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Abstract

We develop a Logic in which the basic objects of concern are games, or equiva-
lently, monotone predicate transforms. We give completeness and decision results
and extend to certain kinds of many-person games. Applications to a cake cutting
algorithm and to a protocol for exchanging secrets, are given.

1 Introduction

Two person games have traditionally played an important role in Mathematical Economics
and in Logic. In Economics the classic work of von Neumann and Morgenstern [21] has
played a fundamental role and the influence of this approach has spread to other areas like
political science. In Logic we have the work of Ehrenfeucht [2] who has given a character-
ization of First Order Logic in terms of games. we also have in set theory the axiom of
determinacy, a game theoretic axiom made famous by Mycielski and Steinhaus [12], and
which has played an important role in recent research.

The appearance of games in Computer Science is more recent, but has been quite fruitful.
The alternating Turing machines of Chandra, Kozen, and Stockmeyer [1] give connections
between time and space complexities. But ATMs are clearly game theoretic objects with
disjunctive states and conjunctive states corresponding, respectively, to the moves of player
I and player II. Gurevich and Harrington [5] have recently used games to give a new proof
of Rabin’s famous result [19] of the decidability of SnS. Proving correctness of a concurrent
algorithm can also be seen as a game theoretic situation with the scheduler in the role of the
adversary player (player II from now on).

In this paper we develop a Propositional Logic of Games and study decision procedures
as well as completeness results. Our emphasis will be on games in abstract universes, the
way in which games can be combined to yield other games, and the axiomatic properties of
such games.

The principal observation that makes an investigation possible is the realization that pro-
gram connectives like “if then else” and “while do”, which are used in various programming
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languages, extend immediately to games and that the axiomatic properties that relate com-
pound programs with their components, properties studied in Hoare Logic and in Dynamic
Logic, are shared, to a large extent, by games. Indeed, it is possible to think of programs
as games of a special kind. The Logic of Games which we develop lies in expressive power
between the PDL of Fischer and Ladner [4] and the µ-calculus of Kozen [7].

To be specific, we develop two logics of games. We give a complete axiomatization of one
version of Game Logic but leave open the question of axiomatizing an apparently stronger
logic with the dual operator. The dual operator is one which converts a game into its dual
where the two players interchange roles; the moves of player I and his winning positions
become the moves and winning positions of player II and vice versa. For example, the quan-
tifiers ∃ and ∀ are duals of each other, for consider the formula (Qx)A(x) where Q is an, as
yet unspecified, quantifier. An element d is to be chosen and substituted for x, dropping the
quantifier. If A(d) is true, then player I wins and if false, then player II wins. Clearly, player
I having a winning strategy when he chooses d, is equivalent to (∃x)A(x) and if player II
chooses, then (∀x)A(x) has to be true for player I to win even then.

In certain contexts the dual operator can be replaced by two negations. (More or less the
way the two quantifiers, existential and universal, can be defined from each other. For , as
we saw, the quantifiers are simple one move games which are duals of each other.) However,
this devise fails for example when the dual operator is allowed to fall within the scope of a
� (or equivalently, a“while do”) and then duality appears to make the logic much stronger.

We also give an extension of this two person logic to certain kinds of many person games,
and an application of it to a well known “cake cutting algorithm”. Finally, we show how the
correctness of a bit swapping protocol is best viewed in game theoretic terms.

We shall now give a slightly more detailed but informal account of our games.

A normal (human) game, like chess, consists of three parts, the initial position, the le-
gal moves, and the positions that are winning for player I. In our version of games, we shall
have no draws, and the player who is deadlocked is automatically a loser. Thus the winning
positions for player II are automatically defined from those for player I. Moreover, we shall
take the game itself to consist only of the middle part, i.e. the legal game does not terminate
properly. However, the initial position and the winning states for player I will be, as it were,
supplied at the last moment when we convert a game into a statement.

Thus a typical statement of our logic will look like: s |= (α)A where s is state of some
model, α is a game, and A is some formula. Here the state s plays the role of the winning
states for player I. The whole statement means: player I has a winning strategy, starting in
state s, to play the game α in such a way, that either the game ends with A true, or else it
fails to terminate in such a way, that player II will get the blame.

Notice now that (α) is also a predicate transform, converting the predicate A into the new
predicate (α)A. This predicate transform is monotonic in that if A implies B then (α)A
implies (α)B. For clearly if we increase the set of positions where, just after the game has
ended, player I has won, then we will also increase the set of positions where the game has
yet to begin, but player I can win. In this the operator (α) resembles the modalities �α�
and [α] of PDL which are also monotonic. However, these modalities of PDL are disjunctive
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and conjunctive respectively. �α� commutes with disjunction (i.e. �α�(A ∨ B) is equivalent
to �α�A ∨ �α�B ) and [α] with conjunction. This can be explained in game theoretic terms
by saying that �α�, like ∨, is a game where player I is the only one who moves: and player
II is the only one who moves in [α], and in ∧. More general game modalities arising from
games where both players move, share the monotonicity of �α� and [α], but cannot be either
disjunctive or conjunctive. It turns out that this is the only property that (α) lacks, and
dropping the corresponding axiom from a complete axiomatization of PDL yields a complete
axiomatization of Game Logic.

2 Syntax and Semantics

We assume that the reader is familiar with the syntax and semantics of PDL and the µ-
calculus. (See appendix I for a brief exposition.) However, those for Game Logic can be
defined independently. We have a finite supply g1, . . . , gn of atomic games and a finite supply
P1, . . . , Pm of atomic formulae. Then we define games α and formulae A by induction.

1. Each Pi is a formula.

2. If A and B are formulae, then so are A ∨B, ¬A.

3. If A is a formula and α is a game, then (α)A is a formula.

4. Each gi is a game.

5. If α and β are games, then so are α; β ( or simply αβ), α ∨ β, �α∗�, and αd. Here αd is
the dual of α.

6. If A is a formula then �A� is a game.

We shall write α ∧ β, [α∗] and [A] respectively for the duals of α ∨ β, �α∗� and �A�. If
confusion will not result then we hall write αA for (α)A. E.g. �g∗i �A instead of (�g∗i �)A.

Intuitively, the games can be explained as follows. α; β is the game: play α and then
β. The game α ∨ β is: player I has the first move n it he decides whether α or β is to be
played, and then the chosen game is played. The game α ∧ β is similar except that player
II makes the decision. In �α∗�, the game α is played repeatedly (perhaps zero times) until
player I decides to stop. He need not declare in advance how many times is α to be played,
but he is required to eventually stop and player II may use this fact as part of his strategy.
Player I may not stop in the middle of some play of α. Similarly with [α∗] and player II. In
αd, the two players interchange roles. Finally, with �A�, the formula A is evaluated. If A is
false, then I loses, otherwise we go on. (Thus �A�B is equivalent to A ∧ B.) Similarly with
[A] and II.

Formally, a model game logic consists of a set Wof worlds, for each atomic P a subset
π(P ) of W and for each primitive game g a subset ρ(g) of W × P (W ), where P (W ) is the
power set of W . ρ(g) must satisfy the monotonicity condition: if (s, X) ∈ ρ(g) and X ⊆ Y ,
then (s, Y ) ∈ ρ(g). We shall find it convenient to think of ρ(g) as an operator from P (W )
to itself, given by the formula ρ(g)(X) = {s|(s, X) ∈ ρ(g)}. It is then monotonic in X. We
define π(A) and ρ(α) for more complex formulae and games as follows:

2’)
π(A ∨B) = π(A) ∪ π(B)
π(¬A) = W − π(A)

3



3’)
π((α)A) = {s|(s, π(A)) ∈ ρ(α)}

= ρ(α)(π(A))

5’)

ρ(α; β)(X) = ρ(α)(ρ(β)(X))
ρ(α ∨ β)(X) = ρ(α)(X) ∪ ρ(β)(X)
ρ(�α∗�)(X) = µY (X ⊆ Y ∧ ρ(α)(Y ) ⊆ Y )
ρ(αd)(X) = W − ρ(α)(W −X)

6’) ρ(�A�)(X) = π(A) ∩X

It is easily checked that ρ(α ∧ β)(X) = ρ(α)(X) ∩ ρ(β)(X), ρ([A])(X) = (W − π(A)) ∪X,
and ρ([α∗])(X) = νY ((Y ⊆ X)∧ (Y ⊆ ρ(α)(Y )) where νY means “the largest Y such that”.
This is easily seen by noticing that ρ([α∗])(X) = W −ρ(�α∗�)(W −X) = W -smallest Z such
that (W −X) ⊆ Z and ρ(α)(Z) ⊆ Z.

We shall have occasion to use both ways of thinking of ρ, as a map from P (W ) to it-
self, also as a subset of W × P (W ). In particular we shall need the (easily checked) fact
that (s, X) ∈ ρ(β; γ) iff there is a Y such that (s, Y ) ∈ ρ(β) and for all t ∈ Y , (t,X) ∈ ρ(γ).
Similarly, (s, X) ∈ ρ(β ∨ γ) iff (s, X) ∈ ρ(β) or (s, X) ∈ ρ(γ).

So far we have made no connection with PDL. However, given a language of PDL we can asso-
ciate with it a Game logic where to each program ai of PDL we associate two games �ai� and
[ai]. We take ρ(�a�)(X) = {s : ∃t(s, t) ∈ Ra and t ∈ X} and ρ([a])(X) = {s : ∀t(s, t) ∈ Ra

implies t ∈ X} and the formulae of PDL can be translated easily into those of game logic.
Note that if the program a is to be run and player I wants to have A true after, then if he
runs a, only �a�A needs to be true. However, if player II is going to run the program a then
[a]A needs to be true for I to win in any case. Note that if there are no a-computations
beginning at the state s, the player II is unable to move, [a]A is true and player I wins.
In other words, unlike the situation in chess, a situation where a player is unable to move
is regarded as a loss for that player in both PDL and Game Logic. However, Game Logic
is more expressive than PDL. The formula �[b∗]�false of game logic says that here is no
infinite computation of the program b, a notion that can b expressed in Streett’s PDL� but
not in PDL. We suspect that the formula �(�a�; [b])∗�false, which says that player I can
make “a” moves to player II’s “b” moves in such a way that eventually player II will be
deadlocked, cannot be expressed in PDL� either.(NB. Moshe Vardi has shown recently that
this is indeed the case.) Finally, let us show how well-foundedness can be defined in Game
Logic.

Given a linear ordering R over a set W , consider the model of Game Logic where g de-
notes [a] and Ra is the inverse relation of R. Then R is well-founded over W iff the formula
�g∗�false is true. Player I cannot terminate the game without losing, but he is required to
terminate the game sometime. The only way he can win is to keep saying to player II, keep
playing, and hope that player II will sooner or later be deadlocked. (the sub-game [a] of
�[a]∗� is a game where player II moves, and in the main game �[a]∗�, player I is responsible
for deciding how many times is [a] played.) Thus I wins iff there are no infinite descending
sequences of R on W .

However, game logic can be translated into µ-calculus of [7] (see appendix II) and by decision
procedure of [9], is decidable. This translation is not obvious as might appear at first sight.
The µ-calculus, like PDL, is based in binary relations and while every binary relation R can
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be regarded as a game in two ways, as �R� and [R], not every game can be written in one
of these two forms. However, it is true that every game g over W can be written as �a�[b]
over W � where W � is a superset of W and its size is exponential in that of W . This allows
us to give a translation as we claimed above. (See appendix II for details.) We do not know
if there is an elementary decision procedure for the full Game Logic with the dual operator.
An elementary decision procedure for dual-free Game Logic will follow as the consequence
of the completeness result, given below.

3 Completeness

The following axioms and rules are complete for the “dual-free” part of game logic.

The axioms of game logic

1. All tautologies

2. (α; β)A ⇔ (α)(β)A

3. (α ∨ β)A ⇔ (α)A ∨ (β)A

4. (�α∗�)A ⇔ A ∨ (α)(�α∗�)A

5. (�A�)B ⇔ A ∧B

Rules of Inference

1. Modus Ponens
A A ⇒ B

B

2. Monotonicity
A ⇒ B

(α)A ⇒ (α)B

3. Bar Induction
(α)A ⇒ A

(�α∗�)A ⇒ A

The soundness of these axioms and rules is quite straightforward. The completeness proof
is similar to that in [8] and proceeds through four lemmas.

Lemma 3.1. (Substitutivity of Equivalents) If � A ⇔ B and D is obtained from C by
replacing some occurrences of A by B, then � C ⇔ D.

Proof. Quite straightforward, using tautologies and rule (2).

To show that every consistent formula is satisfiable, we construct a model for a given
consistent C0 as follows. Let FL be the Fischer-Ladner closure of C0. This is quite similar
to the Fischer-Ladner closure as in PDL. Let W be the set of all consistent conjunctions of
elements of FL and their negations (as in [8]). We shall use the convention that the letters
A, B stand for atoms (elements of W ) and C, D for arbitrary formulae. For all formulas C

and D, C ≤ D means � C ⇒ D. We let π(Pi) be as before, the set of those atoms A ≤ Pi.
Finally, we take ρ(gi) as {(A, X)|A ∧ (gi)X� is consistent} where X ⊆ W and X� is the
disjunction of all the elements of X. We give first the proof for the case where all tests in
all games are atomic.
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Lemma 3.2. For all X ⊆ W , A ∈ W , all atomic test games α, if A ∧ (α)X� is consistent,
then (A, X) ∈ ρ(α).

Proof. By induction on the complexity of α.

1. If α is some gi then the lemma holds by definition of ρ(gi).

2. If α is �P � for some P , then by hypothesis and axiom (5), A ∧X� ∧ P is consistent, so
A ∈ X and A |= P by definition of the model. So (A, X) ∈ ρ(α).

3. α is β ∨ γ. Then, by hypothesis and axiom (4), (A∧ (β)X�)∨ (A∧ (γ)X�) is consistent.
Hence one of the disjuncts, say (A ∧ (β)X�) is consistent. Hence (A, X) ∈ ρ(β) so that
(A, X) ∈ ρ(α).

4. α is β; γ. Then by axiom (3), A ∧ (β)(γ)X� is consistent. Hence A ∧ (β)(T ∧ (γ)X�)
is consistent, by lemma 3.1 where T is true. So A ∧ (β)(

�
(B ∧ (γ)X� : B ∈ W ) is

consistent. Let Y = {B|B ∧ (γ)X� is consistent}. Then we can disregard B not in Y

above. So A ∧ (β)((B ∧ (γ)X� : B ∈ Y ) is consistent. Hence A ∧ (β)Y � is consistent.
It is easily seen, using induction hypothesis that (A, Y ) ∈ ρ(β) and for all B ∈ Y ,
(B, X) ∈ ρ(γ). Hence (A, X) ∈ ρ(α).

5. α is �β∗�. Let Z be the smallest set such that X ⊆ Z and for all B, if B ∧ (β)Z� is
consistent, then B ∈ Z. Then note that for all B ∈ Z, (B, X) ∈ ρ(�β∗�) = ρ(α).

Then it is immediate that � X� ⇒ Z� and also, by induction hypothesis � (β)Z� ⇒ Z�.
Hence, by bar induction, � (�β∗�)Z� ⇒ Z�. Now, A ∧ (α)X� is consistent, so A ∧ (α)Z� is
also consistent, so A∧Z� is consistent, by above, and so A must be in Z. Thus (A, X) ∈ ρ(α).

Given C in FL, let C+ denote the set of all atoms B such that C ≤ B. Then C+� will be
a formula equivalent to C.

Lemma 3.3. If (α)C ∈ FL then (i) (A < C+) ∈ ρ(α) iff (ii) A∧ (α)C is consistent iff (iii)
A ≤ (α)C.

Proof. Clearly the last two cases are equivalent since A is an atom and either (α)C or its
negation occurs in A. Also (ii)⇒(i) by lemma 3.2. So assume (i) and use induction on the
complexity of α. The cases where α is �Pi� or gj or β ∨ γ are all easy. We write X for C+.
Then X� is a formula C1 equivalent to C.

2) Suppose α is β; γ. Since (A, X) ∈ ρ(α) there must exist Y such that (A, Y ) ∈ ρ(β)
and for all B ∈ Y , (B, Y ) ∈ ρ(γ). By induction hypothesis, for all B ∈ Y , B ≤ (γ)X�.
Hence Y � ≤ (γ)X�. Also A ≤ (β)Y �. Hence A ≤ (β)(γ)X�. Thus A ≤ (α)X�. Hence
A ≤ (α)C.

3) Suppose α is �β∗�. If A ∈ X then A ≤ X� so A ≤ (α)X� by axiom 5. Otherwise
(A, X) ∈ ρ(β; β∗). Define Z0 = X and Zn+1 = Zn ∪ {B|(B, Zn) ∈ ρ(β)}. Since A is in the
union of the Zn, take the least m such that A ∈ Zm. By induction hypothesis (on n), for all
B ∈ Zm−1, B ≤ �α�X�. Also (A, Zm−1) ∈ ρ(β). By an argument like that of case 2 above,
we get A ≤ (β)(�β∗�)X� so A ≤ (�β∗�)C.

Lemma 3.4. For all A in W , all C in FL, A ≤ C iff A |= C.
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Proof. By induction on the complexity of C. The atomic case and the cases for negation
and disjunction are easy.
Suppose C is (α)D.
Then A |= C

iff (A, π(D)) ∈ ρ(α)
iff (A, D+) ∈ ρ(α) (IH)
iff A ≤ (α)D+�

iff A ≤ (α)D
iff A ≤ C.

The completeness result follows at once. For if a formula C0 is consistent then there is an
atom A such that A ≤ C0 and then C0 is satisfiable.

To see the case for the “rich-text” version of Game Logic, suppose we define, by induc-
tion, formulae of level n to be formulae whose programs have tests all of level n − 1. Then
notice that the argument will go through for level n assuming that all lemmas were true at
level n − 1. For the only fact we used in the proof above for atomic P is that A ≤ P iff
A |= P . This fact will now be the induction hypothesis for formulae of level n − 1 rather
than part of the definition of the model, and the proof goes through.

It follows also that dual-free Game Logic is decidable in nondeterministic double expo-
nential time. For given a formula C0, if C0 has a model, then it has one where W is at most
exponential in the size of C0. We can guess such a model and a state where C0 is to hold
and proceed to verify this guess in time which is polynomial in the size of W . The only
novel feature here that does not appear in PDL is the presence of the µX operator used in
defining the extension of �α∗�. However, if W has k elements then µX.φ(X) is merely Xk

where X0 is the empty set and Xi+1 is φ(Xi). Thus if φ can be calculated in time polynomial
in the size of W , so can µX.φ(X). We suspect that the decision procedure can be made to
run in deterministic exponential time using the familiar techniques due to Pratt. (NB. [22]
have recently shown that this is indeed the case.)

We conjecture that the addition of the following axiom scheme results in a system com-
plete for the dual operator.

(7) (αd)A ⇔ ¬(α)¬A

4 Many person games

We now consider many person games which are, in general, more complex than two person
games. Suppose we have certain actions a, b, c . . . and certain persons p1, . . . , pm. Suppose
they are carrying out a procedure (playing a many person game) which involves certain
persons doing certain actions at certain stages. E.g. the game may be, (p1 does a);(p2 does
b);(p3 decides whether p1 or p2 does c). Now suppose at a certain stage, an action a is to
be performed and person p would like the formula A to be true afterwards. Clearly, if p

himself is to do a, then the condition �a�A is sufficient. However, if someone else is to do a,
then p needs [a]A to be true to be sure that A will be true afterwards. Is it possible then,
given persons p1, . . . , pm and goals A1, . . . , Am to rig up a procedure so that pi can be sure
of achieving Ai at the end of the procedure, regardless of what the others do? In the next
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section we shall give an example of this. However, right now we just wish to discuss the
syntax and semantics of the logic involved.

We assume, as in PDL, a collection of atomic actions a1, . . . , an, and a supply P1, . . . , Pk

of atomic predicates. Then the m-person games and formulae are defined as follows:

1. Each Pi is a formula.

2. If A, B are formulae, then so are ¬A, A ∨B.

3. If A is a formula, i ≤ m and α is an m-person game, then (α, i)A is a formula. (Person i

has a winning strategy, playing α, to ensure that A is true if and when the game ends.)

4. For each i ≤ n, j ≤ m, (ai, j) is a game. (The person j does action i)

5. If α, β are games, then α; β is a game and for each i ≤ m, (α ∨i β) is a game. (The
person i chooses which of games α and β is to be played.)

6. If α is a game, then for each i ≤ m, (α, i, ∗) is a game. (The game α is played repeatedly
until player i says to stop and go on to the next step if there is one.)

7. If α, β are games and A is a formula then “if A then α else β” is a game and so is “while
A play α”.

A game will called ∗-free if the ∗ operator does not occur. Clearly, every ∗-free game is
bounded in length.

A model for this logic will be just a PDL model. The semantics for m-person games can be
obtained analogously to that of two person games. The only inductive clause of interest is
defining the truth values of the formula (α, i)A from those of the formula A. If we can define
the predicate transform ρ(α, i) then we can inductively define π((α, i)A) to be ρ(α, i)π(A).
However, ρ(α, i) is easily seen to be ρ(α�) where α� is the two person game with player i as
player 1 and all other players as player 2. In particular if j �= i, then (a, i) is �a�, (a, j) is
[a]. ∨i is ∨ and ∨j is ∧. We skip the details.

The following axioms are obvious (i and j are distinct).
(α; β, i)A ⇔ (α, i)(β, i)A
(α ∨i β, i)A ⇔ (α, i)A ∨ (β, i)A
(α ∨j β, i)A ⇔ (α, i)A ∧ (β, i)A
((α, i, ∗), i)A ⇔ A ∨ (α, i)((α, i, ∗), i)A
((α, j, ∗), i)A ⇔ A ∧ (α, i)((α, j, ∗), i)A
(if B then α else β, i)A ⇔ (B ∧ (α, i)A) ∨ (¬B ∧ (β, i)A)
(while B do α, i)A ⇔ (¬B ∧ A) ∨ (B ∧ (α, i)(while B do α, i)A)
The following axioms connect many person games with PDL.
((a, i), i)A ⇔ �a�A
((a, j), i)A ⇔ [a]A
And it is immediate that ∗-free many person game logic can be translated to PDL, thereby
giving us a decision procedure. We can also use PDL notation and many person Game Logic
notation interchangeably in certain restricted circumstances.

Also the following rules hold.
A ⇒ B

(α, i)A ⇒ (α, i)B
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A ∧B ⇒ (α, i)A

A ⇒ (while B do α, i)(A ∧ ¬B)

A ⇒ (α, i)A

A ⇒ ((α, j, ∗), i)A
(α, i)A ⇒ A

((α, i, ∗), i)A ⇒ A

These last two rules, of course, are the game theoretic generalizations of the corresponding
rules for [·] and �·�.

5 A cake cutting algorithm

A fairly common method used by children for sharing something fairly is: “ you divide and
I will pick ”. The person dividing has then a strong incentive to make the pieces as equal as
possible. A more general algorithm that works for n people dividing something, say a cake,
goes as follows:

The first person cuts out a piece which he claims is his fair share. Then, the piece goes
around being inspected, in turn, by persons p2, p3, . . . etc. Anyone who thinks the piece is
not too large just passes it. Anyone who thinks it is too big, may reduce it, putting some
back into the main part. After the piece has been inspected by pn, the last person who
reduced the piece, takes it. If there is no such person, i.e., no one challenged p1, then the
piece is taken by p1. In any case, one person now has a piece, and the algorithm continues
with n−1 participants. Note incidentally that the algorithm described above for two people
is not the special case n = 2 of this more general algorithm.

A question recently raised by Even, Paz, and Rabin is: what is the minimum number of
cuts needed by an algorithm that works? They have shown that the algorithm described
above can take O(n2) cuts, but that there is another algorithm that needs only O(n log(n))
cuts. However, no good lower bound is known.

We are not here interested in the complexity issue, but just to enter into the spirit of the
thing we raise the following question: the algorithm described above works only if all the
participants involved are greedy, i.e., they will take more than their share if we don’t watch
out. However, adults dividing food often are in a polite mood and try to take less than their
fair share. Now the algorithm described above can easily be adapted to polite people by
changing each reducing action to an increasing action when p2, . . . , pn inspect the piece cut
out by p1. Thus p3 might say, “no, no, that is too little, let me give you more”, etc., and
the last person to increase the piece would get it. This modified algorithm will then work
for polite people. A similar observation applies to the n log(n) algorithm. However, it is not
clear that this must be true in general, that greedy algorithms and polite algorithms come
in pairs. Thus we could ask if the complexities are the same in both cases and also if there
are algorithms that work if some people are polite and others are greedy. The solution to
this least problem is easy if we know which are which. Then an algorithm that works would
be one hat gives nothing to the polite people and uses a “greedy” algorithm to divide the
cake between the rest.

In any case, what we are actually going to be concerned with here is the question: what does
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it take to say that either of these two algorithms works? And how do we prove its correctness?
We shall take the point of view that the algorithm of this sort is really an m-person game and
that the algorithm works iff each player has a winning strategy for achieving a fair outcome.
We then show how to prove the correctness of such an algorithm in many-person Game Logic.

The proof: Now we proceed to a semi-formal proof of the correctness of the algorithm
described before.
A state will consist of the values of n+2 variables. The variable m has as its value the main
part of the cake. The variable x is the piece under consideration. For i = 1 to n, the variable
xi has as its value the piece, if any, assigned to the person pi. The variables m, x, x1, . . . , xn

range over subsets of the cake.
The algorithm uses three basic actions.

• c cuts a piece from m and assigns it to x. c works only if x is 0.

• r (reduce) transfers some (non-zero) portion from x back to m.

• ai (assign) assigns the piece x to person pi. Thus ai is simply, (xi, x) := (x, 0).

The basic predicates are F (u, k) where u is some piece and k ≤ n, and means: the piece u

is big enough for k people. F (u) abbreviates F (u, 1) and Fi abbreviates F (xi).

We assume the following propositions for all k ≤ n and all players i ≤ n.

(1) F (m, k) ⇒ �c�(F (m, k − 1) ∧ F (x))

If the main piece is big enough for k people, it is possible to cut out a fair piece, leav-
ing enough for k − 1 people.
Note that (1) is equivalent to the following game theoretic proposition.

(1’) F (m, k) ⇒ (c, i)(F (m, k − 1) ∧ F (x))

The following also holds:

(2) F (m, k) ⇒ [r∗]F (m, k)

If the main piece is big enough for k people, it remains so when more is added to it.

(3) F (m, k) ⇒ [c][r∗](F (m, k − 1) ∨ �r�(F (m, k − 1) ∧ F (x)))

If the main piece was big enough for k people, then after cutting and several reductions,
either it is big enough for k− 1 people, or else a reduction will make m big enough for k− 1
people and leave x fair.

(4) F (x) ⇒ [ai]Fi Obvious.

There are tacit assumptions of relevance, e.g. that r and c can only affect statements in
which m or x occurs. We assume moreover that F (m, n) is true at the beginning.

Th main algorithm consists of n cycles during each of which one person is assigned a piece.
We show now that each person pi has a winning strategy so that if, after the kth cycle, (s)he is
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still in the game then F (m, n−k) and if (s)he is assigned a piece, then Fi is true. This is true
at start since k = 0, F (m, n) holds and no one yet has a piece. We now consider the inductive
step from k to k+1. We assume by induction hypothesis that F (m, n−k) holds at this stage.

If i = 1 then since p1 (or whoever does the cutting) does the cutting, by (1) and (1’)
she can achieve F (m, n − k − 1) ∧ F (x). If no one does an r, she gets x and F1 will hold
since x did not change. If someone does do an r, then by (2), F (m, n− k− 1) will still hold
and this is OK since she will then be participating at the next stage.

Let us now consider just one of the other people.

The last person pi to do r (if there is someone who does r) could (by (3)) achieve F (x)
and therefore when x is assigned to him, F1 will hold.

All the other cases are quite analogous, and the induction step goes through. By taking
k = n we see that every pi has the ability to achieve Fi.

Yet another way to look at this problem is measure theoretically. Given n probability mea-
sures µ1, . . . , µn on a space X, the algorithm shows the existence of a partition {X1, . . . , Xn}
such that µi(Xi) ≥ 1/n. However, it is in fact true that there can be a partition with
µi(Xi) = 1/n. Can we find an algorithm that will achieve this latter property? Or at least
to within �?

Finally, we point out that there is a clear sense in which none of the algorithms described
above are fair since they allow something very like gerrymandering. Suppose, for example,
that there are two participants p and q. p loves icing, but q likes both cake and icing equally.
Thus if we represent the cake by the interval [0, 2] where [0, 1] is the cake, and [1, 2] is the
icing, then we might have µ1([0, 1]) = 1/10 and µ1([1, 2]) = 9/10. On the other hand,
µ2([0, 1]) = µ2([1, 2]) = 1/2. Now the wily player p divides the cake into two pieces X and
Y where X = [0, 1, 1] and Y = [1.1, 2]. Since µ2(X) = 0.55, q will choose X and leave Y to
p. However, µ1(Y ) = 0.81 so that player p has got much the better bargain. Is it possible
to define a notion of fairness that will get around this problem and find an algorithm that
is fairer than the ones we have described?

6 A protocol for exchanging secrets

At STOC-83, Halpern and Rabin introduced a logic of likelihood (LL) to analyze the situ-
ation that arises when two parties called Alice and Bob, who do not trust each other, want
to exchange secrets without making themselves liable to betrayal.

In the problem discussed by Halpern and Rabin, Alice and Bob are two people who have
files that they access with a password. For simplicity the password is assumed to be one bit
long. They would like to exchange passwords, but want to do it in such a way that there
is no incentive for cheating. A protocol using oblivious transfer is described which succeeds
with probability 3/4. A fact which is crucial in the working of the algorithm is that both
files are destroyed if either party accesses the other’s file with an incorrect password.

It is clear from the very nature of the problem that the notions involved include not only
cryptographic protocols, but also the notions of belief, capacity (ability to take some action),
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preference, and, of course, truth. Thus the Halpern-Rabin algorithm succeeds only because
the two parties prefer to exchange secrets, rather than letting things be. Cheating will not
happen, because a belief in the cheatee that (s)he has the cheater’s secret when (s)he does
not, is dangerous to the cheater. For the cheatee can and will try the incorrect password,
thereby destroying both files. It is also clear that we are dealing here with a two-person non
zero sum game in that while the interests of the parties are somewhat opposed (each would
prefer to cheat if (s)he could do it in safety), they are not entirely opposed, since each prefers
a co-operative exchange of secrets to no exchange.

Let us start by considering the following propositions.

BPA: Bob has Alice’s password.
APB: Alice has Bob’s password.
Bel(B, BPA): Bob believes that he has Alice’s password.
Bel(A, APB): Alice believes that she has Bob’s password.
AFD: Alice’s file is destroyed.
BFD: Bob’s file is destroyed.

Let us now consider Alice’s preferences. Her first preference, presumably is APB ∧ ¬BPA.
Were it not for a fear of cheating, they could just exchange passwords with trust. Her pref-
erences after that are, in order, APB ∧ BPA, ¬APB ∧ ¬BPA, ¬APB ∧ BPA and finally,
AFD, Bob’s preferences can be obtained by exchanging the letters A and B. Thus we get
the little table:

Alice Bob

(i) APB ∧ ¬BPA (iv) BPA ∧ ¬APB

(ii) APB ∧BPA (ii) BPA ∧ APB

(iii) ¬APB ∧ ¬BPA (iii) ¬APB ∧ ¬BPA

(iv) ¬APB ∧BPA (i) ¬BPA ∧ APB

(v) AFD (vi) BFD

It is clear that the preferences are not exactly the same, and hence the need for caution. On
the other hand, both prefer alternative (ii) to (iv) and since the facts of the case (and not
logic) imply AFD ⇔ BFD, (v) and (vi) coincide effectively. Thus their preferences coincide
to a fair extent and we have the possibility of co-operation. From now on we shall abbreviate
the propositions AFD and BFD as just FD and (vi) will be renumbered (v). Thus we get
a new table:

Alice Bob

(i) APB ∧ ¬BPA (iv) BPA ∧ ¬APB

(ii) APB ∧BPA (ii) BPA ∧ APB

(iii) ¬APB ∧ ¬BPA (iii) ¬APB ∧ ¬BPA

(iv) ¬APB ∧BPA (i) ¬BPA ∧ APB

(v) FD (v) FD

We now propose the following quite simple protocol.

Step 1: Each of Alice and Bob sends the other a random bit.

It is part of the protocol that step 2 is not done until step 1 has been completed.
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Step 2: If the random bit sent by either Alice or Bob does not coincide with the pass-
word then (s)he sends a correction (within some stipulated time period).

End of protocol.
Note that we did not need an oblivious transfer.

We now have to show that this protocol works. Before step 1, the situation is: ¬APB ∧
¬BPA ∧ ¬Bel(A, APB) ∧ ¬Bel(B, BPA).

This situation persists through step 1. Note that neither party has an advantage yet since
only a random bit has been received and the protocol cannot proceed unless the first step is
completed. After step 2, we will have Bel(A, APB) ∧Bel(B, BPA).

Suppose Alice decides to cheat at step 2. She can cheat in one of two ways. she can
fail to send a correction even if one is needed, or she can send one when it is not. It is
clear that in either case she is risking the loss of her file since Bob believes that he has her
password and will use it. Since loss of her file is the least preferred of her alternatives, she
has to be honest and, for similar reasons, so does Bob.

This is the informal proof. Now we proceed to make it a bit more precise.

We consider a state space consisting of a finite number of states divided into five levels.
The first level has only the start state s0 which satisfies the formula ¬APB ∧ ¬BPA ∧
¬Bel(A, APB)∧¬Bel(B, BPA)., i.e., neither knows the other’s password, nor believes that
(s)he knows it. At the second level, there are two states, the state s1 which is reached if
step 1 is successfully completed and the state st which is a terminating state and is reached
if someone cheats at the first stage.

After s1 is reached, step 2a brings us to one of two states s0x and s1x when Alice has
either cheated or not, (0 stands for no cheating, the x for Bob’s yet undetermined choice).
Bob’s choice brings us then to one of the four states s00, s01, s10, s11 which represent the pos-
sibilities: neither cheats, Bob cheats, Alice cheats, and both cheat respectively. (A subscript
0 means no cheat, and Alice’s behavior is mentioned first). These are the states of level 4
and Bel(A, APB) and Bel(B, BPA) are both true at all these. APB is true at s00 and at s10

and similarly BPA is true at s00 and at s01, i.e., at s00 and at s01 Bob actually knows Alice’s
password and similarly, Alice knows Bob’s at s00 and at s10. Finally, each of these level four
states has four levels, five successors depending on whether Alice or Bob attempts to enter
the other’s file. Leaving out the details of this fifth level, we get the following picture: where
the fifth level indicates possible file entry.

Now Alice assumes that the second subscript at the fourth level is 0, because of Bel(A, BPA)
and similarly Bob assumes that the first subscript is 0. At s00 and s10 Alice may safely enter
Bob’s file and at s00 and s01 Bob may safely enter hers.

However, Bob, when he is at s10, is likely to assume that he is at s00 and attempt file
entry. Similarly for s11 and s01. Similar remarks hold true for Alice. Hence, if files are to
be saved, the only acceptable state at level iv is s00. This shows that neither Bob nor Alice
can cheat provided they are rational.
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Figure 1:

This brings us to a rather odd fact. Suppose that Alice and Bob are convinced by the
argument above. then the protocol would be safe for them to use, even if it had a bug in it.
We will not pursue this line of thought. In this particular case, however, there is a stable
strategy that either party can use safely. Namely, send the random bit as agreed, act hon-
estly at step 2 and then proceed to access the file using the password assuming it is correct.
If Bob, for instance, uses this strategy, Alice cannot benefit from dishonesty. Similarly for
Alice. Moreover, by the nature of the problem (which is symmetric), this strategy is optimal
for both parties, since the only alternative which would be better for either, is asymmetric.

We can summarize the situation in standard game theoretic terms by using a table. Let
the strategies for each of Bob and Alice be, c (cheat at step 1 by not sending in a bit),
hc (cheat at the second step after first sending in a random bit), and hh (honesty, at both
steps). There is no strategy cc or ch, since the protocol terminates if bits are not sent at the
first step by both parties. The payoffs are given in terms of the alternatives i-v of the table
before.

Bob
c hc hh

c iii iii iii
Alice hc iii v v

hh iii v ii

It is clear that the strategy hh is stable for both Alice and Bob since the other party then
cannot gain by cheating. Thus the bottom right hand square is an equilibrium point.

As the foregoing shows, an analysis of a basically game theoretic situation can be carried
out successfully without having to introduce utility values as is usually done. After, all, the
decision ultimately is of the sort “shall I do a rather than b?”, requiring only a yes/no answer,
and hence even if the reals are introduced as utilities, their function should be reducible to
certain logical questions. How far this can be carried and whether one gets nice decidable
theories like PDL and game logic remains to be seen.

Acknowledgments 1. We have benefited from conversations with Moshe Vardi, Ken McAloon,
Albert Meyer, and David Mumford.

Appendix I PDL and the µ-calulus: We give a brief review of both PDL and the µ-
calculus. A detailed presentation will be found in the literature,
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PDL deals with abstract, regular programs in a state space W . There are no individual
variables or functions, and hence the role played by assignments in the usual, imperative
programming languages, is taken by abstract atomic programs ai. These are not assumed to
be deterministic, though there is a version of (DPDL) of PDL in which this assumption is
made. Programs can be combined by means of program connectives ;, U , and ∗. The usual
connectives like “while do” and “if then else” can be defined from these.

Specifically, we have a language with a finite number of basic symbols ai for atomic pro-
grams, and Pj for atomic predicates. We then define programs and formulas as follows.

Each Pi is a formula
If A, B are formulae, then so are ¬A and A ∨B

If A is a formula and α is a program, then �α�A i a formula
(For PDL� only) If α is a program, then (α) is a formula
Each ai is a program
If α, β are programs, then so are α; β, α ∪ β, and α∗

If A is a formula, then A? is a program

Abbreviations: A ∧ B stands for ¬(¬A ∨ ¬B). [α]Astands for ¬�α�¬B. If A then α else β

for (A?; α) ∪ (¬A?; β). While A do α stands for (A?; α)∗; (¬A?).

Semantics: We assume given a state space W . Elements of W will be called states and
referred to by letters s, t etc. We assume given for each Pi a subset π(Pi) of W and for
each ai a subset ρ(ai) of W ×W . A model M consists of such a W and the assignment of
the values of π and ρ to the atomic symbols. Then π(A) and ρ(α) are defined for arbitrary
formula A and arbitrary programs α as follows:
π(¬A) = W − π(A). π(A ∨B) = π(A) ∪ π(B)
π(�α�A) = {s|(∃t)((s, t) ∈ ρ(α) and t ∈ π(A)}
π(�α) = {s|∃ infinite sequence s = t1, t2, . . . such that for all i, (ti, ti+1) ∈ ρ(α)}

ρ(α; β) = ρ(α) ◦ ρ(β). ρ(α ∪ β) = ρ(α) ∪ ρ(β)
ρ(α∗) = reflexive, transitive closure of ρ(α).
ρ(A?) = {(s, s)|s ∈ π(A)}

A formula A is true at s iff s ∈ π(A). It is valid iff it is true at all states of all mod-
els. It is satisfiable iff it is true at some state of some model.

The principal results are that validity in PDL is decidable in DEXPTIME and that the
axioms given for Game Logic together with the axiom �α�(A ∨B) ⇔ �α�A ∨ �α�B are com-
plete. In other words, PDL is the logic of disjunctive games. PDL � is also decidable in
DEXPTIME, [22] but no nice set axioms is known.

The µ-calculus takes advantage of the fact that our primary interest in programs i as pred-
icate transforms, and that the affect of the ∗ in α∗ can be obtained through a least fixed
point operator. Thus the µ-calculus does away with non-atomic programs and the definition
of formulas goes as follows. Note that we are introducing predicate variables Xj which will
be bound by the least fixed point operator µXj.

Each Pi is a formula. Each variable Xj is also a formula. If A, B are formulae then so

15



are A ∨ B, ¬A, and �ai�A for each ai. If A is a formula in which all occurrences of Xj are
positive, then µXj.A is also a formula.

Given a model M and a formula A, to evaluate π(A) we will need to assign subsets Vj

to each free Xj in A. Then to define π(A), the clauses for the first two of the conditions
above are obvious. Of course π(Xj) is taken to be Vj. Since π(A) depends on the Vj, let us
write it as π(A, V1, . . . , Vk). Then for the µX condition we take,

π(µXk.A, V1 . . . , Vk−1) = The least Vk such that π(A, V1, . . . , Vk) = Vk.

It is known that the µ-calculus is decidable and properly includes PDL, see [7],[9].

Appendix II A translation of Game Logic into the µ-calculus: We said earlier that Game
Logic can be translated into the µ-calculus, but there is a slight difficulty with this state-
ment as it stands. In a model of the µ-calculus, at least as considered by Kozen and Pratt,
programs are binary relations on the state space W . However, in Game Logic, the basic
objects are not binary relations, but games. This disparity needs to be resolved before we
can speak of a translation.

Of course, a binary relation gives rise to a game. Namely, if R is the relation, then we
can define the game R� to be {(s, X)|(∃t ∈ X)((s, t) ∈ R)}. However, the game defined this
way has the property that (s, X ∪ Y ) ∈ R� iff (s, X) ∈ R� or (s, Y ) ∈ R�. In other words, R�

is disjunctive, and of course not every game has this property.

The solution is to go one type upwards. Given an arbitrary game α on W , we can think of
it also as a relation between W and P (W ), the power set of W . Thus it can be thought of
as a two move game on the space W � = W ∪ P (W ). Specifically, in his first move from a
state s ∈ W , player I chooses an X such that (�, X) ∈ ρ(α). Note that since X ∈ P (W ),
X ∈ W �. Now player II chooses an element t ∈ X. Thus α is represented on W � as �α��[e]
where both α� and e are binary relations and, as a matter of fact, e does not depend on α at
all. Incidentally, the letter e stands for the word “element” since II is choosing an element
of the set X chosen by I.

It is clear now that if a Game Logic formula A has a model of size k, then here will be
a corresponding formula A+ of the µ-calculus with a model of size k + 2k. However, the
translation must preserve satisfiability in both directions, and that means that if the trans-
lation A+ of a Game Logic formula A has a model M �, then we should be able to decode
from it a model M of the formula A. This means that we can separate W and P (W ) inside
W � etc. These possibilities need to be built into the structure of A+. Thus A+ will be a
formula A� ∧G where A� translates A in a µ-calculus model of a special kind and G� which
does not depend on A, says that the given µ-calculus model is of that special kind. The
language of G and A� will include the atomic predicates of A plus a new atomic predicate
symbol E (for “is an element”). There is an atomic program ai for each game gi and a new
atomic program e (choosing an element). First we define G to be the (µ-calculus translation
of) the PDL formula

E∧[((∪ai) ∪ e)∗] (
�

i

(�ai�true⇒ E)∧(
�

i

[ai]¬E)∧
�

i

(Pi ⇒ E)∧([e] E)∧(�e�true⇔ �e�E)
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Intuitively, G says that the universe W � is divided into two parts π(E) and W � − π(E), and
that all programs ai go from π(E) to W �−π(E) whereas the program e goes in the opposite
direction.

Now A� is defined inductively as follows:

If A is : Then A� is :
an atomic predicate, A

(B ∨ C) B� ∨ C �

¬B E ∧ ¬B�

(gi)B �ai�[e]B�

(α; β)B ((α)(β)B)�

�(α)∗�B µX.(B� ∨ ((α)X)�)
(αd)B (¬(α)¬B)�

(α ∨ β)B (α)B� ∨ (β)B”

Finally we take A+ to be A� ∧ G. Then as we indicated earlier, any Game Logic model M

of A can be converted into a model of A+ is a model of G and hence all games of the form
�ai�[e] begin and end in the extension π(E) of E. Thus a model of A+, which is, therefore a
model of both A� and G, can be converted into Game Logic model of A with π(E) as W . It
follows that A is Game Logic satisfiable iff A+ is µ-calculus satisfiable.
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