges do not have a clear intuitive interpretation.

4 Argument construction

In previous work we have already shown a method to identify arguments in a
BN setting and how they can be enumerated exhaustively [10]. A disadvantage
of the exhaustive enumeration of probabilistic rules and rule combinations is the
combinatorial explosion of possibilities, even for realistically sized models. Using
a support graph can reduce the number of arguments that need to be enumerated
because only rules relevant to the conclusion of the argument are considered.

Definition 6 (Bayesian argument). An argument A on the basis of a BN, a
set of observations O, and the corresponding support graph 〈G = (N,L),V,F〉,
is one of the following:

– 〈N, o〉 such that (V(N) = o) ∈ O, for which Obs(A) = {N = o} or
– 〈N1, o1〉, . . . , 〈Nn, on〉 ⇒ 〈N, o〉 such that N1, . . . , Nn are parents of N in the

support graph, 〈N1, o1〉 through 〈Nn, on〉 are arguments, and o is the most
probable outcome of V(N) given the observations Obs(A), in which Obs(A)
is the union of Obs(B) over subarguments B.

In this definition 〈N1, o1〉 through 〈Nn, on〉 are the immediate subarguments of
〈N1, o1〉, . . . , 〈Nn, on〉 ⇒ 〈N, o〉.

Argument attack arises when two arguments assign outcomes to the same variable.
We might be tempted to prefer the argument with the highest probability but
that could lead to mistakes. For instance, when A, B and C collectively support
a conclusion, situations can exist where the highest probability of that conclusion
occurs when B is left out. It is, however, usually not acceptable to ignore evidence.
The following definition meets this criterion:

Definition 7 (superseding). An argument A supersedes another argument B
iff Obs(A) ⊇ Obs(B).

Indeed, we prefer one argument over another iff it includes a superset of evi-
dence. This resembles Pollock’s concept of subproperty defeat of the statistical
syllogism [7]. Superseding can be seen as a special case of undercutting, so attack
and defeat follow naturally:

Definition 8 (Undercutting attack and defeat). An argument A undercuts
another argument B iff it supersedes B or one of the sub-arguments of B. An
undercutting attack always succeeds and therefore A also defeats B.

It can be shown that this instantiates a special case of the ASPIC+ [5] model of
argumentation but a proof of that is omitted for brevity. In this special cases
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rebuttal and undermining are redundant due to the fact that for every rebuttal
there is also an undercutter resolving the issue.

An interesting property of this approach is that conflicts between observa-
tions are resolved in the probabilistic setting within the argument and that the
resolution is mirrored by the defeat relation of the extracted arguments, rather
than decided by it. This means that the resulting argumentation system is rather
simple which is ideal for a BN explanation method.

If we apply this system to the support graph from our example BN with the
observations that Psych report=true and DNA match=true, we obtain (among
others) the arguments shown in Figure 5. The argument on the right is in fact
the formal version of the argument that we already showed in Figure 1. The
undercutter from that figure was not extracted because no evidence for a twin
was present in the set of observations.

〈Crime,true〉

〈Motive,true〉 〈DNA match,true〉

〈Psych report,true〉

〈Crime,true〉

〈Motive,true〉

〈Psych report,true〉

Fig. 5. Arguments resulting from our running example. The argument on the left is
superseded by the one on the right. For readability we have only shown conclusions
inside the nodes.

Property 3. Given a BN, a variable of interest, the resulting support graph and
a set of observations, for every node in the support graph either no argument for
this node exists at all, or exactly one of the arguments that exists supersedes all
other arguments for the same node without itself being superseded.

Proof (sketch). Suppose no such un-superseded argument exists, then there must
be two arguments A and B that supersede each other, i.e. Obs(A) \Obs(B) 6= ∅
and Obs(B) \Obs(A) 6= ∅. However, in that case an argument C combining the
immediate subarguments of A and B also exists that strictly supersedes both A
and B. ut

Informally, the argument that includes all possible supporters that have ancestors
in O will supersede any argument that includes fewer supporters. Since this
holds for every node, there is in this argumentation system one unique tree
in which every argument is supported by the maximal number of immediate
sub-arguments given what is derivable from the evidence. Together with the fact
that the outcome of the argument is based on the probability given the used
observations, and that no d-separated paths are used in the argument this exactly
mirrors the probabilistic reasoning.
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5 Discussion

In this paper we formalised a two-phase argument extraction method. We have
shown how support graphs help in the construction of arguments because they
capture the argumentative structure that is present in a BN.

Many explanation methods for BNs (see e.g. [4,3]) focus on textual or visual
systems. Other work on argument extraction includes that of Keppens [2], who
focuses on Argument Diagrams. One advantage of structured argumentation is
that counter-arguments can easily be modelled as well. Future research includes
how arguments constructed from a BN can be combined with arguments from
other sources, since often the available evidence is only partially probabilistic.

References

1. P. M. Dung. On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelligence,
77:321–357, 2005.

2. J. Keppens. Argument diagram extraction from evidential Bayesian Networks.
Artificial Intelligence & Law, 20(2):109–143, 2012.

3. J. R. Koiter. Visualizing inference in Bayesian Networks. Master’s thesis, Delft
University of Technology, 2006.

4. C. Lacave and F. J. Dı́ez. A review of explanation methods for Bayesian Networks.
Knowledge Engineering Review, 17(2):107–127, 2002.

5. S. Modgil and H. Prakken. A general account of argumentation with preferences.
Artificial Intelligence, 195:361–397, 2013.

6. J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Francisco, 1988.

7. J. L. Pollock. Justification and defeat. Artificial Intelligence, 67, 1994.
8. G. R. Simari and R. P. Loui. A mathematical treatment of defeasible reasoning

and its implementation. Artificial intelligence, 53(2):125–157, 1992.
9. F. Taroni, C. Aitken, P. Garbolino, and A. Biedermann. Bayesian Networks and

Probabilistic Inference in Forensic Science. John Wiley & Sons, Ltd, 2006.
10. S. T. Timmer, J.-J. C. Meyer, H. Prakken, S. Renooij, and B. Verheij. Extracting

legal arguments from forensic Bayesian networks. In R. Hoekstra, editor, Legal
Knowledge and Information Systems. JURIX 2014: The Twenty-seventh Annual
Conference, volume 217, pages 71–80, 2014.

11. S. T. Timmer, J.-J. C. Meyer, H. Prakken, S. Renooij, and B. Verheij. A structure-
guided approach to capturing Bayesian reasoning about legal evidence in argumen-
tation. Technical report, Utrecht University, 2015. UU-CS-2015-003. Also submitted
for publication.

12. F. H. van Eemeren, B. Garssen, E. C. W. Krabbe, A. F. S. Henkemans, B. Verheij,
and J. H. M. Wagemans. Handbook of Argumentation Theory. Springer, Dordrecht,
2014.

13. T. Verma and J. Pearl. Equivalence and synthesis of causal models. In Proceedings
of the Sixth Annual Conference on Uncertainty in Artificial Intelligence, UAI ’90,
pages 255–270, New York, NY, USA, 1991. Elsevier Science Inc.

14. G. A. W. Vreeswijk. Abstract argumentation systems. Artificial intelligence,
90(1):225–279, 1997.


	Explaining Bayesian Networks using Argumentation

